MIT OpenCourseWare
http://ocw.mit.edu

6.080 / 6.089 Great Ideas in Theoretical Computer Science
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.080/6.089 GITCS Feb 12, 2008

Lecture 3

Lecturer: Scott Aaronson Scribe: Adam Rogal

1 Administrivia

1.1 Scribe notes

The purpose of scribe notes is to transcribe our lectures. Although I have formal notes of my own,
these notes are intended to incorporate other information we may mention during class - a record
for future reference.

1.2 Problem sets

A few comments on the problem sets. Firstly, you are welcome to collaborate, but please mark
on your problem sets the names of whom you worked with. Our hope is to try all the problems.
Some are harder than others; there are those marked challenge problems as well. If you can’t solve
the given problem, be sure to state what methods you tried and your process up to the point you
could not continue. This is partial credit and much better than writing a complete, but incorrect
solution. After all, according to Socrates the key to knowledge is to know what you don’t know.

1.3 Office hours

We will have office hours once a week.

2 Recap

2.1 Computer science as a set of rules

We can view computer science as the study of simple set of rules and what you can and can’t build
with them. Maybe the first example of that could be considered Euclidian geometry. And the key
to discovering what processes we can build is that these rules are well-defined.

2.2 Logic

The field of logic focuses on automating or systematizing not just any mechanical processes, but
rational thought itself. If we could represent our thoughts by manipulations of sequences of symbols,
then in principle we could program a computer to do our reasoning for us.

We talked the simplest logical systems which were the only ones for thousands of years. Syllo-
gisms and propositional logic, the logic of Boolean variables that can be either true or false, and
related to each other through operators like and, or, and not. We finally discussed first order logic.

3-1

2.2.1 First order logic

The system of first order logic is built up of sentences. Each of these sentences contain variables,
such as x,y, and z. Furthermore we can define functions which take these variables as input.

For example: let’s define a function Prime(z). Given an integer, it will return true if the
number is prime, false if it is composite. Just like functions in any programming languages, we can
build functions out of other functions by calling them as subroutines. In fact, many programming
languages themselves were modeled after first order logic.

Furthermore, as in propositional logic, symbols such as A (and), V (or), = (not), and — (implies)
allow us to relate objects to each other.

Quantifiers are a crucial part of first order logic. Quantifiers allow us to state propositions such
as “Every positive integer x is either prime or composite.”

Va.Prime(x) V Composite(z)

There’s a counterexample, of course, namely 1. We can also say: “There exists an x, such that
something is true.”

Jdx.Something(x)

When people talk about first-order logic, they also normally assume that the equals sign is
available.

2.2.2 Inference rules

We want a set of rules that will allow us to form true statements from other true statements.
Propositional tautologies:

AV -A
Modus ponens:
AN(A— B)— B
Equals:
Equals(X, X)
Equals(X,Y) < Fquals(Y, X)
Transitivity property:
Equals(X,Y) A Equals(Y, Z) — Equals(X, Z)
Furthermore, we have the rule of change of variables. If you have a valid sentence, that sentence
will remain valid if we change variables.
2.2.3 Quantifier rules

If A(x) is a valid sentence for any choice of z, then for all z, A(z) is a valid sentence. Conversely,
if A(x) is a valid sentence for all x, then any A(x) for a fixed z is a valid sentence.

A(X) < Vz.A(x)

We also have rules for dealing with quantifiers. For example, it is false, that for all z, A(x) iff there
exists an x, —A(x).

—Vz.A(r) <= F-A(z)

3-2

2.2.4 Completeness theorem

Kurt Godel proved that the rules thus stated were all the rules we need. He proved that if you
could not derive a logical contradiction by using this set of rules, there must be a way of assigning
variables, such that all the sentences are satisfied.

3 Circuits

Electrical engineers views circuits to be complete loops typically represented in figure 1. However,
in computer science, circuits have no loops and are built with logic gates.

|

(1 +]

S
L

Figure 1: A simple EE circuit.

3.1 Logic gates
The three best-known logic gates are the NOT, AND, and OR gates shown in figure 2.

TN

Figure 2: The logical gates NOT, AND, and OR.

Though primitive on their own, these logic gates can be strung together to form complex logical
operations. For example, we can design a circuit, shown in figure 3, that takes the majority of 3
variables: x, y, and z. We can also use De Morgan’s law to form a AND gate from an OR gate
and vice versa as shown figure 4.

|

OR
N
AND AND AND
| > X<
X y z

Figure 3: The majority circuit.

3-3

| NOT
AND => OR
/ \ N(;'T]\\7\OT

Figure 4: An AND gate can be constructed from an OR and three NOT gates by using De
Morgan’s law.

These logic gates can also be combined to form other gates such as the XOR and NAND gates
shown in figure 5. Conversely, by starting with the NAND gate, we can build any other gate we

NAND XOR

AANAR

Figure 5: NAND and XOR gates.

want.

On the other hand, no matter how we construct a circuit with AND and OR gates, if the input
is all 1’s we can never get an output of 0. We call a Boolean function that can be built solely out
of AND and OR gates a monotone Boolean function.

Are there any other interesting sets of gates that don’t let us express all Boolean functions?
Yes: the XOR and NOT gates. Because of their linearity, no matter how we compose these gates
we can never get functions like AND and OR.

4 Puzzle

Here’s an amusing puzzle: can you compute the NOT’s of 3 input variables, using as many AND/OR
gates as you like but only 2 NOT gates?

4.0.1 Limitations

Although we have discovered that circuits can be a powerful tool, as a model of computation they
have some clear limitations. Firstly, circuits offer no form of storage or memory. They also have
no feedback; the output of a gate never gets fed as the input. But from a modern standpoint, the
biggest limitation of circuits is that (much like computers from the 1930s) they can only be designed
for a fixed-size task. For instance, one might design a circuit to sort 100 numbers. But to sort 1000
numbers, one would need to design a completely new circuit. There’s no general-purpose circuit for
the sorting task, one able to process inputs of arbitrary sizes.

5 Finite automata

We’ll now consider a model of computation that can handle inputs of arbitrary length, unlike
circuits — though as we’ll see, this model has complementary limitations of its own.

3-4

5.1 Description

L1LL1L@ - @\A
Y v No

Lilolalalolalolalalololalal#] | | ||
Wl

Stop symbol

Figure 6: At any given time, the machine ahs some unique state. The machine reads the tape in
one motion (in this case left to right) and the state changes depending on the value of the current
square. When the reaches the stop state (signaled by the # sign, the machine returns a yes or no
answer - an accept or reject state respectively.)

The simple way of thinking of a finite automaton is that it’s a crippled computer that can only
move along memory in one direction. As shown in figure 6, a computer with some information
written along a tape, in some sort of encoding, will scan this tape one square at a time, until it
reaches the stop symbol. The output of this machine will be a yes or no - accept or reject. This
will be the machine’s answer to some question that it was posed about the input.

5.2 State and internal configuration

Figure 7: This simple machine has 3 states. Given an input of 0 or 1, the state will transition to
a new state. The final state will determine its output - accept or reject.

It is unnecessary to determine what the internal configuration of this machine is. We can
abstract this notion into the statement that this machine will have some state and the ability to
transition between states given a certain input. The machine will begin with a start state, before
it has read any input. When the machine reads the stop symbol, the correct state will determine
if the machine should output an accept or reject.

It is crucial that we define the machine as having a finite number of states. If the machine had
an infinite number of states, then it could compute absolutely anything, but such an assumption is
physically unrealistic.

3-5

5.3 Some examples

Let us design a machine that determines if any 1’s exist in a stream given the alphabet of 0 or 1.
We define two states of the machine - 0 and 1. The 0 represents the state that the machine has not
seen a 1 yet. The 1 state represents the state that the machine has seen a 1. When the machine has
transitioned to the 1 state, neither a 1 or 0 will ever change the state back to 0. That is, regardless
of input or length of input, our question, “Are there any 1’s in the stream?” has been answered.
Therefore, the 1 state should produce an accept, while the 0 state should produce a reject when a
stop symbol has been reached.

" TT =S
~

I// \\\ | //
Start [l
1 vt
| P
‘\ ! ‘\
\ 0 ,’ \ 1 !
\ , AN L’

Reject . N

. Accept

1
I
1

Figure 8: This FA determines if any 1’s exist in our data stream.

Let us now design a machine that determines if the number of 1’s is even or odd in the stream.
We define two states again - 0 and 1. The 0 state represents a machine that has seen an even
number of 1’s and the 1 state describes a machine that has seen an odd number of 1’s. An input
of 0 will only transition the state to itself. That is, we are only concerned about the number of 1’s
in this stream. At each input of a 1, the machine will alternate state between 0 and 1. The final
state will determine if the data stream has seen an even or odd number of 1’s, with 1 being set as
the acceptance state.

It should be noted that regardless of input size, this machine will determine the correct answer
to the question we posed. Unlike with circuits, our machine size was not dictated by the size of the
input.

Reject >, Nt

Figure 9: This FA determines if there are an even or odd number of 1’s in our data stream.

5.4 Palindromes

Let us now explore if we could create a finite machine that can determine if an input string is a
palindrome, a string that reads the same backwards and forwards. The input will be finite, and
there will be a terminator at the end. We begin by defining the possible states of the machine. If
we let our machine contain 2% states, then as shown in figure 10, we could just label each final leaf
as an accept or reject for every possible sequence of 1’s and 0’s.

The question still remains, can we create a machine with a finite number of states that can

3-6

Start

Figure 10: For a stream of N bits, a finite automaton, intended to determine if the stream is a
palindrome, grows exponentially. For N bits, 2V states are required.

act as a palindrome detector. The answer lies in using the Pigeonhole Principle to analyze the
limitations of finite automata.

5.5 The Pigeonhole Principle

The Pigeonhole Principle states that if we have N pigeons and we want put them into N — 1 holes,
at least one hole will have two or more pigeons. Although very simple, this principle allows us to
prove that no finite automaton can act as a palindrome detector.

5.5.1 A digression: proving the pigeonhole principle

Even though the pigeonhole principle is simple, it is non-trivial to prove in simple systems of logic.
We can express the requirements that every pigeon goes into some hole, and that no two pigeons
go into the same hole, using propositional logic. The challenge is then to prove that not all the
statements can be true, using only mechanical logical manipulation of the statements (and not
higher-order reasoning about what they ”mean”).

In other words, the pigeonhole principle seems obvious to us because we can stand back and
see the larger picture. But a propositional proof system like the ones we saw in the last lecture
can’t do this; it can only reason locally. (“Let’s see: if I put this pigeon here and that one there
... darn, still doesn’t work!”) A famous theorem of Haken states that any proof of the Pigeonhole
Principle based on ”resolution” of logical statements, requires a number of steps that increases
exponentially with N (the number of pigeons). This is an example of something studied by a field
called proof complexity, which deals with questions like, “does any proof have to have a size that is
exponentially larger than the theorem we are trying to prove?”

5.6 Using the Pigeonhole Principle for palindromes

We use the Pigeonhole Principle to prove that no finite automaton that can be constructed such
that we can detect if any string is a palindrome.

To begin this proof, let us split a palindrome down the middle. We will ignore everything about
the finite automaton except its state at the middle point; any information that the automaton will
carry over to the second half of the string, must be encoded in that state.

3-7

- @
x 11011
y 10000

z 11011 ‘ 00001 <— Wrongly accepted

11011 —
00001 «— Correctly accepted

Figure 11: By using the Pigeonhole principle, we can show that we can split two strings at their
reflection points such that a finite automaton will be in at the same state for both sub strings. We
can then cross the two strings to form a new string that “tricks” the machine into thinking that it
has correctly accepted a string as a palindrome.

A finite automaton must have a fixed number of states. On the other hand, there are infinitely
many possibilities for the first half of the string. Certainly, you can’t put infinitely many pigeons
into a finite number of holes without having at least one hole with at least two pigeons. This means
that there is at least one state that does “double duty,” in that two different first halves of the
string lead to the same state.

As shown in figure 11, we consider two palindromes x and y. If the machine works correctly,
then it has to accept both of them. On the other hand, for some z,y pair, the machine will lie in
the same state for both x and y when it’s at the halfway point. Then by crossing the remaining
halves of z and y, we can create a new string, z, which is accepted by the machine even though
it’s not a palindrome. This proves that no finite automaton exists that recognizes all and only the
palindromes.

5.7 Regular expressions

Regular expressions allow us to search for a keyword in a large string. Yet, they are more powerful
than simply searching for the keyword 110 in the string 001100. We can use regular expressions to
locate patterns as well.

For example, we can create an expression like (0110)](0001) which will either match the keyword
0110 or 0001. We can also create expressions that will find any 3 bit string with a 1 in the middle:
(0]1)1(0J1).

We can also use more advanced characters such as the asterisk to represent repetition. (0/1)1(0|1)0*
searches for any 3 bit string with a 1 in the middle followed by any number of 0’s. We can also
repeat larger patterns such as [(0/1)1(0|1)]*. This states that we would like to match any number
of 3 bit strings with 1’s in the middle. It should be noted that each time the pattern repeats, the
0 or 1’s can be chosen differently.

We can now state (without proof) a very interesting theorem: any language is expressible by
a regular expression, if and only if it’s recognized by a finite automaton. Regular expressions and
finite automaton are different ways of looking at the same thing.

To give an example: earlier we created a finite automaton that was able to recognize all strings
with an even number of 1’s. According to the theorem, there must be regular expression that
generates this same set of strings. And indeed there is: 0*(0*10%1)*.

3-8

6 Nondeterministic finite automata

Nondeterministic finite automata represent machines that can not only transition between states,
but between sets of states. As before, we have a machine that reads a tape from left to right with
a finite number of states. When the machine reads an input, each state that the machine is now
on, is allowed to transition to any other states emanating from the previous states based on the
input. The machine is in acceptance if any final state is an accept state.

You might guess that NDFA’s (nondeterministic finite automata) would be much more powerful
than DFA’s (deterministic finite automata). This is not the case, however: given an NDFA with N
states, we can always simulate it by a DFA with 2% states, by creating a single state in the DFA
to represent each set of states in the NDFA.

3-9

