Convex Optimization — Boyd & Vandenberghe

10. Unconstrained minimization

terminology and assumptions
gradient descent method
steepest descent method
Newton's method
self-concordant functions

implementation
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Unconstrained minimization

minimize f(x)

e f convex, twice continuously differentiable (hence dom f open)

e we assume optimal value p* = inf, f(x) is attained (and finite)

unconstrained minimization methods

e produce sequence of points z(*) € dom f, k =0, 1,... with
f@®) — p*

e can be interpreted as iterative methods for solving optimality condition

Vi(z*) =0
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Initial point and sublevel set

algorithms in this chapter require a starting point (%) such that
o (9 ¢ dom f
e sublevel set S = {z | f(z) < f(2(®)} is closed

2nd condition is hard to verify, except when all sublevel sets are closed:

e equivalent to condition that epi f is closed
e true if dom f = R"

e true if f(x) — oo as x — bddom f

examples of differentiable functions with closed sublevel sets:

m

f(a) = log(Y explalo +b),  f(x) == log(bi — alw

1=1
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Strong convexity and implications

f is strongly convex on S if there exists an m > 0 such that

V2f(x) = ml for all z € S

implications

o forx,y €5,

) = f(2) + Vi@ (y— o)+ Slle - yl3

hence, S is bounded

e p* > —o0, and for x € S,

1
f@)—p* < 5 IV F)]

useful as stopping criterion (if you know m)
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Descent methods

2D = o) WAL ith FaD) < f(20)

e other notations: 7 =z + tAx, x := x + tAx
e Ax is the step, or search direction; t is the step size, or step length

e from convexity, f(z™) < f(x) implies Vf(z)' Az <0
(i.e., Ax is a descent direction)

General descent method.

given a starting point x € dom f.

repeat
1. Determine a descent direction Azx.

2. Line search. Choose a step size t > 0.
3. Update. x := x + tAx.
until stopping criterion is satisfied.
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Line search types

exact line search: ¢t = argmin,  f(x + tAz)

backtracking line search (with parameters « € (0,1/2), 5 € (0,1))

e starting at t = 1, repeat t := (3t until

flx+tAz) < f(z) + atVf(z)' Ax

e graphical interpretation: backtrack until ¢ < ¢,

f(x + tAx)

\\\\\\\\f(ac) + tVf(x)T\A\m\\\‘ f(x) + atV f(z)" Ax
t=0 to '
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Gradient descent method

general descent method with Ax = —V f(x)

given a starting point x € dom f.
repeat
1. Az := =V f(x).

2. Line search. Choose step size t via exact or backtracking line search.

3. Update. x := x + tAx.
until stopping criterion is satisfied.

e stopping criterion usually of the form |V f(z)|2 <€

e convergence result: for strongly convex f,

f@®) —p* < F(f() - pY)

c € (0,1) depends on m, (9, line search type

e very simple, but often very slow; rarely used in practice
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quadratic problem in R?

flz) = (1/2)(x] + yx3) (v > 0)

with exact line search, starting at 2(%) = (~,1):

k k
(k) <V—f> <m_(:7—1>
:Cl - ’y ’ :CQ — -
~+ 1 ~+ 1

o veryslowif y>1orvy<1

e example for v = 10:

4,
g OF
— 4}
—10 0) 10
L1
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nonquadratic example

F(1, m9) = €1+302-01 | po1=322-0.1 4 =21 =0.1

backtracking line search exact line search
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a problem in R'®
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‘linear’ convergence, i.e., a straight line on a semilog plot
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Steepest descent method

normalized steepest descent direction (at x, for norm || - ||):
Ay = argmin{V f(z)"v | ||[v] = 1}

interpretation: for small v, f(x +v) = f(z) + Vf(z)lv;
direction Ax,sq is unit-norm step with most negative directional derivative

(unnormalized) steepest descent direction
Azsqa = [|[Vf(2)|+AZnsa

satisfies V f(z)T Asa = — ||V f(2)]|2

steepest descent method
e general descent method with Ax = Az

e convergence properties similar to gradient descent
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examples

e Euclidean norm: Azyq = —V f(x)

e quadratic norm |z||p = (2T Px)1/2 (P € 8" |): Azgqg = —PVf(x)
o /1-norm: Axgq = —(0f(x)/0x;)e;, where |0f(x)/0x;| = ||V (%) oo

unit balls and normalized steepest descent directions for a quadratic norm
and the ¢1-norm:

—V f(x)
—Vf(z)

Ax
nsd Awnsd
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choice of norm for steepest descent

e steepest descent with backtracking line search for two quadratic norms
e ellipses show {z | ||z — 2®)||p =1}

e equivalent interpretation of steepest descent with quadratic norm || - || p:
gradient descent after change of variables # = P1/2z

shows choice of P has strong effect on speed of convergence
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Newton step

Az = —V3if(z) 'V f(z)
interpretations

e r + Ax,; minimizes second order approximation

P

Fla +v) = f(z) + V@) o+ 20" f(z)o

e r + Aux,; solves linearized optimality condition

Vi +v) =Vl +v)= V) + Vif(z)v =0

(@ Az, (2 + Ayy))
(x + Azy, f(x + Axyt)) /f
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o Aux, is steepest descent direction at x in local Hessian norm

1/2
lullv2pm) = (u" V2 f(2)u)

dashed lines are contour lines of f; ellipse is {z + v | v!VZf(z)v = 1}

arrow shows —V f(x)
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Newton decrement

_ 1/2
Az) = (V(2)"V?f(2) 'V f(x))
a measure of the proximity of x to x*
properties

*

e gives an estimate of f(x) — p*, using quadratic approximation j/"\

() ~ inf Fly) = JM(2)?

e equal to the norm of the Newton step in the quadratic Hessian norm

1/2

Az) = (Azg V2 f(2) Ady)

e directional derivative in the Newton direction: Vf(z)l' Az, = —\(x)?

e affine invariant (unlike ||V f(z)]|2)
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Newton’s method

given a starting point x € dom f, tolerance ¢ > 0.
repeat
1. Compute the Newton step and decrement.
Azy = —V2f(x) 'Vf(z), N :=Vfx)'Vif(z) 'Vf(z).
2. Stopping criterion. quit if A\*/2 < e.
3. Line search. Choose step size t by backtracking line search.
4. Update. x := x + tAxt.

affine invariant, 7.e., independent of linear changes of coordinates:

Newton iterates for f(y) = f(T'y) with starting point y(©) = 7120 are
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Classical convergence analysis

assumptions

e f strongly convex on S with constant m

e V2f is Lipschitz continuous on S, with constant L > 0:

IV f(z) = V2 f(y)ll2 < Lllz — y]2

(L measures how well f can be approximated by a quadratic function)

outline: there exist constants n € (0,m?/L), v > 0 such that

o if [Vf(z)|2>n, then f(z D) — f(x®)) < —y
o if [[Vf(z)ll2 <mn, then

L (k+1) L NRAY
Z—mQHVf(CU )2 < Q—mQHVf(SL‘ )2
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damped Newton phase (||Vf(z)||2 > n)

e most iterations require backtracking steps
e function value decreases by at least ~

e if p* > —o0, this phase ends after at most (f(x(?)) — p*)/~ iterations

quadratically convergent phase (||Vf(z)|2 < n)

e all iterations use step sizet =1

e |[Vf(x)||2 converges to zero quadratically: if ||V f(z*®))|2 <, then

L l L ) 2l—k 1 2l—k
Q—mQHVfCU M2 < Q—mQHVf(iU )2 < 5 , [ >k
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conclusion: number of iterations until f(z) — p* < € is bounded above by

(0)y — p*
T

A 7) Py log, log,(€o/€)
e 7, ¢ are constants that depend on m, L, 2(%)

e second term is small (of the order of 6) and almost constant for
practical purposes

e in practice, constants m, L (hence 7, €y) are usually unknown

e provides qualitative insight in convergence properties (i.e., explains two
algorithm phases)
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Examples

example in R? (page 10-9)

e backtracking parameters a = 0.1, 3 = 0.7

e converges in only 5 steps

e quadratic local convergence
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example in R'Y (page 10-10)

10° 2
exact line search
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e backtracking parameters a = 0.01, 3 = 0.5
e backtracking line search almost as fast as exact |.s. (and much simpler)

e clearly shows two phases in algorithm
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example in R (

with sparse a;)

10000 100000

Zlogl—x Zlog —a) x)

100 -

f(z™) — p*

10_5,

0 5} 10 15 20
k

e backtracking parameters a = 0.01, 3 = 0.5.

e performance similar as for small examples
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Self-concordance

shortcomings of classical convergence analysis

e depends on unknown constants (m, L, .. .)

e bound is not affinely invariant, although Newton’'s method is

convergence analysis via self-concordance (Nesterov and Nemirovski)

e does not depend on any unknown constants
e gives affine-invariant bound
e applies to special class of convex functions (‘self-concordant’ functions)

e developed to analyze polynomial-time interior-point methods for convex
optimization
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Self-concordant functions

definition

e convex f: R — R is self-concordant if | f"/(x)| < 2f"(x)3/? for all
xr € dom f

e f:R" — R is self-concordant if g(t) = f(z + tv) is self-concordant for
all r € dom f, v € R"

examples on R

e linear and quadratic functions

e negative logarithm f(x) = —logx

e negative entropy plus negative logarithm: f(x) = zlogz — logx

affine invariance: if f : R — Ris s.c., then f(y) = f(ay + b) is s.c.:

~

f///<y) _ an’”(a,y + b), f//<y) _ a2f”(ay 4+ b)
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Self-concordant calculus

properties
e preserved under positive scaling o > 1, and sum
e preserved under composition with affine function

e if g is convex with domg = R, and |¢"(x)| < 3¢"(x)/x then

f(z) =log(—g(x)) — log x

Is self-concordant

examples: properties can be used to show that the following are s.c.

o f(z)=—-> " log(bi—alz)on{x|alx <b;y i=1,...,m}
o f(X)= —logdetX on S’

o f(x)=—log(y* — ") on {(z,y) | |22 <y}
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Convergence analysis for self-concordant functions

summary: there exist constants n € (0,1/4], v > 0 such that

o if \(x) > n, then
F) — f@®) < -

o if A\(x) <, then
2
ox(zk+D) < (QA(x(k)))

(n and v only depend on backtracking parameters a, (3)

complexity bound: number of Newton iterations bounded by

f(@l®) —p*

+ log, log,(1/¢€)

for « = 0.1, 8 =0.8, e = 107'°, bound evaluates to 375(f(z(®)) — p*) + 6

Unconstrained minimization 10-27



numerical example: 150 randomly generated instances of

minimize f(x)=—>_" log(b; — a] x)

)
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f(a'”) —p*

e number of iterations much smaller than 375(f(z(®)) — p*) + 6

e bound of the form c(f(z(?)) — p*) + 6 with smaller ¢ (empirically) valid
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Implementation

main effort in each iteration: evaluate derivatives and solve Newton system
HAx =g

where H = V?f(x), g = -V f(2)

via Cholesky factorization
H=LL" — Azy=L""L1'g,  Xz)=|L gl

e cost (1/3)n? flops for unstructured system

e cost < (1/3)n? if H sparse, banded
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example of dense Newton system with structure

f@) =) wi(ws) +o(Az +b),  H=D+ ATHyA
i=1
e assume A € RP*", dense, with p < n

e D diagonal with diagonal elements v/ (x;); Hy = V?o(Ax + b)

method 1: form H, solve via dense Cholesky factorization: (cost (1/3)n?)

method 2 (page 9-15): factor Hy = LoL{}’; write Newton system as
DAz 4+ AT Lyw = —g, LEAAz —w =0
eliminate Ax from first equation; compute w and Ax from
I+ LiAD *ATLo)w = L} AD™'g, DAz = —g— A'Lyw
cost: 2p*n (dominated by computation of L AD™1 AT L)
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