
MIT OpenCourseWare 
http://ocw.mit.edu 

6.080 / 6.089 Great Ideas in Theoretical Computer Science 
Spring 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


1 

Scribe Notes: Introduction to Computational Complexity 

Jason Furtado 

February 28, 2008 

Motivating Complexity Theory 

Penrose’s Argument (continued) 

Last lecture, Roger Penrose’s argument was introduced. It says that it was impossible for a com­
puter to simulate the human brain. His argument is based on Godel’s Incompleteness Theorem. 
Penrose’s argument says that, within any formal system F , we can construct a Godel sentence 
G(F ) that the computer cannot prove but a human can prove it. 

Professor Aaronson proposes that there is a simple way to see that there must be a problem 
with Penrose’s Argument or any similar argument. Penrose is attempting to show that no computer 
could pass the Turing Test. The Turing Test states that a computer is intelligent if it could carry 
on a textual conversation with a human and the human would be unable to tell that he or she was 
having a conversation with a computer rather than another human. A Turing Test lasts a finite 
amount of time (it is a conversation). If you could type incredibly quickly, say 5000 characters per 
minute, the number of possible instant messaging conversation you could have is finite. Therefore, 
in principle, a giant lookup table could be constructed that stored an intelligent human response 
to every possible question that could be asked. Then the computer could just consult the lookup 
table whenever a question is asked of it. 

The problem with this lookup table is that it would have to be incredibly large. The amount 
of storage necessary would be many times larger than the size of the observable universe (which 
has maybe 1080 atoms). Therefore, such a system would be infeasible to create. The argument has 
now changed from theoretical possibility to a question of feasible given resources. The argument 
against such a system has to do with the amount of memory, processing power, etc. needed to 
create a system that could reliably pass the Turing Test. Since the system is theoretically possible, 
the question is whether or not the amount of resources necessary is a reasonable amount. 

In order to have such a conversation, we will need a way to measure the efficiency of algorithms. 
The field that studies such issues is called computational complexity theory, and will occupy us for 
most of the rest of the course. In contrast to what we saw before, computational complexity is a 
field where almost all of the basic questions are still unanswered – but also where some of what we 
do know is at the forefront of mathematics. 

Dijkstra Algorithm 

In 1960, the famous computer scientist Edsgar Dijkstra discovered an algorithm that finds the 
shortest path between two vertices of a graph, in an amount of time linear in the number of edges. 
The algorithm was named after him (Dijkstra’s Algorithm), and something like it is used (for 
example) in Google Maps and every other piece of software to find directions. There’s a famous 
anecdote where Dijkstra (who worked in a math department) was trying to explain his new result 

1




2 

to a colleague. And the colleague said, ”but I don’t understand. Given any graph, there’s at most a 
finite number of non-intersecting paths. Every finite set has a minimal element, so just enumerate 
them all and you’re done.” The colleague’s argument does, indeed, show that the shortest path 
problem is computable. But from a modern perspective, showing a problem is computable does 
not say much. The important question is whether a problem is solvable efficiently. 

Efficiency 

Computer scientists are interested in finding efficient algorithms to solve problems. Efficiency is 
typically measured by considering an algorithm’s running time as a function of the size of the 
input. Here input size usually (not always) refers to the number of bits necessary to describe the 
input. This way of describing efficiency avoids being too tied to a particular machine model (Macs, 
PC’s, Turing machines, etc.), and lets us focus on more “intrinsic” properties of the problem and 
of algorithms for solving it. 

Circuit Complexity 

A good place to begin studying complexity questions is circuit complexity. Historically, this is also 
one of the first places where complexity questions were asked. 

Let’s pose the following general question: 
Given a Boolean function f : {0, 1}n → {0, 1}, what is the size of the smallest circuit that 

computes it? (That is, how many gates are needed?) 
As an example, suppose we’re trying to compute the XOR of the n input bits, x1, . . . , xn. 

Then how many gates to do we need? (For simplicity, let’s suppose that a two-input XOR gate is 
available.) Right, n − 1 gates are certainly sufficient: XOR x1 and x2, then XOR the result with 
x3, then XOR the result with x4, etc. Can we show that n − 1 gates are necessary? 

Claim: You need at least n − 1 gates in order for the single output bit to depend on all n input 
bits using 2-input gates. 

Proof: Using the ”Chocolate-breaking” argument as a basis, we can view each input as a group. 
Each XOR function joins two groups, so you then have one less total group than before. If you 
continue to join groups until there is only a single group, you would have used n − 1 XOR functions 
to join the n inputs. 

Note: In lecture, it was brought up that another measure of efficiency in circuits is the depth of 
the circuit. This is the maximum number of gates needed to traverse the circuit from an input to 
the output. For a XOR circuit of n inputs constructed using two-input XOR gates, one can easily 
show that a depth of log n is necessary and sufficient. 

Shannon’s Counting Argument 

Is there a Boolean Function with n inputs that requires a circuit of exponential size in n? 
Well, let’s look at some possible candidates. Does the Majority function require an exponential-

size circuit? No, it doesn’t. What about SAT and other NP -complete problems? Well, that’s 
getting ahead of ourselves, but the short answer is that no one knows! 

But in 1949, Claude Shannon, the father of information theory, mathematical cryptography and 
several other fields (and who we’ll meet again later), gave a remarkably simple argument for why 
such a Boolean function must exist. 

2 



First, how many Boolean functions are there on n inputs? Well, you can think of a Boolean 
function with n inputs as a truth table with 2n entries, and each entry can be either 0 or 1. This 
leads to 22n 

possible Boolean functions: not merely an exponential number, but a double-exponential 
one. 

On the other hand, how many circuits are there with n inputs and T gates? Assume for 
simplicity that there are only NAND gates in our circuit. Then each gate will have at most n + T 
choices for the left input and most n + T choices for the right input. Therefore, there can be no 
more than (n + T )2T circuits possible. Every circuit can compute only one Boolean function. And 
therefore, if we want to represent all 22n 

Boolean functions, then we need (n + T )2T ≥ 22n 
. Taking 

the log of both sides we can estimate that T is 2
2
n 
n 
. If T were any smaller than this, there would 

not be enough circuits to account for all Boolean functions. 
Shannon’s argument is simple yet extremely powerful. If we set n = 1000, we can say that 

almost all Boolean functions with 1000 inputs will need to use at least 21000/2000 NAND gates in 
order to compute. That number is larger than 1080, the estimated number of atoms in the visible 
universe. Therefore, if every atom in the universe could be used as a gate, there are functions with 
1000 inputs that would need a circuit much bigger than the universe to compute. 

The amazing thing about Shannon’s counting argument is that it proves that such complex 
functions must exist, yet without giving us a single specific example of such a function. Arguments 
of this kind are called non-constructive. 

3 Hartmanis-Stearns 

So the question remains: can we find any concrete problem, one people actually care about, that 
we can prove has a high computational complexity? For this question, let’s switch from the circuit 
model back to the Turing machine model. 

In 1965, Juris Hartmanis and Richard Stearns showed how to construct problems that can take 
pretty much any desired number of steps for a Turing machine solve. Their result basically started 
the field of computational complexity, and earned them the 1993 Turing Award. To prove their 
result (the so-called Hierarchy Theorem), they used a ”scaled-down” version of the argument that 
Turing had originally used to prove the unsolvability of the halting problem. 

Let’s say we want to exhibit a problem that any Turing machine needs about n3 steps to solve. 
The problem will be the following: 

Question: Given as input a Turing Machine M, input x and integer n does M halt after at most 
n3 steps on input x? 

Claim: Any Turing machine to solve this problem needs at least n3 steps. 
Proof: Suppose there were a machine, call it P, that solved the above problem in, say, n2.99 

steps. Then we could modify P to produce a new machine P �, which acts as follows given a Turing 
machine M and input n: 

1. Runs forever if M halts in at most n3 steps given its own code as input. 

2. Halts if M runs for more than n3 steps given its own code as input. 

Notice that P � halts in at most n2.99 steps (plus some small overhead) if it halts at all – in any 
case, in fewer than n3 steps. 

Now run P �(P �, n). There is a contradiction! If P � halts, then it will run forever by case 1. If 
P � runs forever then it will halt by case 2. 

3 



4 

The conclusion is that P could not have existed in the first place. In other words, not only is 
the halting problem unsolvable, but in general, there is no faster way to predict a Turing machine’s 
behavior given a finite number of steps than to run the machine and observe it. This argument 
works for any “reasonable” runtime (basically, any runtime that’s itself computable in a reasonable 
amount of time), not just n3 . 

Notation for Complexity 

In later lectures, it will be helpful to have some notation for measuring the growth of functions, a 
notation that ignores the “low-order terms” that vary from one implementation to another. What 
follows is the standard notation that computer scientists use for this purpose. 

Big-O Notation 

We say f(n) = O(g(n)) if there exist constants a, b such that f(n) < ag(n) + b for all n. 
The function g(n) is an upper bound on the growth of f(n). A different way to think of Big-O 

is that g(n) ”grows” at least as quickly as f(n) as n goes to infinity. f(n) = O(g(n)) is read as 
”f(n) belongs to the class of functions that are O(g(n))”. 

Big-Omega Notation 

We say f(n) = Ω(g(n)) if there exist a > 0 and b such that f(n) > ag(n) − b for all n. 
Intuitively, the function f(n) grows at the same rate or more quickly than g(n) as n goes to 

infinity. 

Big-Theta 

We say f(n) = Θ(g(n)) if f(n) = O(g(n)) AND f(n) = Ω(g(n)). 
Intuitively, the function f(n) grows at the same rate as g(n) as n goes to infinity. 

Little-o 

We say f(n) = o(g(n)) if for all a > 0, there exists a b such that f(n) < ag(n) + b for all n. 
Intuitively, f(n) grows strictly more slowly than g(n). So f(n) = O(g(n)) but not Θ(g(n)). 

4





