EE364a Review

Disciplined Convex Programming and CVX

convex optimization solvers
modeling systems

disciplined convex programming

CVvX

Convex optimization solvers

e LP solvers

— lots available (GLPK, Excel, Matlab's 1linprog, . . .)

e cone solvers

— typically handle (combinations of) LP, SOCP, SDP cones
— several available (SDPT3, SeDuMi, CSDP, .. .)

e general convex solvers

— some available (CVXOPT, MOSEK, . . .)
e plus lots of special purpose or application specific solvers

e could write your own

(we'll study, and write, solvers later in the quarter)

Disciplined Convex Programming and CVX

Transforming problems to standard form

e you've seen lots of tricks for transforming a problem into an equivalent
one that has a standard form (e.g., LP, SDP)
e these tricks greatly extend the applicability of standard solvers

e writing code to carry out this transformation is often painful

e modeling systems can partly automate this step

Disciplined Convex Programming and CVX

Modeling systems

a typical modeling system

e automates most of the transformation to standard form; supports

— declaring optimization variables

— describing the objective function

— describing the constraints

— choosing (and configuring) the solver

e when given a problem instance, calls the solver
e interprets and returns the solver’s status (optimal, infeasible, . . .)

e (when solved) transforms the solution back to original form

Disciplined Convex Programming and CVX

Some current modeling systems

e AMPL & GAMS (proprietary)
— developed in the 1980s, still widely used in traditional OR
— no support for convex optimization

e YALMIP (“Yet Another LMI Parser’)

— first matlab-based object-oriented modeling system with special
support for convex optimization
— can use many different solvers; can handle some nonconvex problems

e CVXMOD/CVXOPT (in alpha)

— python based, completely GPLed
— cone and custom solvers

o CVX
— matlab based, GPL, uses SDPT3/SeDuMi

Disciplined Convex Programming and CVX 5

Disciplined convex programming

e describe objective and constraints using expressions formed from

— a set of basic atoms (convex, concave functions)
— a restricted set of operations or rules (that preserve convexity)

e modeling system keeps track of affine, convex, concave expressions

e rules ensure that

— expressions recognized as convex (concave) are convex (concave)
— but, some convex (concave) expressions are not recognized as convex
(concave)

e problems described using DCP are convex by construction

Disciplined Convex Programming and CVX 6

CvX

e uses DCP

e runs in Matlab, between the cvx_begin and cvx_end commands
e relies on SDPT3 or SeDuMi (LP/SOCP/SDP) solvers

e refer to user guide, online help for more info

e the CVX example library has more than a hundred examples

Disciplined Convex Programming and CVX

Example: Constrained norm minimization

=
I

randn(5, 3);

randn(5, 1);

CVvX_begin

variable x(3);

minimize (norm(A*xx - b, 1))

o
I

subject to
-0.5 <= x;
x <= 0.3;
cvx_end

e between cvx_begin and cvx_end, x is a CVX variable
e statement subject to does nothing, but can be added for readability

e inequalities are intepreted elementwise

Disciplined Convex Programming and CVX

What CVX does

after cvx_end, CVX

e transforms problem into an LP

e calls solver SDPT3

e overwrites (object) x with (numeric) optimal value
e assigns problem optimal value to cvx_optval

e assigns problem status (which here is Solved) to cvx_status

(had problem been infeasible, cvx_status would be Infeasible and x
would be NaN)

Disciplined Convex Programming and CVX

Variables and affine expressions

e declare variables with variable name[(dims)] [attributes]

— variable x(3);

— variable C(4,3);

— variable S(3,3) symmetric;
— variable D(3,3) diagonal;
— variables y z;

e form affine expressions

— A = randn(4, 3);

— variables x(3) y(4);
— 3*%x + 4

— A*x -y

— x(2:3)

— sum(x)

Disciplined Convex Programming and CVX

10

Some functions

function meaning attributes
norm(x, p) |||, CVX
square (x) 2 CVX
square_pos (x) (z4)? cvx, nondecr
pos (x) X cvx, nondecr
sum_largest (x,k) T+ X cvx, nondecr
sqrt (x) v (x>0) ccv, nondecr
inv_pos(x) 1/x (x> 0) cvx, nonincr
max (x) max{ri,..., T} cvx, nondecr
quad_over_lin(x,y) | z%/y (y > 0) cvx, nonincr in y
lambda_max (X) Amax(X) (X = X71) | cvx
huber (x) { v ol <1 CVX

ol — 1, |z|>1

Disciplined Convex Programming and CVX

11

Composition rules

e can combine atoms using valid composition rules, e.g.:

— a convex function of an affine function is convex

— the negative of a convex function is concave

— a convex, nondecreasing function of a convex function is convex

— a concave, nondecreasing function of a concave function is concave

e for convex h, h(gi,...,gx) is recognized as convex if, for each i,

— g, Is affine, or
— g; is convex and h is nondecreasing in its i¢th arg, or
— g; is concave and A is nonincreasing in its ¢th arg

e for concave h, h(gi,...,gx) is recognized as concave if, for each i,

— g, Is affine, or
— g; is convex and h is nonincreasing in ¢th arg, or
— g; Is concave and A is nondecreasing in tth arg

Disciplined Convex Programming and CVX

12

Valid (recognized) examples

u, v, X, y are scalar variables; X is a symmetric 3 X 3 variable

® CONnVeEX:

— norm(A*x - y) + 0.l*norm(x, 1)

— quad_over_lin(u - v, 1 - square(v))
— lambda_max (2*X - 4x*eye(3))

— norm(2*X - 3, ’fro’)

® COoNncCave:

— min(1 + 2%u, 1 - max(2, v))
— sqrt(v) - 4.55%inv_pos(u - v)

Disciplined Convex Programming and CVX

13

Rejected examples

u, v, X, y are scalar variables

e neither convex nor concave:

— square(x) - square(y)

— norm(A*x - y) - O.l%norm(x, 1)

e rejected due to limited DCP ruleset:

— sqrt(sum(square(x))) (is convex; could use norm(x))

— square (1l + x~2) (is convex; could use square_pos(1 + x~2), or
1 + 2xpow_pos(x, 2) + pow_pos(x, 4))

Disciplined Convex Programming and CVX 14

Sets

e some constraints are more naturally expressed with convex sets
e sets in CVX work by creating unnamed variables constrained to the set

e examples:

— semidefinite(n)
— nonnegative(n)
— simplex(n)
— lorentz(n)

e semidefinite(n), say, returns an unnamed (symmetric matrix)
variable that is constrained to be positive semidefinite

Disciplined Convex Programming and CVX 15

Using the semidefinite cone

variables: X (symmetric matrix), z (vector), t (scalar)
constants: A and B (matrices)

e X == semidefinite(n)

— means X € S” (or X = 0)

o AxX*A’ - X == Bxsemidefinite(n)*B’

— means 37 > 0 so that AXAT — X = BZBT

o [X z; 2z’ t] == semidefinite(n+1)
X z
— means - =0
z t

Disciplined Convex Programming and CVX

16

Objectives and constraints

e objective can be

— minimize(convex expression)
— maximize(concave expression)
— omitted (feasibility problem)

e constraints can be

— convex expression <= concave expression
— concave expression >= convex expression
— affine expression == affine expression
— omitted (unconstrained problem)

Disciplined Convex Programming and CVX

17

More involved example

A = randn(5);

A = A>x%A;

CVvX_begin
variable X(5, 5) symmetric;
variable y;
minimize (norm(X) - 10*sqrt(y))

subject to
X - A == semidefinite(5);
X(2,5) == 2xy;
X(3,1) >= 0.8;
y <= 4;
cvx_end

Disciplined Convex Programming and CVX

18

Defining new functions

e can make a new function using existing atoms

e example: the convex deadzone function

f(x) =max{|z| - 1,0} =< -1, z>1
l—z, z<-1

e create a file deadzone.m with the code

function y = deadzone(x)
y = max(abs(x) - 1, 0)

e deadzone makes sense both within and outside of CVX

Disciplined Convex Programming and CVX

19

Defining functions via incompletely specified problems

e suppose fo, ..., fmm are convex in (x, z)

e let ¢(x) be optimal value of convex problem, with variable z and
parameter x

minimize fo(x, 2)
subject to fi(z,2) <0, i=1,....m
Ala: + AQZ =b

® ¢ is a convex function

e problem above sometimes called incompletely specified since x isn't
(yet) given

e an incompletely specified concave maximization problem defines a
concave function

Disciplined Convex Programming and CVX

20

CVX functions via incompletely specified problems

implement in cvx with

function cvx_optval = phi(x)
cvx_begin
variable z;
minimize (f0(x, z))
subject to
fi1(x, z) <= 0;
Al*xx + A2%z == D;
cvx_end

e function phi will work for numeric x (by solving the problem)

e function phi can also be used inside a CVX specification, wherever a
convex function can be used

Disciplined Convex Programming and CVX

21

Simple example: Two element max

e create file max2.m containing

function cvx_optval = max2(x, y)
cvx_begin

variable t;

minimize (t)

subject to

X <= t;

y <= t;
cvx_end

e the constraints define the epigraph of the max function

e could add logic to return max(x,y) when x, y are numeric
(otherwise, an LP is solved to evaluate the max of two numbers!)

Disciplined Convex Programming and CVX 22

A more complex example

o f(z)=x+2!°+ 227 with dom f = R_, is a convex, monotone
increasing function

e its inverse g = 1

e there is no closed form expression for g

e g(y) is optimal value of problem

maximize t

subject to ¢4 +t4° + 37 <y

(for y < 0, this problem is infeasible, so optimal value is —o0)

Disciplined Convex Programming and CVX

is concave, monotone increasing, with dom g = R,

23

e implement as

function cvx_optval = g(y)
cvx_begin
variable t;
maximize (t)
subject to
pos(t) + pow_pos(t, 1.5) + pow_pos(t, 2.5) <= y;
cvx_end

e use it as an ordinary function, as in g(14.3), or within CVX as a
concave function:

CvX_begin
variables x y;
minimize(quad_over_lin(x, y) + 4*x + 5xy)
subject to
g(x) + 2xg(y) >= 2;

cvx_end

Disciplined Convex Programming and CVX 24

Example

e optimal value of LP, f(c) = inf{c'x | Az < b}, is concave function of ¢

e by duality (assuming feasibility of Az < b) we have

flc) =sup{-A'b| A" X +c=0, A =0}

e define f in CVX as

function cvx_optval = lp_opt_val(A,b,c)
cvx_begin
variable lambda(length(b));
maximize (-lambda’*b) ;
subject to
A’*]lambda + ¢ == 0; lambda >= O;
cvx_end

e in 1p_opt_val(A,b,c) A, b must be constant; ¢ can be affine
expression

Disciplined Convex Programming and CVX 25

CVX hints/warnings

watch out for = (assignment) versus == (equality constraint)
X >= 0, with matrix X, is an elementwise inequality

X >= semidefinite(n) means: X is elementwise larger than some
positive semidefinite matrix (which is likely not what you want)

writing subject to is unnecessary (but can look nicer)

make sure you include brackets around objective functions

— yes: minimize (c’*x)
— NO: minimize c’*Xx

double inequalities like 0 <= x <= 1 don't work;
use 0 <= x; x <= 1 instead

log, exp, entropy-type functions not yet implemented in CVX

Disciplined Convex Programming and CVX

26

MIT OpenCourseWare
|http://ocw.mit.edu

6.079 / 6.975 Introduction to Convex Optimization
Fall 2009

For information about citing these materials or our Terms of Use, visit: [http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

