6.087 Lecture 3 — January 13, 2010

@ Review

Review: Definitions

Variable - name/reference to a stored value (usually in
memory)

Data type - determines the size of a variable in memory,
what values it can take on, what operations are allowed

Operator - an operation performed using 1-3 variables

Expression - combination of literal values/variables and
operators/functions

Review: Data types

Various sizes (char, short, long, float, double)
Numeric types - signed/unsigned
Implementation - little or big endian

Careful mixing and converting (casting) types

Review: Operators

Unary, binary, ternary (1-3 arguments)

Arithmetic operators, relational operators, binary (bitwise
and logical) operators, assignment operators, etc.

Conditional expressions
Order of evaluation (precedence, direction)

6.087 Lecture 3 — January 13, 2010

@ Blocks and Compound Statements

Blocks and compound statements

¢ A simple statement ends in a semicolon:
z = foo(x+y);

e Consider the multiple statements:
temp = x+y;
z = foo(temp);

e Curly braces — combine into compound statement/block

Blocks

Block can substitute for simple statement
Compiled as a single unit
Variables can be declared inside

{
int temp = x+y;
z = foo(temp);

}

Block can be empty {}
No semicolon at end

Nested blocks

¢ Blocks nested inside each other
{

int temp = x+y;
z = foo(temp);
{
float temp2 = xxy;
z += bar(temp2);
}
1

6.087 Lecture 3 — January 13, 2010

@ Control Flow
e Conditional Statements
e Loops

Control conditions

Unlike C++ or Java, no boolean type (in C89/C90)
e in C99, bool type available (use stdbool.h)

Condition is an expression (or series of expressions)
e.g.n<30rx<y | z<y

Expression is non-zero =- condition true
Expression must be numeric (or a pointer)

const char str[] = "some text";
if (str) /x string is not null x/
return 0;

Conditional statements

e The if statement
e The switch statement

The i f statement

if (x % 2)
y += Xx/2;

e Evaluate condition

if (x%2==0)
o If true, evaluate inner statement
y +=X/2;

e Otherwise, do nothing

The e1se keyword

if

(x % 2 == 0)

y += Xx/2;
else

y

+= (x+1)/2;

Optional

Execute statement if condition is false
y += (x+1)/2;

Either inner statement may be block

10

The else if keyword

if

y

(X % 2 ==)
+= X/2;

else if (x % 4 == 1)

y

+= 2% ((x+3)/4);

else

y

+= (x+1)/2;

Additional alternative control paths

Conditions evaluated in order until one is met; inner
statement then executed

If multiple conditions true, only first executed
Equivalent to nested i f statements

11

Nesting i f statements

if (X% 4 == 0)
if (x%2 ==0)
y = 2;
else
y = 1;

To which if statement does the e1se keyword belong?

Mir 12

Nesting i f statements

To associate else with outer if statement: use braces

if (x%4 ==0) {
if (x%2 ==0)
y = 2;
} else
y = 1;

13

The switch statement

¢ Alternative conditional statement

e Integer (or character) variable as input

e Considers cases for value of variable
switch (ch) {

case 'Y’ /x ch == 'Y’ x/
/*x do something =/
break;

case 'N’: /x ch == N’ x/
/% do something else x/
break;

default: /x otherwise x/
/%« do a third thing =/
break;

Multiple cases

e Compares variable to each case in order

e When match found, starts executing inner code until
break; reached

¢ Execution “falls through” if break; notincluded

switch (ch) {

case 'Y’ :

case 'y’ :

/% do
ch
ch

break;

something
== "Y' or
== ’y! */

if

switch (ch)

case 'Y’ :

/* do
ch

SO

case 'N’:

/* do
ch
ch

break;

SO

{

mething if
Y ox/
mething if
'Y’ or
‘N =%/

15

The switch statement

e Contents of switch statement a block
e Case labels: different entry points into block
e Similar to labels used with got o keyword (next lecture. . .)

16

Loop statements

The while loop

The for loop

The do-while loop

The break and continue keywords

17

The while loop

while (/+ condition x/)
/« loop body x/

e Simplest loop structure — evaluate body as long as
condition is true

¢ Condition evaluated first, so body may never be executed

18

The for loop

int factorial(int n) {
int i, j=1;
for (i = 1; i <= n; i++)
jox= i
return |

}

e The “counting” loop
e Inside parentheses, three expressions, separated by
semicolons:
e Initialization: i = 1
e Condition: i <= n
e Increment: i++

e Expressions can be empty (condition assumed to be “true”)

19

The for loop

Equivalent to while loop:

int factorial(int n) {

int j = 1;
int i = 1; /% initialization =/
while (i <= n /x condition x/)

jox= i
i++; /x increment x/

}

return j;

{

20

The for loop

e Compound expressions separated by commas
int factorial(int n) {
int i, j;
for (i

1, J=1; 1 <=n; j %=1, i++)

return j;

}

¢ Comma: operator with lowest precedence, evaluated
left-to-right; not same as between function arguments

21

The do-while loop

char c;
do {

/« loop body =/

puts ("Keep going? (y/n) ");

c = getchar();

/« other processing x/

while (¢ == 'y’ && /*x other conditions x/);

¢ Differs from while loop — condition evaluated after each
iteration

e Body executed at least once
e Note semicolon at end

22

The break keyword

e Sometimes want to terminate a loop early

e break; exits innermost loop or switch statement to exit
early

e Consider the modification of the do-while example:

char c;
do {
/« loop body =/
puts ("Keep going? (y/n) ");
¢ = getchar();
if (c = "y")
break;
/« other processing x*/
} while (/x other conditions x/);

23

The continue keyword

¢ Use to skip an iteration

¢ continue; skips rest of innermost loop body, jumping to loop
condition

e Example:
#define min(a,b) ((a) < (b) ? (a) : (b))

int gcd(int a, int b) {

int i, ret = 1, minval = min(a,b);
for (i = 2; i <= minval; i++) {
if (a% i) /« i not divisor of a =/
continue;
if (b % i == 0) /« i is divisor of both a and b =/
ret = i;
}
return ret;
}
Ty 24

6.087 Lecture 3 — January 13, 2010

@ Functions

Functions

¢ Already seen some functions, including main () :

int main(void) {
/* do stuff =/
return 0; /x success x/

}

¢ Basic syntax of functions explained in Lecture 1
e How to write a program using functions?

25

Divide and conquer

¢ Conceptualize how a program can be broken into smaller
parts

e Let’s design a program to solve linear Diophantine
equation (ax + by = c,z,y: integers):
get a, b, ¢ from command line
compute g = gcd(a,b)
if (¢ is not a multiple of the gcd)
no solutions exist; exit
run Extended Euclidean algorithm on a, b
rescale x and y output by (c/g)
print solution

¢ Extended Euclidean algorithm: finds integers z, y s.t.

az + by = ged(a, b).

26

Computing the gcd

e Compute the gcd using the Euclidean algorithm:

int gcd(int a, int b) {

while (b) { /« if a < b, performs swap x*/
int temp = b;

b=a%b;
a = temp;
}
return a;

}

¢ Algorithm relies on ged(a, b) = ged(b, a mod b), for natural
numbers a > b.

[Knuth, D. E. The Art of Computer Programming, Volume 1: Fundamental
Algorithms. 3rd ed. Addison-Wesley, 1997.]

© Addison Wesley. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/fairuse.

27

http://ocw.mit.edu/fairuse

Extended Euclidean algorithm

Pseudocode for Extended Euclidean algorithm:
Initialize state variables (x,Vy)
if (a < b)
swap (a, b)
while (b > 0) {
compute quotient, remainder
update state variables (x,y)
}

return gcd and state variables (x,Yy)

[Menezes, A. J., et al. Handbook of Applied Cryptography. CRC Press, 1996.]

© CRC Press. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/fairuse.

Mir 28

http://ocw.mit.edu/fairuse

Returning multiple values

Extended Euclidean algorithm returns gcd, and two other
state variables, x and y

Functions only return (up to) one value
Solution: use global variables

Declare variables for other outputs outside the function

¢ variables declared outside of a function block are globals
¢ persist throughout life of program
¢ can be accessed/modified in any function

Mir 29

Divide and conquer

Break down problem into simpler sub-problems
Consider iteration and recursion
¢ How can we implement gcd(a,b) recursively?

Minimize transfer of state between functions
Writing pseudocode first can help

30

6.087 Lecture 3 — January 13, 2010

@ Modular Programming

Programming modules in C

¢ C programs do not need to be monolithic
e Module: interface and implementation
e interface: header files
¢ implementation: auxilliary source/object files
e Same concept carries over to external libraries (next
week...)

31

The Euclid module

Euclid’s algorithms useful in many contexts

Would like to include functionality in many programs
Solution: make a module for Euclid’s algorithms
Need to write header file (.h) and source file (. c)

32

The source: euclid.c

Implement gcd () ineuclid.c:

/+ The gcd() function x/
int gcd(int a, int b) {
while (b) { /x if a < b, performs swap x*/
int temp = b;
b =a%b;
a = temp;
}

return a;

}

Extended Euclidean algorithm implemented as
ext_euclid(), alsoin euclid.c

The extern keyword

Need to inform other source files about functions/global
variables in euclid.c

For functions: put function prototypes in a header file

For variables: re-declare the global variable using the
extern keyword in header file

extern informs compiler that variable defined somewhere
else

Enables access/modifying of global variable from other
source files

34

The header: cuclid.nh

Header contains prototypes for gcd () and ext_euclid():

/+ ensure included only once =x/
#ifndef _ EUCLID H__
#define _ EUCLID_H_

/+« global variables (declared in euclid.c) */
extern int x, y;

/+ compute gcd =/
int gcd(int a, int b);

/+ compute g = gcd(a,b) and solve ax+by=g x/
int ext_euclid(int a, int b);

#endif

Mir 35

Using the Euclid module

e Want to be able to call gcd () or ext_euclid () from the
main file diophant.c

¢ Need to include the header file euclid.h:
#include "euc1id.n" (file in ™., not search path)

e Then, can call as any other function:

/x compute g = gcd(a,b) =/
g = ged(a,b);

/x compute x and y using Extended Euclidean alg. =/
g = ext_euclid(a,b);

¢ Results in global variables x and y

/% rescale so ax+by = c x/
grow = c/g;
X x= Qrow;
y x= Qrow;

36

Compiling with the Euclid module

Just compiling diophant . c is insufficient
The functions gcd () and ext_euclid () are defined in
euclid. c; this source file needs to be compiled, too

When compiling the source files, the outputs need to be
linked together into a single output

One call to gcc can accomplish all this:

athena% gcc -g -00 -Wall diophant.c
euclid.c -o diophant.o

diophant.o can be run as usual

Iathenais MIT's UNIX-based computing environment. OCW does not provide access to it.

37

6.087 Lecture 3 — January 13, 2010

@ Variable Scope
e Static Variables
e Reqgister Variables

38

Variable scope

e scope — the region in which a variable is valid

e Many cases, corresponds to block with variable’s
declaration

e Variables declared outside of a function have global scope
¢ Function definitions also have scope

38

An example

What is the scope of each variable in this example?

int nmax = 20;

/+ The main() function x/

int main(int argc, char xx argv) /x entry point

{
int a =0,

printf("s3d: %d

printf("%3d: %d\n",2,b);

for (n = 3; n <= nmax; n++) {
cC=a+b; =b; b =
printf("s3 d %d\n",n,c);

1

return 0; /% success x/

x/

39

Scope and nested declarations

How many lines are printed now?
int nmax = 20;
/+ The main() function =/

int main(int argc, char xx argv) /x entry point

{

int a=0,b=1,c, n, nmax = 25;
printf("$3d: %d\n",1,a);
printf("%3d: %d\n",2,b);

for (n = 3; n <= nmax; n++) {

c=a+b; a=">b; b=
printf("%3d: %d\n",n,c);
1

return 0; /% success x/

x/

40

Static variables

e static keyword has two meanings, depending on where
the static variable is declared

¢ Qutside a function, static variables/functions only visible
within that file, not globally (cannot be extern’ed)

¢ Inside a function, static variables:

¢ are still local to that function
¢ are initialized only during program initialization
¢ do not get reinitialized with each function call

static int somePersistentVar = 0;

41

Register variables

During execution, data processed in registers

Explicitly store commonly used data in registers — minimize
load/store overhead

Can explicitly declare certain variables as registers using
register keyword

e must be a simple type (implementation-dependent)

« only local variables and function arguments eligible

o excess/unallowed register declarations ignored, compiled
as regular variables

Registers do not reside in addressed memory; pointer of a
register variable illegal

42

Example

Variable scope example, revisited, with register variables:

/* The main() function x/
int main(register int argc, register char xx argv)
{
register int a =0, b
printf ("$3d: %d\n",1.,a
printf("%3d: %d\n",2,b
for (n = 3; n <= nmax; n++) {
c=a+b; a b; b =c;
printf("%3d:

1, ¢, n, nmax = 20;

);
)s

return 0; /x success x/

43

Summary

Topics covered:

e Controlling program flow using conditional statements and
loops

¢ Dividing a complex program into many simpler
sub-programs using functions and modular programming
techniques

e Variable scope rules and extern, static, and
register variables

Mir 44

MIT OpenCourseWare
http://ocw.mit.edu

6.087 Practical Programming in C
January (IAP) 2010

For information about citing these materials or our Terms of Use,visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Review
	Blocks and Compound Statements
	Control Flow
	Conditional Statements
	Loops

	Functions
	Modular Programming
	Variable Scope
	Static Variables
	Register Variables

