
Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science


6.087: Practical Programming in C 

IAP 2010 

Problem Set 3 
Control flow. Functions. Variable scope. Static and global variables. I/O: printf and scanf. File 

I/O. Character arrays. Error handling. Labels and goto. 

Out: Wednesday, January 13, 2010.	 Due: Friday, January 15, 2010. 

Problem 3.1 

Code profiling and registers. In this problem, we will use some basic code profiling to examine 
the effects of explicitly declaring variables as registers. Consider the fibonacci sequence generating 
function fibonacci in prob1.c, which is reproduced at the end of this problem set (and can be 
downloaded from Stellar). The main() function handles the code profiling, calling fibonacci() 
many times and measuring the average processor time. 

(a) First, to get a baseline (without any explicitly declared registers), compile and run prob1.c. 
Code profiling is one of the rare cases where using a debugger like gdb is discouraged, because 
the debugger’s overhead can impact the execution time. Also, we want to turn off compiler 
optimization. Please use the following commands to compile and run the program: 

dweller@dwellerpc:~$ gcc -O0 -Wall prob1.c -o prob1.o 
dweller@dwellerpc:~$ ./prob1.o 
Avg. execution time: 0.000109 msec example output ←
dweller@dwellerpc:~$ 

How long does a single iteration take to execute (on average)? 

(b) Now, modify the fibonacci() function by making the variables a, b, and c register variables. 
Recompile and run the code. How long does a single iteration take now, on average? Turn 
in a printout of your modified code (the fibonacci() function itself would suffice). 

(c) Modify the fibonacci() function one more time by making the variable n also a register 
variable. Recompile and run the code once more. How long does a single iteration take with 
all four variables as register variables? 

(d) Comment on your observed results.	 What can you conclude about using registers in your 
code? 

Problem 3.2 

We are writing a simple searchable dictionary using modular programming. First, the program 
reads a file containing words and their definitions into an easily searchable data structure. Then, 
the user can type a word, and the program will search the dictionary, and assuming the word is 
found, outputs the definition. The program proceeds until the user chooses to quit. 

We split the code into several files: main.c, dict.c, and dict.h. The contents of these files are 
described briefly below. 

1 



main.c: dict.c: dict.h: 
#include <stdio.h> #include "dict.h" /* data structure 
#include <stdlib.h> for the dictionary */ 
#include "dict.h" /* data structure char * the dictionary[1000]; 

for the dictionary */ 
int main() { char * the dictionary[1000]; /* declarations */ 
... void load dictionary(); 
} void load dictionary() {

... 
char * lookup(char []); 

} 

char * lookup(char []) { 
... 
} 

Answer the following questions based on the above program structure. 

(a) In implementing this program, you want to access the global variable the dictionary from 
main.c, as well as from dict.c. However, due to the header file’s inclusion in both source 
documents, the variable gets declared in both places, creating an ambiguity. How would you 
resolve this ambiguity? 

(b) Now, suppose you want to restrict the dictionary data structure to be accessible only from 
functions in dict.c. You remove the declaration from dict.h. Is it still possible to directly 
access or modify the variable from main.c, even without the declaration in dict.h? If so, 
how would you ensure the data structure variable remains private? 

(c) Congratulations!	 You’re done and ready to compile your code. Write the command line 
that you should use to compile this code (using gcc). Let’s call the desired output program 
dictionary.o. 

Problem 3.3 

Both the for loop and the do-while loop can be transformed into a simple while loop. For each 
of the following examples, write equivalent code using a while loop instead. 

(a)	 int f a c t o r i a l ( int n) {
int i , r e t = 1 ; 
for ( i = 2 ; i <= n ; i++) 

r e t ∗= i ; 
return r e t ; 

} 

(b) #include <s t d l i b . h> 

double rand double ( ) {
/∗	 generate random number in [ 0 , 1 ) ∗/ 
double r e t = ( double ) rand ( ) ; 
return r e t /(RAND MAX+1); 

} 

int sample geometr i c rv ( double p) { 

2 



double q ;

int n = 0 ;

do {


q = rand double ( ) ; 
n++;


} while ( q >= p ) ;

return n ;


} 

Note: You only need to modify the sample geometric rv() function. 

3




Problem 3.4 

’wc’ is a unix utility that display the count of characters, words and lines present in a file. If no 
file is specified it reads from the standard input. If more than one file name is specified it displays 
the counts for each file along with the filename. In this problem, we will be implementing wc. 

One of the ways to build a complex program is to develop it iteratively, solving one problem 
at a time and testing it throroughly. For this problem, start with the following shell and then 
iteratively add the missing components. 
#include <s t d i o . h> 
#include <s t d l i b . h> 
int main ( int argc , char∗ argv [ ] ) 
{	

FILE∗ fp=NULL; 
int n f i l e s =−−argc ; /∗ i gno re the name o f the program i t s e l f ∗/ 
int arg idx =1; /∗ i gno re the name o f the program i t s e l f ∗/ 
char∗ c u r r f i l e="" ; 
char c ; 
/∗ count o f words , l i n e s , cha ra c t e r s ∗/ 
unsigned long nw=0, nl =0,nc =0; 

i f ( n f i l e s ==0) 
{	

fp=s td in ; /∗ standard input ∗/

n f i l e s ++;


}
else /∗ s e t to f i r s t ∗/ 
{	

c u r r f i l e=argv [ arg idx ++];

fp=fopen ( c u r r f i l e , "r" ) ;


}
while ( n f i l e s >0) /∗ f i l e s l e f t >0∗/ 
{ 

i f ( fp==NULL) 
{	

f p r i n t f ( s tde r r , "Unable to open input\n" ) ;

e x i t ( −1);


}
nc=nw=nl =0;

while ( ( c=getc ( fp )) ! =EOF)

{ 

/∗TODO: FILL HERE

proce s s the f i l e us ing getc ( fp )


∗/

}
p r i n t f ( "%ld %s\n" , nc , c u r r f i l e ) ; 
/∗ next f i l e i f e x i s t s ∗/ 
n f i l e s −−;

i f ( n f i l e s >0)

{	

c u r r f i l e=argv [ arg idx ++];

fp =fopen ( c u r r f i l e , "r" ) ;


}

}


return 0 ; 
} 

Hint: In order to count words, count the transitions from non-white space to white space characters. 

4




----------------------------

----------------------------

Problem 3.5 

In this problem, we will be reading in formatted data and generating a report. One of the 
common formats for interchange of formatted data is ’tab delimited’ where each line corresponds 
to a single record. The individual fields of the record are separated by tabs. For this problem, 
download the file stateoutflow0708.txt from Stellar. This contains the emigration of people 
from individual states. The first row of the file contains the column headings. There are eight self 
explanatory fields. Your task is to read the file using fscanf and generate a report outlining the 
migration of people from Massachusetts to all the other states. Use the field ”Aggr AGI” to report 
the numbers. Also, at the end, display a total and verify it is consistent with the one shown below. 
An example report should look like the following: 

STATE TOTAL 

"FLORIDA" 590800 
"NEW HAMPSHIRE" 421986 
.......... 

Total 4609483 

Make sure that the fields are aligned. 

5




Code listing for Problem 3.1: prob1.c 

#include <s t d l i b . h> 
#include <s t d i o . h> 
#include <time . h> 

#define NMAX 25 
stat ic unsigned int r e s u l t s b u f f e r [NMAX] ; 

void f i b o n a c c i ( ) 
{	

/∗ here are the va r i a b l e s to s e t as r e g i s t e r s ∗/ 
unsigned int a = 0 ; 
unsigned int b = 1 ; 
unsigned int c ; 
int n ; 

/∗ do not ed i t below t h i s l i n e ∗/ 
r e s u l t s b u f f e r [ 0 ] = a ;

r e s u l t s b u f f e r [ 1 ] = b ;

for (n = 2 ; n < NMAX; n++) {


c = a + b ;

r e s u l t s b u f f e r [ n ] = c ; /∗ s t o r e code in r e s u l t s bu f f e r ∗/

a = b ;

b = c ;


}
} 

int main ( void ) { 

int n , n t e s t s = 10000000;

c l o c k t t s t a r t , tend ;

double favg ;


/∗ do p r o f i l i n g ∗/ 
t s t a r t = c l o ck ( ) ; 

for (n = 0 ; n < n t e s t s ; n++)

f i b o n a c c i ( ) ;


tend = c l o ck ( ) ; 
/∗ end p r o f i l i n g ∗/ 

/∗ compute average execut ion time ∗/ 
favg = ( ( double ) ( tend − t s t a r t ) )/CLOCKS PER SEC/ n t e s t s ; 

/∗ pr in t avg execut ion time in mi l l i s e c ond s ∗/ 
p r i n t f ( "Avg. execution time: %g msec\n" , favg ∗ 1000) ;

return 0 ;


} 

6




MIT OpenCourseWare
http://ocw.mit.edu 

6.087 Practical Programming in C 
January (IAP) 2010 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



