
Convex Optimization — Boyd & Vandenberghe 

12. Interior-point methods 

•	 inequality constrained minimization 

•	 logarithmic barrier function and central path 

barrier method • 
•	 feasibility and phase I methods 

•	 complexity analysis via self-concordance 

•	 generalized inequalities 
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Inequality constrained minimization


minimize	 f0(x) 
subject to	 fi(x) ≤ 0, i = 1, . . . ,m (1) 

Ax = b 

• fi convex, twice continuously differentiable 

• A ∈ Rp×n with rank A = p 

⋆ • we assume p is finite and attained 

•	 we assume problem is strictly feasible: there exists x̃ with 

x̃ ∈ dom f0, fi(x̃) < 0, i = 1, . . . ,m, Ax̃ = b 

hence, strong duality holds and dual optimum is attained 

Interior-point methods	 12–2 



Examples


•	 LP, QP, QCQP, GP 

•	 entropy maximization with linear inequality constraints 

minimize 
�

i
n 
=1 xi log xi 

subject to Fx � g 
Ax = b 

with dom f0 = Rn 
++ 

•	 differentiability may require reformulating the problem, e.g., 
piecewise-linear minimization or ℓ∞-norm approximation via LP 

•	 SDPs and SOCPs are better handled as problems with generalized 
inequalities (see later) 
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Logarithmic barrier 

reformulation of (1) via indicator function: 

minimize f0(x) + 
�m

i=1 I−(fi(x)) 
subject to Ax = b 

where I−(u) = 0 if u ≤ 0, I−(u) = ∞ otherwise (indicator function of R−) 

approximation via logarithmic barrier 

minimize f0(x) − (1/t) 
�m 

log(−fi(x)) i=1 
subject to Ax = b 

10 

•	 an equality constrained problem 
5 

•	 for t > 0, −(1/t) log(−u) is a 
smooth approximation of I− 0 

•	 approximation improves as t → ∞ 
−5 
−3 −2 −1 0 1 

u 
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logarithmic barrier function


m 

φ(x) = − log(−fi(x)), dom φ = {x | f1(x) < 0, . . . , fm(x) < 0}
i=1 

• convex (follows from composition rules) 

• twice continuously differentiable, with derivatives 

m 
� 1
∇φ(x) = −fi(x)

∇fi(x)

i=1 

m m 
� 1 � 1 ∇ 2φ(x) = 

fi(x)2 
∇fi(x)∇fi(x)

T + −fi(x)
∇ 2fi(x) 

i=1 i=1 
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Central path


for t > 0, define x ⋆(t) as the solution of • 

minimize tf0(x) + φ(x) 
subject to Ax = b 

(for now, assume x ⋆(t) exists and is unique for each t > 0) 

• central path is {x ⋆(t) | t > 0} 

example: central path for an LP 

⋆ x⋆ (10) 

c 

minimize cTx 
subject to ai

Tx ≤ bi, i = 1, . . . , 6 

x 
hyperplane cTx = cTx ⋆(t) is tangent to 
level curve of φ through x ⋆(t) 
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Dual points on central path 

x =	 x ⋆(t) if there exists a w such that 

m 

t∇f0(x) + 
� 

−f
1 

i(x)
∇fi(x) +AT w = 0, Ax = b 

i=1 

therefore, x ⋆(t) minimizes the Lagrangian • 
m 

L(x, λ ⋆ (t), ν ⋆ (t)) = f0(x) + λi
⋆ (t)fi(x) + ν ⋆ (t)T (Ax − b) 

i=1 

where we define λi
⋆(t) = 1/(−tfi(x ⋆(t)) and ν⋆(t) = w/t 

• this confirms the intuitive idea that f0(x ⋆(t)) → p ⋆ if t → ∞: 

p ⋆	 ≥ g(λ ⋆ (t), ν ⋆ (t)) 

= L(x ⋆ (t), λ ⋆ (t), ν ⋆ (t)) 

= f0(x ⋆ (t)) −m/t 
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Interpretation via KKT conditions


x = x ⋆(t), λ = λ⋆(t), ν = ν⋆(t) satisfy 

1. primal constraints: fi(x) ≤ 0, i = 1, . . . ,m, Ax = b 

2. dual constraints: λ � 0 

3. approximate complementary slackness: −λifi(x) = 1/t, i = 1, . . . ,m 

4. gradient of Lagrangian with respect to x vanishes: 

m 

∇f0(x) + λi∇fi(x) +ATν = 0 
i=1 

difference with KKT is that condition 3 replaces λifi(x) = 0 
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Force field interpretation


centering problem (for problem with no equality constraints) 

minimize tf0(x) − m 
log(−fi(x)) i=1 

force field interpretation 

• tf0(x) is potential of force field F0(x) = −t∇f0(x) 
• − log(−fi(x)) is potential of force field Fi(x) = (1/fi(x))∇fi(x) 

the forces balance at x ⋆(t): 

m 

F0(x ⋆ (t)) + Fi(x ⋆ (t)) = 0 
i=1 
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example

minimize cTx 
subject to aT

i x ≤ bi, i = 1, . . . ,m 

• objective force field is constant: F0(x) = −tc 
• constraint force field decays as inverse distance to constraint hyperplane: 

Fi(x) = 
−a
a
i

T 
, �Fi(x)�2 = 

dist(

1 

x, Hi)bi − i x 

where Hi = {x | ai
Tx = bi} 

−c 

−3c 
t = 1 t = 3 
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Barrier method


given strictly feasible x, t := t(0) > 0, µ > 1, tolerance ǫ > 0. 

repeat 

1.	 Centering step. Compute x⋆ (t) by minimizing tf0 + φ, subject to Ax = b. 

2.	 Update. x := x⋆ (t). 

3.	 Stopping criterion. quit if m/t < ǫ. 

4.	 Increase t. t := µt. 

⋆ •	 terminates with f0(x) − p ≤ ǫ (stopping criterion follows from 
f0(x ⋆(t)) − p ⋆ ≤ m/t) 

•	 centering usually done using Newton’s method, starting at current x 

•	 choice of µ involves a trade-off: large µ means fewer outer iterations, 
more inner (Newton) iterations; typical values: µ = 10–20 

several heuristics for choice of t(0) • 
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Convergence analysis 

number of outer (centering) iterations: exactly 

log(m/(ǫt(0))) 

logµ 

plus the initial centering step (to compute x ⋆(t(0))) 

centering problem 

minimize tf0(x) + φ(x) 

see convergence analysis of Newton’s method 

tf0 + φ must have closed sublevel sets for t ≥ t(0) • 
• classical analysis requires strong convexity, Lipschitz condition 

• analysis via self-concordance requires self-concordance of tf0 + φ 

Interior-point methods 12–12 
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Examples 

inequality form LP (m = 100 inequalities, n = 50 variables) 

140 

µ =µ = 50 µ = 150 
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10−4 

80 

0 
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Newton iterations µ 

starts with x on central path (t(0) = 1, duality gap 100)
N
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• 

terminates when t = 108 (gap 10−6)• 
• centering uses Newton’s method with backtracking 

• total number of Newton iterations not very sensitive for µ ≥ 10 
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� � 

� � 

geometric program (m = 100 inequalities and n = 50 variables)


�5
minimize log k=1 exp(a0

T
kx + b0k) 

subject to log 
�

k
5
=1 exp(aik

T x + bik) ≤ 0, i = 1, . . . ,m 

d
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family of standard LPs (A ∈ Rm×2m) 

minimize cTx 
subject to Ax = b, x � 0 

m = 10, . . . , 1000; for each m, solve 100 randomly generated instances 
N

ew
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n
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m 

number of iterations grows very slowly as m ranges over a 100 : 1 ratio 
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Feasibility and phase I methods 

feasibility problem: find x such that 

fi(x) ≤ 0, i = 1, . . . ,m, Ax = b (2) 

phase I: computes strictly feasible starting point for barrier method 

basic phase I method 

minimize (over x, s) s 
subject to fi(x) ≤ s, i = 1, . . . ,m (3) 

Ax = b 

• if x, s feasible, with s < 0, then x is strictly feasible for (2) 

⋆ • if optimal value p̄ of (3) is positive, then problem (2) is infeasible 

⋆ • if p̄ = 0 and attained, then problem (2) is feasible (but not strictly); 
⋆if p̄ = 0 and not attained, then problem (2) is infeasible 
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sum of infeasibilities phase I method 

minimize 1Ts 
subject to s � 0, fi(x) ≤ si, i = 1, . . . ,m 

Ax = b 

for infeasible problems, produces a solution that satisfies many more 
inequalities than basic phase I method 

example (infeasible set of 100 linear inequalities in 50 variables) 
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bi − ai
Txmax bi − ai

Txsum 

left: basic phase I solution; satisfies 39 inequalities 
right: sum of infeasibilities phase I solution; satisfies 79 solutions 
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example: family of linear inequalities Ax � b + γΔb 

• data chosen to be strictly feasible for γ > 0, infeasible for γ ≤ 0 

• use basic phase I, terminate when s < 0 or dual objective is positive 
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number of iterations roughly proportional to log(1/ γ )| |
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Complexity analysis via self-concordance


same assumptions as on page 12–2, plus: 

•	 sublevel sets (of f0, on the feasible set) are bounded 

•	 tf0 + φ is self-concordant with closed sublevel sets 

second condition 

•	 holds for LP, QP, QCQP 

•	 may require reformulating the problem, e.g., 

minimize i
n 
=1 xi log xi	 minimize i

n 
=1 xi log xi−→


subject to Fx � g	 subject to Fx � g, x � 0 

•	 needed for complexity analysis; barrier method works even when 
self-concordance assumption does not apply 
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Newton iterations per centering step: from self-concordance theory


#Newton iterations ≤ µtf0(x) + φ(x) − µtf0(x
+) − φ(x+)

+ c 
γ 

bound on effort of computing x+ = x ⋆(µt) starting at x = x ⋆(t)• 
• γ, c are constants (depend only on Newton algorithm parameters) 

from duality (with λ = λ⋆(t), ν = ν⋆(t)): • 

µtf0(x) + φ(x) − µtf0(x +) − φ(x +) 
m 

= µtf0(x) − µtf0(x +) + log(−µtλifi(x +)) −m logµ 
i=1 

m 

≤ µtf0(x) − µtf0(x +) − µt λifi(x +) −m −m logµ 
i=1 

≤ µtf0(x) − µtg(λ, ν) −m −m log µ 

= m(µ − 1 − logµ) 
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total number of Newton iterations (excluding first centering step) 

log(m/(t(0)ǫ)) m(µ − 1 − logµ)
#Newton iterations ≤ N = 

logµ	 γ 
+ c 

N



5 104 

4 104 

3 104 

2 104 

1 104 

0 

figure shows N for typical values of γ, c, 

m = 100,
m 

= 105 

t(0)ǫ 

1	 1.1 1.2

µ


• confirms trade-off in choice of µ 

• in practice,	 #iterations is in the tens; not very sensitive for µ ≥ 10 
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polynomial-time complexity of barrier method 

for µ = 1 + 1/
√
m:• 

N = O 
√
m log 

m/t(0) 

ǫ 

number of Newton iterations for fixed gap reduction is O(
√
m)• 

•	 multiply with cost of one Newton iteration (a polynomial function of 
problem dimensions), to get bound on number of flops 

this choice of µ optimizes worst-case complexity; in practice we choose µ 
fixed (µ = 10, . . . , 20) 
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Generalized inequalities


minimize	 f0(x) 
subject to	 fi(x) �Ki 

0, i = 1, . . . ,m 
Ax = b 

f0 convex, fi : R
n Rki , i = 1, . . . ,m, convex with respect to proper • 

cones Ki	 ∈ Rki 

→

•	 fi twice continuously differentiable 

•	 A ∈ Rp×n with rank A = p 

⋆ •	 we assume p is finite and attained 

•	 we assume problem is strictly feasible; hence strong duality holds and 
dual optimum is attained 

examples of greatest interest: SOCP, SDP 
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Generalized logarithm for proper cone


ψ : Rq R is generalized logarithm for proper cone K ⊆ Rq if: →

dom ψ = int K and ∇2ψ(y) ≺ 0 for y ≻K 0• 
• ψ(sy) = ψ(y) + θ log s for y ≻K 0, s > 0 (θ is the degree of ψ) 

examples 

nonnegative orthant K = Rn : ψ(y) = 
�n 

log yi, with degree θ = n• + i=1 

• positive semidefinite cone K = S+
n : 

ψ(Y ) = log detY (θ = n) 

• second-order cone K = {y ∈ Rn+1 | (y1
2 + · · · + y2 )1/2 ≤ yn+1}:n

ψ(y) = log(y 2 2 2 ) (θ = 2) n+1 − y1 − · · · − yn
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properties (without proof): for y ≻K 0, 

∇ψ(y) �K∗ 0, y T ∇ψ(y) = θ 

nonnegative orthant Rn : ψ(y) = 
�n 

log yi• + i=1 

∇ψ(y) = (1/y1, . . . , 1/yn), y T ∇ψ(y) = n 

•	 positive semidefinite cone S+
n : ψ(Y ) = log detY 

∇ψ(Y ) = Y −1 , tr(Y ∇ψ(Y )) = n 

• second-order cone K = {y ∈ Rn+1 | (y1
2 + · · · + yn

2 )1/2 ≤ yn+1}: 
  

−
.
y1 

2	  ..  

T 
 ∇ψ(y) = , y ∇ψ(y) = 2 

yn
2
+1 − y1

2 − · · · − yn 
2  −yn 

 

yn+1 
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Logarithmic barrier and central path


logarithmic barrier for f1(x) �K1 0, . . . , fm(x) �Km 0: 

m 

φ(x) = − ψi(−fi(x)), dom φ = {x | fi(x) ≺Ki 
0, i = 1, . . . ,m}

i=1 

• ψi is generalized logarithm for Ki, with degree θi 

• φ is convex, twice continuously differentiable 

central path: {x ⋆(t) | t > 0} where x ⋆(t) solves 

minimize tf0(x) + φ(x) 
subject to Ax = b 
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Dual points on central path 

x = x ⋆(t) if there exists w ∈ Rp , 

m 

t∇f0(x) + Dfi(x)
T ∇ψi(−fi(x)) +AT w = 0 

i=1 

(Dfi(x) ∈ Rki×n is derivative matrix of fi) 

therefore, x ⋆(t) minimizes Lagrangian L(x, λ⋆(t), ν⋆(t)), where • 

λ ⋆i (t) =
1 

t 
∇ψi(−fi(x ⋆ (t))), ν ⋆ (t) = 

w 
t 

from properties of ψi: λ
⋆
i (t) ≻K∗ 0, with duality gap 

i
• 

m 

f0(x ⋆ (t)) − g(λ ⋆ (t), ν ⋆ (t)) = (1/t) θi 

i=1 
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example: semidefinite programming (with Fi ∈ Sp) 

minimize cTx 
subject to F (x) = i

n 
=1 xiFi + G � 0


logarithmic barrier: φ(x) = log det(−F (x)−1)
• 
central path: x ⋆(t) minimizes tcTx − log det(−F (x)); hence • 

tci − tr(FiF (x ⋆ (t))−1) = 0, i = 1, . . . , n 

dual point on central path: Z⋆(t) = −(1/t)F (x ⋆(t))−1 is feasible for • 

maximize tr(GZ) 
subject to tr(FiZ) + ci = 0, i = 1, . . . , n 

Z � 0 

duality gap on central path: cTx ⋆(t) − tr(GZ⋆(t)) = p/t • 

Interior-point methods 12–28 



� 

� � 

� 

Barrier method


given strictly feasible x, t := t(0) > 0, µ > 1, tolerance ǫ > 0. 

repeat 

1. Centering step. Compute x⋆ (t) by minimizing tf0 + φ, subject to Ax = b. 
⋆ 2. Update. x := x (t). 

3. Stopping criterion. quit if (
P

i θi)/t < ǫ. 

4. Increase t. t := µt. 

only difference is duality gap m/t on central path is replaced by θi/t • i 

number of outer iterations: • 

log(( i θi)/(ǫt
(0))) 

logµ 

• complexity analysis via self-concordance applies to SDP, SOCP 
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Examples


second-order cone program (50 variables, 50 SOC constraints in R6)
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semidefinite program (100 variables, LMI constraint in S100) 
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family of SDPs (A ∈ Sn , x ∈ Rn) 

minimize 1Tx 
subject to A + diag(x) � 0 

n = 10, . . . , 1000, for each n solve 100 randomly generated instances 
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Primal-dual interior-point methods


more efficient than barrier method when high accuracy is needed 

•	 update primal and dual variables at each iteration; no distinction 
between inner and outer iterations 

•	 often exhibit superlinear asymptotic convergence 

•	 search directions can be interpreted as Newton directions for modified 
KKT conditions 

•	 can start at infeasible points 

•	 cost per iteration same as barrier method 
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