
MIT OpenCourseWare 
http://ocw.mit.edu 

6.080 / 6.089 Great Ideas in Theoretical Computer Science 
Spring 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


1 

6.080/6.089 GITCS April 17, 2008 

Lecture 18 
Lecturer: Scott Aaronson Scribe: Hristo Paskov 

Recap 

Last time we talked about public key cryptography which falls in the realm of accomplishing bizarre 
social goals using number theory. Our first example of a public-key cryptosystem, in which two 
people exchanging messages did not have to meet beforehand, was Diffie-Hellman. We then talked 
about the RSA cryptosystem, which is probably the most widely used today. Here are the basics 
of how it works: 

The first step is taken by the recipient of the message, by generating two giant prime numbers 
p and q and setting N = pq. Note that p and q must be chosen such that p − 1 and q − 1 are not 
divisible by 3. The recipient keeps p and q a closely-guarded secret, but gives out N to anyone 
who asks. Suppose a sender has a secret message x that she wants to send to the recipient. The 
sender calculates x3 mod N and sends it to the recipient. Now it’s the recipient’s turn to recover 
the message. He can use some number theory together with the fact that he knows p and q, the 
factors of N . The recipient first finds an integer k such that 3k = 1 mod (p − 1)(q − 1), which can 
be done in polynomial time via Euclid’s algorithm, and then takes (x3)k mod N = x3k mod N = x. 
The exponentiation can be done in polynomial time by using the trick of repeated squaring. Voila! 

When you look at this procedure, you might wonder why are we cubing as opposed to raising 
to another power; is there anything special about 3? As it turns out, 3 is just the first choice that’s 
convenient. Squaring would lead to a ciphertext that had multiple decryptions (corresponding to 
the multiple square roots mod N), while we want the decryption to be unique. Indeed, if we wanted 
the square root to be unique, then we’d need p−1 and q −1 to not divisible by 2, which is a problem 
since p and q (being large prime numbers) are odd! 

You could, however, raise to a power higher than 3, and in fact that’s what people usually do. 
If the other components of the cryptosystem—such as the padding out of messages with random 
garbage—aren’t implemented properly, then there’s a class of attacks called “small-exponent at­
tacks” which break RSA with small exponents though not with large ones. On the other hand, if 
everything else is implemented properly, then as far as we know x3 mod N is already secure. 

18-1




(Just like in biology, everything in cryptography is always more complicated than what you 
said, whatever you said. In particular, as soon as you leave a clean mathematical model and enter 
the real world, where code is buggy, hardware inadvertently leaks information, etc. etc., there’s 
always further scope for paranoia. And cryptographers are extremely paranoid people.) 

As mentioned in the last lecture, we know that a fast factoring algorithm would lead to a break 
of RSA. However, we don’t know the opposite direction: could you break RSA without factoring? 
In 1979, Rabin showed that if you squared the plaintext x instead of cubing it, then recovering 
x would be as hard as factoring. But as discussed earlier, in that case you’d lose the property 
that every decryption is unique. This problem is what’s prevented widespread adoption of Rabin’s 
variant of RSA. 

2 Trapdoor One-Way Functions 

The operation x3 mod N in RSA is an example of what’s called trapdoor one way function, or 
TDOWF. A trapdoor one-way function is a one-way function with the additional property that if 
you know some secret “trapdoor” information then you can efficiently invert it. So for example, the 
function f(x) = x3 mod N is believed to be a one-way function, yet is easy to invert by someone 
who knows the prime factors of N . 

2.1 Different Classes of TDOWF’s 

Question from the floor: Are there any candidate TDOWF’s not based on modular arithmetic (like 
RSA is)? 

Answer: One class that’s been the subject of much recent research is based on lattices. (Strictly 
speaking, the objects in this class are not TDOWF’s, but something called lossy TDOWF’s, but 
they still suffice for public-key encryption.) Part of the motivation for studying this class is that 
the cryptosystems based on modular arithmetic could all be broken by a quantum computer, if 
we had one. By contrast, even with a quantum computer we don’t yet know how to break lattice 
cryptosystems. Right now, however, lattice cryptosystems are not used much. Part of the problem 
is that, while the message and key lengths are polynomial in n, there are large polynomial blowups. 
Thus, these cryptosystems aren’t considered to be as practical as RSA. On the other hand, in recent 
years people have come up with better constructions, so it’s becoming more practical. 

There’s also a third class of public-key cryptosystems based on elliptic curves, and elliptic-curve 
cryptography is currently practical. Like RSA, elliptic-curve cryptography is based on abelian 
groups, and like RSA it can be broken by a quantum computer. However, elliptic-curve cryptogra­
phy has certain nice properties that are not known to be shared by RSA. 

In summary, we only know of a few classes of candidate TDOWF’s, and all of them are based 
on some sort of interesting math. When you ask for a trapdoor that makes your one-way function 
easy to invert again, you’re really asking for something mathematically special. It almost seems 
like an accident that plausible candidates exist at all! By contrast, if you just want an ordinary, 
non-trapdoor OWF, then as far as we know, all sorts of “generic” computational processes that 
scramble up the input will work. 

3 NP-completeness and Cryptography 

An open problem for decades has been to base cryptography on an NP-complete problem. There 
are strong heuristic arguments, however, that suggest that if this is possible, it’ll require very 

18-2




different ideas from what we know today. One reason (discussed last time) is that cryptography 
requires average-case hardness rather than worst-case. A second reason is that many problems in 
cryptography actually belong to the class NP ∩ coNP . For example, given an encrypted message, 
we could ask if the first bit of the plaintext is 1. If it is, then a short proof is to decrypt the message. 
If it’s not, then a short proof is also to decrypt the message. However, problems in NP ∩ coNP 
can’t be NP-complete under the most common reductions unless NP = coNP . 

3.1 Impagliazzo’s Five Worlds 

A famous paper by Impagliazzo discusses five possible worlds of computational complexity and cryp­
tography, corresponding to five different assumptions you can make. You don’t need to remember 
the names of the worlds, but I thought you might enjoy seeing them. 

1. Algorithmica - P = NP or at the least fast probabalistic algorithms exist to solve all NP 
problems. 

2. Heuristica - P =� NP , but while NP problems are hard in the worst case, they are easy on 
average. 

3. Pessiland	 - NP-complete problems are hard on average but one-way functions don’t exist, 
hence no cryptography 

4. Minicrypt - One-way functions exist (hence private-key cryptography, pseudorandom number 
generators, etc.), but there’s no public-key cryptography 

5. Cryptomania - Public-key cryptography exists; there are TDOWF’s 

The reigning belief is that we live in Cryptomania, or at the very least in Minicrypt. 

4 Fun with Encryption 

4.1 Message Authentication 

Besides encrypting a message, can you prove that a message actually came from you? Think back 
to the one-time pad, the first decent cryptosystem we saw. On its face, the one-time pad seems to 
provide authentication as a side benefit. Recall that this system involves you and a friend sharing a 
secret key k, you transmitting a message x securely by sending y = x ⊕ k, and your friend decoding 
the message by computing x = y ⊕ k. Your friend might reason as follows: if it was anyone other 
than you who sent the message, then why would y ⊕ k yield an intelligible message as opposed to 
gobbledygook? 

There are some holes in this argument (see if you can spot any), but the basic idea is sound. 
However, to accomplish this sort of authentication, you do need the other person to share a secret 
with you, in this case the key. It’s like a secret handshake of fraternity brothers. 

Going with the analogy of private vs. public key cryptography, we can ask whether there’s such 
a thing public-key authentication. That is, if a person trusts that some public key N came from 
you, he or she should be able to trust any further message that you send as also coming from you. 
As a side benefit, RSA gives you this ability to authenticate yourself, but we won’t go into the 
details. 

18-3 



4.2 Computer Scientists and Dating 

Once you have cryptographic primitives like the RSA function, there are all sorts of games you can 
play. Take, for instance, the problem of Alice and Bob wanting to find out if they’re both interested 
in dating each other. Being shy computer scientists, however, they should only find out they like 
each other if they’re both interested; if one of them is not interested, then that one shouldn’t be 
able to find out the other is interested. 

An obvious solution (sometimes used in practice) would be to bring in a trusted mutual friend, 
Carl, but then Alice and Bob wold have to trust Carl not to spill the beans. Apparently there are 
websites out there that give this sort of functionality. However, ideally we would like to not have 
to rely on a third party. 

Suggestion from the floor: Alice and Bob could face each other with their eyes closed, and each 
open their eyes only if they’re interested. 

Response: If neither one is interested, then there seems to be a termination problem! Also, 
we’d like a protocol that doesn’t require physical proximity – remember that they’re shy computer 
scientists! 

4.2.1 The Dating Protocol 

So let’s suppose Alice and Bob are at their computers, just sending messages back and forth. If we 
make no assumptions about computational complexity, then the dating task is clearly impossible. 
Why? Intuitively it’s “obvious”: because eventually one of them will have to say something, without 
yet knowing whether his or her interest will be reciprocated or not! And indeed one can make this 
intuitive argument more formal. 

So we’re going to need a cryptographic assumption. In particular, let’s assume RSA is secure. 
Let’s also assume, for the time being, that Alice and Bob are what the cryptographers call honest 
but curious. In other words, we’ll assume that they can both be trusted to follow the protocol 
correctly, but that they’ll also try to gain as much information as possible from whatever messages 
they see. Later we’ll see how to remove the honest-but-curious assumption, to get a protocol that’s 
valid even if one player is trying to cheat. 

Before we give the protocol, three further remarks might be in order. First, the very fact that 
Alice and Bob are carrying out a dating protocol in the first place, might be seen as prima facie 
evidence that they’re interested! So you should imagine, if it helps, that Alice and Bob are at a 
singles party where every pair of people has to carry out the protocol. Second, it’s an unavoidable 
feature of any protocol that if one player is interested and the other one isn’t, then the one who’s 
interested will learn that the other one isn’t. (Why?) Third, it’s also unavoidable that one player 
could pretend to be interested, and then after learning of the other player’s interest, say “ha ha! I 
wasn’t serious. Just wanted to know if you were interested.” 

In other words, we can’t ask cryptography to solve the problem of heartbreak, or of people 
being jerks. All we can ask it to do is ensure that each player can’t learn whether the other player 
has stated an interest in them, without stating interest themselves. 

Without further ado, then, here’s how Alice and Bob can solve the dating problem: 

1. Alice goes through the standard procedure of picking two huge primes, p and q, such that 
p − 1 and q − 1 are not divisible by 3, and then taking N = pq. She keeps p and q secret, but 
sends Bob N together with x3 mod N and y3 mod N for some x and y. If she’s not interested, 
then x and y are both 0 with random garbage padded onto them. If she is interested, then x 
is again 0 with random garbage, but y is 1 with random garbage. 

18-4 



2. Assuming RSA is secure, Bob (not knowing the prime factors of N) doesn’t know how to 
take cube roots mod N efficiently, so x3 mod N and y3 mod N both look completely random 
to him. Bob does the following: he first picks a random integer r from 0 to N − 1. Then, 
if he’s not interested in Alice, he sends her x3r3 mod N . If he is interested, he sends her 
y3r3 mod N . 

3. Alice takes the cube root of whatever number Bob sent. If Bob wasn’t interested, this cube 
root will be xr mod N , while if he was interested it will be yr mod N . Either way, the 
outcome will look completely random to Alice, since she doesn’t know r (which was chosen 
randomly). She then sends the cube root back to Bob. 

4. Since Bob knows r, he can divide out r. We see that if Bob was not interested, he simply gets 
x which reveals nothing about Alice’s interest. Otherwise he gets y which is 1 if and only if 
Alice is interested. 

So there we have it. It seems that, at least in principle, computer scientists have solved the 
problem of flirting for shy people (assuming RSA is secure). This is truly nontrivial for computer 
scientists. However, this is just one example of what’s called secure multiparty computation; a 
general theory to solve essentially all such problems was developed in the 1980’s. So for example: 
suppose two people want to find out who makes more money, but without either of them learning 
anything else about the other’s wealth. Or a group of friends want to know how much money they 
have in total, without any individual revealing her own amount. All of these problems, and many 
more, are known to be solvable cryptographically. 

5 Zero-Knowledge Proofs 

5.1 Motivation 

In our dating protocol, we made the critical assumption that Alice and Bob were “honest but 
curious,” i.e. they both followed the protocol correctly. We’d now like to move away from this 
assumption, and have the protocol work even if one of the players is cheating. (Naturally, if they’re 
both cheating then there’s nothing we can do.) 

As discussed earlier, we’re not concerned with the case where Bob pretends that he likes Alice 
just to find out whether she likes him. There’s no cryptographic protocol that helps with Bob being 
a jerk, and we can only hope he’ll get caught being one. Rather, the situation we’re concerned with 
is when one of the players looks like they’re following the protocol, but are actually just trying to 
find out the other player’s interest. 

What we need is for Alice and Bob to prove to each other at each step of the protocol that 
they’re correctly following the protocol—i.e., sending whatever message they’re supposed to send, 
given whether they’re interested or not. The trouble is, they have to do this without revealing 
whether they’re interested or not! Abstractly, then, the question is how it’s possible to prove 
something to someone without revealing a crucial piece of information on which the proof is based. 

5.2 History 

Zero-knowledge proofs have been a major idea in cryptography since the 1980’s. They were intro­
duced by Goldwasser, Micali, and Rackoff in 1985. Interestingly, their paper was rejected multiple 
times before publication but is now one of the foundational papers of theoretical computer science. 

18-5




5.3 Interactive Proofs 

For thousands of years, the definition of a proof accepted by mathematicians was a sequence of 
logical deductions that could be shared with anyone to convince them of a mathematical truth. But 
developments in theoretical computer science over the last few decades have required generalizing 
the concept of proof, to any sort of computational process or interaction that can terminate a 
certain way only if the statement to be proven is true. Zero-knowledge proofs fall into the latter 
category, as we’ll see next. 

5.4 Simple Example: Graph Nonisomorphism 

To explain the concept of zero-knowledge proofs, it’s easiest to start with a concrete example. 
The simplest example concerns the Graph Isomorphism problem. Here we’re given two graphs 
G1 = (V1, E1) and G2 = (V2, E2), which are defined by lists of their edges and vertices. The graphs 
are called isomorphic if there’s a way to permute their vertices so that they are the same graph. 

5.4.1 Complexity 

It’s clear that the Graph Isomorphism problem is in NP, since a short proof that G1 and G2 are 
isomorphic is just to specify the isomorphism (i.e., a mapping between the vertices of G1 and G2). 

Is Graph Isomorphism in P? Is it NP-complete? We don’t yet know the answer to either 
question, though we do have strong evidence that it isn’t NP-complete. Specifically, we know 
that if Graph Isomorphism is NP-complete then NP NP = coNP NP , or “the polynomial hierarchy 
collapses” (proving this statement is beyond the scope of the course). Some computer scientists 
conjecture that Graph Isomorphism is intermediate between P and NP-complete, just as we believe 
Factoring to be. Others conjecture that Graph Isomorphism is in P, and we simply don’t know 
enough about graphs yet to give an algorithm. (Note that we have efficient algorithms for Graph 
Isomorphism that work extremely well in practice – just not any that we can prove will work in all 
cases.) 

As an amusing side note, it’s said that the reason Levin wasn’t the first to publish on NP-
completeness is that he got stuck trying to show the Graph Isomorphism problem was NP-complete. 

5.4.2 Proving No Isomorphism Exists 

We said before that Graph Isomorphism is in NP. But is it in coNP? That is, can you give a short 
proof that two graphs are not isomorphic? Enumerating all the possibilities obviously won’t work, 
since it’s exponentially inefficient (there are n! possible mappings). To this day, we don’t know 
whether Graph Isomorphism is in coNP (though there are some deep recent results suggesting that 
it is). 

18-6 

Figure by MIT OpenCourseWare.



Still, let’s see an incredibly simple way that an all-knowing prover could convince a polynomial-
time verifier that two graphs are not isomorphic. To illustrate, consider Coke and Pepsi. Suppose 
you claim that the two drinks are different but I maintain they’re the same. How can you convince 
me you’re right, short of giving me the chemical formula for both? By doing a blind taste test! If 
I blindfold you and you can reliably tell which is which, then you’ll have convinced me that they 
must be different, even if I don’t understand how. 

The same idea applies to proving that G1 and G2 are not isomorphic. Suppose you’re some 
wizard who has unlimited computational power, but the person you are trying to convince does 
not. The person can pick one of the two graphs at random and permute the vertices in a random 
way to form a new graph G�, then send you G� and ask which graph she started with. If the graphs 
are indeed not isomorphic, then you’ll be able to answer correctly every time, whereas if G1 and 
G2 are isomorphic, then your chance of guessing correctly will be at most 1/2 (since a random 
permutation of G1 is the same as a random permutation of G2). If the verifier repeats this test 100 
times and you answer correctly every time, then she can be sure to an extremely high confidence 
(namely 1 − 2−100) that the graphs are not isomorphic. 

But notice something interesting: even though the verifier became convinced, she did so without 
gaining any new knowledge about G1 and G2 (by which, for example, she could convince someone 
else that they’re not isomorphic)! In other words, if she’d merely trusted you, then she could 
have simulated her entire interaction with you on her own, without ever involving you at all. Any 
interactive proof system that has this property – that the prover only tells the verifier things that 
the latter “already knew” – is called a zero-knowledge proof system. 

(Admittedly, it’s only obvious that the verifier doesn’t learn anything if she’s “honest” – that 
is, if she follows the protocol correctly. Conceivably a dishonest verifier who violated the protocol 
could learn something she didn’t know at the start. This is a distinction we’ll see again later.) 

5.5 The General Case 

How can we extend this notion of a zero-knowledge proof to arbitrary problems, besides Graph 
Isomorphism? For example, suppose that you’ve proven the Riemann Hypothesis, but are paranoid 
and do not want anyone else to know your proof just yet. That might sound silly, but it’s essentially 
how mathematicians worked in the Middle Ages: each knew how to solve some equation but didn’t 
want to divulge the general method for solving it to competitors. 

So suppose you have a proof of some arbitrary statement, and you want to convince people you 
have a proof without divulging any of the details. It turns out that there’s a way to convert any 
mathematical proof into zero-knowledge form; what’s more, the conversion can even be done in 
polynomial time. However, we’ll need to make cryptographic assumptions. 

5.6 Goldreich-Micali-Wigderson 

In what follows, we’ll assume that your proof is written out in machine-checkable form, in some 
formal system like Zermelo-Fraenkel set theory. We know that THEOREM, the problem of proving 
a theorem in at most n symbols, is an NP-complete problem, and is therefore efficiently reducible 
to any other NP-complete problem. Thus, we just need to find some NP-complete problem for 
which we can prove that we have a solution, without divulging the solution. Out of the thousands 
of known NP-complete problems, it turns out that the most convenient for our purpose will be the 
problem of 3-coloring a graph. 

18-7 



5.6.1 3-Coloring Proof 

Suppose we have a 3-coloring of a graph and we want to prove that we have this 3-coloring without 
divulging it. Also, suppose that for each vertex of the graph, there’s a magical box in which we 
can store the color of that vertex. What makes these boxes magical is that we can open them but 
the verifier can’t. The key point is that, by storing colors in the boxes, we can “commit” to them: 
that is, we can assure the verifier that we’ve picked the color of each vertex beforehand, and are 
not just making them up based on which questions she asks. 

Using these boxes, we can run the following protocol: 

1. Start with a 3-coloring of the graph; then randomly permute the colors of the vertices. There 
are 3! = 6 ways to permute the colors. For example, red green, green red, blue stays the ⇒ ⇒
same. 

2. Write the color of each vertex on a slip of paper and place it in the magic box that’s labeled 
with that vertex’s number. Give all of the magic boxes to the verifier. 

3. Let the challenger pick any two neighboring vertices, and open the boxes corresponding to 
those vertices. 

4. Throw away the boxes and repeat the whole protocol as many times as desired. 

If we really have a 3-coloring of the graph, then the verifier will see two different colors every 
time she chooses two neighboring vertices. On the other hand, suppose we were lying and didn’t 
have a 3-coloring. Then eventually the verifier will find a conflict. Note that there are O(n2) edges, 
where n is the number of vertices of the graph. Therefore, since we commit to the colors in advance, 
there’s a Ω(1/n2) chance of catching us if we were lying. By repeating the whole protocol, say, 
n3 times, the verifier can boost the probability of catching a lie exponentially close to 1, and can 
therefore (assuming everything checks out) become exponentially confident that we were telling the 
truth. 

On the other hand, since we permute the colors randomly and reshuffle every time, the verifier 
learns nothing about the actual 3-coloring; she just sees two different random colors every time and 
thereby gains no knowledge! 

Of course, the whole protocol relied on the existence of “magic boxes.” So what if we don’t 
have the magic boxes available? Is there any way we could simulate their functionality, if we were 
just sending messages back and forth over the Internet? 

Yes: using cryptography! Instead of locking each vertex’s color in a box, we can encrypt each 
color and send the verifier the encrypted messages. Then, when the verifier picks two adjacent 
vertices and asks us for their colors, we can decrypt the corresponding messages (though not the 
encrypted messages for any other vertices). For this to work, we just need to ensure two things: 

1. A polynomial-time verifier shouldn’t be able to learn anything from the encrypted messages. 
In particular, this means that even if two vertices are colored the same, the corresponding 
encrypted messages should look completely different. Fortunately, this is easy to arrange, for 
example by padding out the color data with random garbage prior to encrypting it. 

2. When, in the last step, we decrypt two chosen messages, we should be able to prove to the 
verifier that the messages were decrypted correctly. In other words, every encrypted message 
should have one and only one decryption. As discussed earlier, the most popular public-
key cryptosystems, like RSA, satisfy this property by construction. But even with more 

18-8




“generic” cryptosystems (based on arbitrary one-way functions), it’s known how to simulate 
the unique-decryption property by adding in more rounds of communication. 

5.6.2 Back to Dating 

Recall our original goal in discussing zero-knowledge: we wanted to make the dating protocol work 
correctly, even if Alice or Bob might be cheating. How can we do that? Well, first have Alice 
and Bob send each other encrypted messages that encode whether or not they’re interested in each 
other, as well as their secret numbers p, q, and r. Then have them follow the dating protocol exactly 
as before, but with one addition: at each step, a player not only sends the message that’s called for 
in the protocol, but also provides a zero-knowledge proof that that’s exactly the message they were 
supposed to send—given the sequence of previous messages, whether or not they’re interested, and 
p, q, r. Note that this is possible, since decrypting all the encrypted messages and verifying that 
the protocol is being followed correctly is an NP problem, which is therefore reducible to SAT and 
thence to 3-Coloring. And by definition, a zero-knowledge proof leaks no information about Alice 
and Bob’s private information, so the protocol remains secure. 

To clarify one point, it’s not known how to implement this dating protocol using an arbitrary 
OWF—only how to implement the GMW part of it (the part that makes the protocol secure against 
a cheating Alice or Bob). To implement the protocol itself, we seem to need a stronger assumption, 
like the security of RSA or something similar. (Indeed, it’s not even known how to implement the 
dating protocol using an arbitrary trapdoor OWF, although if we know further that the trapdoor 
OWF is a permutation, then it’s possible.) 

18-9





