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Lecture 10 
Lecturer: Scott Aaronson Scribe: Yinmeng Zhang 

1 Administrivia 

Work hard on the homework, but don’t freak out. Come to office hours. There will be a short (1 
week) pset before spring break, and an exam on the Thursday after, which is April 3rd. 

2 Recap 

Last time we saw a rough geography of the universe of computational problems. 

P

NP

NP-complete

NP-hard

One of the precepts of this course is that this picture is really important. In an ideal world, 
people would recognize this map the same way they recognize a map of the continents of earth. 
As part of the popularization effort we are distributing Scott’s Scientific American article on the 
limits of quantum computation, which contains a similar picture, except quantum-ier. 

The concept of NP-completeness was defined in the ’70s. Last time we saw that the DUH 
problem — given a Turing machine, is there an input on which it halts in polynomial time — is 
obviously NP-complete, duh. We then took a look at our first “natural” NP-complete problem, 
SATISFIABILITY (or SAT for short). We saw Cook and Levin’s proof that SAT is NP-complete 
by reduction from DUH. Today we will see some more reductions. 
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3 SAT reduces to 3SAT 

Though SAT is NP-complete, specific instances of it can be easy to solve. 
Some useful terminology: a clause is a single disjunction; a literal is a variable or the negation 

of a variable. A Boolean formula in conjunctive normal form (CNF) is one which is the AND of 
ORs of literals. Then the 2SAT problem (which we saw earlier in the course) is defined as follows: 

•	 Given a CNF formula where every clause involves at most 2 literals, does it have a satisfying 
assignment? 

In Lecture 2 we saw that 2SAT is solvable in polynomial time, because we can draw the impli­
cation graph and check it for cycles in polynomial time. 

Today, we’ll talk about the 3SAT problem. 

•	 Given a CNF formula where every clause involves at most 3 literals, does it have a satisfying 
assignment? 

Unlike 2SAT, the 3SAT problem appears to be hard. In fact, 3SAT is NP-complete — this 
special case encapsulates all the difficulty of generic SAT! 

To prove this, we’ll show how to convert an arbitrary Boolean formula into a 3SAT problem in 
polynomial time. Thus, if we had an oracle for 3SAT, then we could solve SAT by converting the 
input into 3SAT form and querying the oracle. 

So how do we convert an arbitrary Boolean formula into a 3SAT formula? Our first step will 
be to convert the formula into a circuit. This is actually really straightforward – every , ∧, or ∨¬
in the formula becomes a NOT, AND, or OR gate in the circuit. One detail we need to take care 
of is that when we say multiple literals ∧ed or ∨ed together, we first need to specify an order in 
which to take the ∧s or ∨s. For example, if we saw (x1 ∨ x2 ∨ x3) in our formula, we should parse 
it as either ((x1 ∨ x2) ∨ x3) which becomes OR(x1, OR(x2, x3)), or (x1 ∨ (x2 ∨ x3)) which becomes 
OR(OR(x1, x2), x3). It doesn’t matter which one we pick, because ∧ and ∨ are both associative. 

So every Boolean formula can be converted to an equivalent circuit in linear time. This has a 
couple of interesting consequences. First, it means the problem CircuitSAT, where we are given a 
circuit and asked if it has a satisfying assignment, is NP-complete. Second, because Cook-Levin 
gave us a way to convert Turing Machines into Boolean formulas if we knew a bound on the run 
time, tacking this result on gives us a way to convert Turing Machines into circuits. If the Turing 
Machine ran in polynomial time, then the conversion will only polynomial time, and the circuit 
will be of polynomial size. 

Ok, so now we have a circuit and want to convert it into a 3SAT formula. Where does the 
3 come in? Each gate has at most 3 wires attached to it – two inputs and one output for AND 
and OR, and one input and one output for NOT. Let’s define a variable for every gate. We want 
to know if there is a setting of these variables such that for every gate, the output has the right 
relationship to the input/inputs, and the final output is set to true. 

So let’s look at the NOT gate. Call the input x and the output y. We want that if x is true 
then y is false, and if x is false then y is true – but we’ve seen how to write if-then statements as 
disjunctions! So, we have 

NOT : (x ∨ y) ∧ (¬x ∨ ¬y) 

We can do the same thing with the truth table for OR. Call the inputs x1 and x2 and the 
output y. Let’s do one row. If x1 is true and x2 is false, then y is true. We can write this as 
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(	 (x1 ∧ ¬x2) ∨ y). By DeMorgan’s Law, this is the same as ( x1 ∨ x2 ∨ y). Taking the AND over ¬	 ¬
all possibilities for the inputs we get 

OR : (¬x1 ∨ ¬x2 ∨ y) ∧ (¬x1 ∨ x2 ∨ y) ∧ (x1 ∨ ¬x2 ∨ y) ∧ (x1 ∨ x2 ∨ ¬y) 

And similarly for the AND gate. The big idea here is that we’re taking small pieces of a problem 
we know to be hard (gates in a circuit) and translating them into small pieces of a problem we’re 
trying to show is hard (CNF formulas). These small pieces are called “gadgets”, and they’re a 
recurring theme in reduction proofs. Once we’ve got these gadgets, we have to somehow stick them 
together. 

In this case, all we have to do is AND together the Boolean formulas for each of the gates, and 
the variable for the final output wire. The Boolean formula we get from doing this is true if and 
only if the circuit is satisfiable. Woo. 

3COLOR is NP-complete 

•	 Given a graph, is there a way to color each vertex either Red, Blue, or Green, so that no 
adjacent vertices end up the same color? 

This problem is called 3COLOR, and it is NP-complete. We’ll prove it by showing a reduction 
from CircuitSAT. So suppose we’re given a circuit, and we have a magic box that, when given 
a graph, says whether it has a good 3-coloring. Can we make a graph that is 3-colorable iff the 
Boolean formula is satisfiable? We’re going to need some gadgets. 

First of all, we’re renaming the colors. The first piece of our graph is going to be a triangle, 
which will serve as a palette. Notice that any good 3-coloring must assign different colors to each 
vertex of a triangle. So for a given good 3-coloring, whatever color the first vertex gets assigned, 
we’re going to call True; the second is going to be False; and the third is going to be Neither. 

Here is a gadget for the NOT gate. 

palette

¬x

x

T

F N

Because x and ¬x are connected to each other, any good coloring will assign them different 
colors, and because they’re both connected to the Neither vertex in the palette, one of them will 
have to be true, and one of them will be false. 

Here is a gadget for the AND gate, courtesy of Alex. 
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palette

yx

T

F N

x ∧ y

1 3

2a 2b

It’s obvious it works, right? The main things to note are as follows. The inputs and output 
are connected to Neither, which forces them to take on boolean values. If x and y are colored the 
same, then 2a and 2b will be colored with the other two colors, forcing x ∧ y will have to be colored 
the same as x and y – that’s correct behavior for an AND! If x and y are colored oppositely, then 
either 1 or 3 will have to be colored True, which forces x ∧ y to be colored False – that’s again what 
we were hoping would happen. Finally, in all cases, we haven’t added too many restrictions: good 
colorings exist for any setting of x and y. 

A gadget for the OR gate could be made by composing the AND and NOT gadgets using 
DeMorgan’s Law. There’s also a cute way to modify the AND gadget to turn it into the OR 
gadget. Do you see it? 

By composing these gadgets, we can turn any circuit into a graph so that assignment of T/Fs 
to the wires translates to colorings of the graph. If we then connect the final output vertex to the 
False vertex in the palette, then the graph we’ve constructed will have a good 3-coloring iff the 
circuit had a satisfying assignment. 

So we’ve just proved 3COLOR is NP-complete. This is a strange thing. It means, for example, 
that we can efficiently construct graphs which are 3-colorable iff there’s a short proof of the Riemann 
Hypothesis in ZF set theory. Chew on that. 

Looking at the somewhat horrifying AND gadget, you might wonder if there’s a way to draw the 
graph so that no lines cross. This turns out to be possible, and implies that 3PLANAR-COLOR 
(given a planer graph, is it 3-colorable) is also NP-complete. What about 4PLANAR-COLOR? 
This problem turns out to be easy. In fact, you can just output yes every time! It was a long-
standing conjecture that every planar graph could be colored with 4 colors. It was finally proven 
by Appel and Haken in 1976. There is some drama surrounding this proof that you can read about 
on Wikipedia. What about 2PLANAR-COLOR? This is easy too. It’s a special case of 2COLOR, 
which we saw a greedy algorithm for last time. When it comes to planar graph-coloring, it seems 
there’s something special about the number 3. 
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5 In conclusion 

In 1972, Karp showed 21 problems were NP-complete using the above techniques and a good dose 
of cleverness. We could spend a month looking at clever gadgets, but we’re not going to. The 
takeaway lesson is that NP-completeness is ubiquitous. Today, thousands of practical problems 
have been proved NP-complete. In fact, any time an optimization problem arises in industry, etc., 
a good heuristic is to assume it’s NP-complete until proven otherwise! This, of course, is what 
motivates the question of whether P=NP — what makes it one of the central questions in all of 
math and science. 

6 Tricky Questions 

Cook defined a language A to NP-complete when it itself was in NP, and every NP problem could 
be solved in polynomial time if given oracle access to A. 

A is in NP• 

SAT is in PA • 

This definition allows us to call the oracle multiple times, but in fact in the above proofs we 
only ever called it once. The proofs had a very specific form: somehow come up with an equivalent 
problem instance in the candidate language; call the oracle on it. Karp noticed this and proposed 
a different notion of NP-completeness 

•	 There exists a polynomial time algorithm that maps satisfiable formulas to strings in A, and 
unsatisfiable formulas to strings outside A. 

Are these definitions the same or is the second one more restrictive? This is an open problem, 
which you are welcome to close for extra credit. 

Now, if P=NP, then every problem in NP will be solvable efficiently, and every problem in 
NP will be NP-complete: the computational universe will look pretty monotonous. If P=� NP, 
then what do we know? All the problems in P will be easy, and all NP-complete problems will 
be hard. Would there be anything in between? Would there be problems in NP which are neither 
NP-complete nor solvable efficiently? In 1975 Ladner showed that the answer is yes. Tune in next 
time to find out more. 
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