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Unconstrained minimization


minimize f(x) 

• f convex, twice continuously	 differentiable (hence dom f open) 

⋆ • we assume optimal value p	 = infx f(x) is attained (and finite) 

unconstrained minimization methods 

•	 produce sequence of points x(k) ∈ dom f , k = 0, 1, . . . with 

f(x(k)) → p ⋆ 

•	 can be interpreted as iterative methods for solving optimality condition 

∇f(x ⋆ ) = 0 
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Initial point and sublevel set 

algorithms in this chapter require a starting point x(0) such that 

• x(0) ∈ dom f 

• sublevel set S = {x | f(x) ≤ f(x(0))} is closed 

2nd condition is hard to verify, except when all sublevel sets are closed: 

• equivalent to condition that epi f is closed 

• true if dom f = Rn 

• true if f(x) → ∞ as x → bddom f 

examples of differentiable functions with closed sublevel sets: 

f(x) = log(
 exp(a
T 
i x + bi)), f(x) = −
 log(bi −
 a
T 

i x) 

m m� 
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Strong convexity and implications


f is strongly convex on S if there exists an m > 0 such that 

∇2f(x) � mI for all x ∈ S 

implications 

• for x, y ∈ S, 

f(y) ≥ f(x) + ∇f(x)T (y − x) + 
m 
�x − y�2

22 

hence, S is bounded 

• p ⋆ > −∞, and for x ∈ S, 

f(x) − p ⋆ ≤ 
1 
�∇f(x)�2

22m


useful as stopping criterion (if you know m)
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Descent methods


x(k+1) = x(k) + t(k)Δx(k) with f(x(k+1)) < f(x(k)) 

•	 other notations: x+ = x + tΔx, x := x + tΔx 

•	 Δx is the step, or search direction; t is the step size, or step length 

•	 from convexity, f(x+) < f(x) implies ∇f(x)TΔx < 0 
(i.e., Δx is a descent direction) 

General descent method. 

given a starting point x ∈ dom f . 

repeat 

1. Determine a descent direction Δx. 

2.	 Line search. Choose a step size t > 0. 

3.	 Update. x := x + tΔx. 

until stopping criterion is satisfied. 
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Line search types 

exact line search: t = argmint>0 f(x + tΔx)


backtracking line search (with parameters α ∈ (0, 1/2), β ∈ (0, 1))


•	 starting at t = 1, repeat t := βt until 

f(x + tΔx) < f(x) + αt∇f(x)TΔx 

• graphical interpretation: backtrack until t ≤ t0 

t = 0	 t0 

f(x + tΔx) 

f(x) + t∇f(x)TΔx f(x) + αt∇f(x)TΔx 
t 
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Gradient descent method 

general descent method with Δx = −∇f(x) 

given a starting point x ∈ dom f . 

repeat 

1. Δx := −∇f(x). 

2. Line search. Choose step size t via exact or backtracking line search. 

3. Update. x := x + tΔx. 

until stopping criterion is satisfied. 

• stopping criterion usually of the form �∇f(x)�2 ≤ ǫ 

• convergence result: for strongly convex f , 

f(x(k)) − p ⋆ ≤ c k(f(x(0)) − p ⋆ )


c ∈ (0, 1) depends on m, x(0), line search type


• very simple, but often very slow; rarely used in practice 
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quadratic problem in R2 

f(x) = (1/2)(x 21 + γx2
2) (γ > 0) 

with exact line search, starting at x(0) = (γ, 1): 

�
γ − 1

�k � 
γ − 1

�k 

x
(
1 
k) 

= γ , x
(
2 
k) 

= − 
γ + 1 γ + 1 

• very slow if γ ≫ 1 or γ ≪ 1 

• example for γ = 10: 

x
2
 

x(0) 

x(1) 

0 

4 

−4


−10 0 10 
x1 
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nonquadratic example 

f(x1, x2) = e x1+3x2−0.1 + e x1−3x2−0.1 + e −x1−0.1 

x(0) 

x(1) 

x(2) 

x(0) 

x(1) 

backtracking line search exact line search
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a problem in R100


500


f(x) = c T x −
�

log(bi − a Ti x) 
i=1 

104
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exact l.s. 

backtracking l.s. 

10−4 

10−2 

100 

102 

‘linear’ convergence, i.e., a straight line on a semilog plot
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Steepest descent method 

normalized steepest descent direction (at x, for norm � · �): 

Δxnsd = argmin{∇f(x)T v | �v� = 1} 

interpretation: for small v, f(x + v) ≈ f(x) + ∇f(x)Tv; 
direction Δxnsd is unit-norm step with most negative directional derivative 

(unnormalized) steepest descent direction 

Δxsd = �∇f(x)�∗Δxnsd 

satisfies ∇f(x)TΔsd = −�∇f(x)�2 
∗ 

steepest descent method 

• general descent method with Δx = Δxsd 

• convergence properties similar to gradient descent 
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examples 

• Euclidean norm: Δxsd = −∇f(x) 

• quadratic norm �x�P = (xTPx)1/2 (P ∈ Sn ): −P −1∇f(x)++ Δxsd = 

• ℓ1-norm: Δxsd = −(∂f(x)/∂xi)ei, where |∂f(x)/∂xi| = �∇f(x)�∞ 

unit balls and normalized steepest descent directions for a quadratic norm 
and the ℓ1-norm: 

Δxnsd 

−∇f(x) 

−∇f(x) 

Δxnsd 
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choice of norm for steepest descent


x(0) 

x(1) 
x(2) 

x(0) 

x(1) 

x(2) 

•	 steepest descent with backtracking line search for two quadratic norms 

•	 ellipses show {x | �x − x(k)�P = 1} 

•	 equivalent interpretation of steepest descent with quadratic norm � · �P : 
gradient descent after change of variables x̄ = P 1/2x 

shows choice of P has strong effect on speed of convergence 
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Newton step 

Δxnt = −∇2f(x)−1∇f(x) 

interpretations 

•	 x + Δxnt minimizes second order approximation 

f�(x + v) = f(x) + ∇f(x)T v +
2

1 
v T∇2f(x)v 

•	 x + Δxnt solves linearized optimality condition 

∇f(x + v) ≈ ∇f�(x + v) = ∇f(x) + ∇2f(x)v = 0 

f 

bf 

(x, f(x)) 

(x + Δxnt, f(x + Δxnt)) 

f ′ 

bf ′ 

(x, f ′ (x)) 

(x + Δxnt, f ′ (x + Δxnt)) 
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• Δxnt is steepest descent direction at x in local Hessian norm 

�u�∇2f(x) = 
�
u T∇2f(x)u

�1/2 

x 

x + Δxnt 

x + Δxnsd 

dashed lines are contour lines of f ; ellipse is {x + v | vT∇2f(x)v = 1} 

arrow shows −∇f(x) 
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Newton decrement


λ(x) = 
�
∇f(x)T∇2f(x)−1∇f(x)

�1/2 

⋆a measure of the proximity of x to x 

properties 

• gives an estimate of f(x) − p ⋆, using quadratic approximation f�: 

1 
λ(x)2f(x) − inf f(y) = 

y 
�

2 

• equal to the norm of the Newton step in the quadratic Hessian norm 

λ(x) = 
�
Δxnt

T ∇2f(x)Δxnt

�1/2 

• directional derivative in the Newton direction: ∇f(x)TΔxnt = −λ(x)2 

• affine invariant (unlike �∇f(x)�2) 
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Newton’s method


given a starting point x ∈ dom f , tolerance ǫ > 0. 

repeat 

1. Compute the Newton step and decrement. 
Δxnt := −∇2f(x)−1∇f(x); λ2 := ∇f(x)T∇2f(x)−1∇f(x). 

2. Stopping criterion. quit if λ2/2 ≤ ǫ. 

3. Line search. Choose step size t by backtracking line search. 

4. Update. x := x + tΔxnt. 

affine invariant, i.e., independent of linear changes of coordinates: 

Newton iterates for f̃(y) = f(Ty) with starting point y(0) = T −1x(0) are 

y(k) = T −1 x(k) 
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Classical convergence analysis


assumptions 

• f strongly convex on S with constant m 

• ∇2f is Lipschitz continuous on S, with constant L > 0: 

�∇2f(x) −∇2f(y)�2 ≤ L�x − y�2 

(L measures how well f can be approximated by a quadratic function) 

outline: there exist constants η ∈ (0,m2/L), γ > 0 such that 

• if �∇f(x)�2 ≥ η, then f(x(k+1)) − f(x(k)) ≤ −γ 

• if �∇f(x)�2 < η, then 

L 
�∇f(x(k+1))�2 ≤ 

� 
L 

�∇f(x(k))�2 

�2 

2m2 2m2
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damped Newton phase (�∇f(x)�2 ≥ η) 

• most iterations require backtracking steps 

• function value decreases by at least γ 

• if p ⋆ > −∞, this phase ends after at most (f(x(0)) − p ⋆)/γ iterations 

quadratically convergent phase (�∇f(x)�2 < η) 

• all iterations use step size t = 1 

• �∇f(x)�2 converges to zero quadratically: if �∇f(x(k))�2 < η, then 

L 
� 

L 
�2l−k �

1
�2l−k 

�∇f(x l)�2 ≤ �∇f(x k)�2 ≤ , l ≥ k 
2m2 2m2 2 
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conclusion: number of iterations until f(x) − p ⋆ ≤ ǫ is bounded above by


f(x(0)) − p ⋆ 

+ log2 log2(ǫ0/ǫ)γ 

•	 γ, ǫ0 are constants that depend on m, L, x(0) 

•	 second term is small (of the order of 6) and almost constant for 
practical purposes 

•	 in practice, constants m, L (hence γ, ǫ0) are usually unknown 

•	 provides qualitative insight in convergence properties (i.e., explains two 
algorithm phases) 
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Examples


example in R2 (page 10–9) 

105 

x(0) 

x(1) 

f
(x

 (k
) )

 −
p

⋆



100 
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10−15 
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k 

• backtracking parameters α = 0.1, β = 0.7 

• converges in only 5 steps 

• quadratic local convergence 
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example in R100 (page 10–10) 
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• backtracking parameters α = 0.01, β = 0.5 

• backtracking line search almost as fast as exact l.s. (and much simpler) 

• clearly shows two phases in algorithm 
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example in R10000 (with sparse ai)


10000 100000

f(x) = − 
�

log(1 − xi
2) − 

� 
log(bi − ai

T x) 
i=1 i=1 

105 
f
(x

 (k
) )

 −
p
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10−5 

100 

0 5 10 15 20 
k 

• backtracking parameters α = 0.01, β = 0.5. 

• performance similar as for small examples 
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Self-concordance


shortcomings of classical convergence analysis 

•	 depends on unknown constants (m, L, . . . ) 

•	 bound is not affinely invariant, although Newton’s method is 

convergence analysis via self-concordance (Nesterov and Nemirovski) 

•	 does not depend on any unknown constants 

•	 gives affine-invariant bound 

•	 applies to special class of convex functions (‘self-concordant’ functions) 

•	 developed to analyze polynomial-time interior-point methods for convex 
optimization 
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Self-concordant functions


definition 

•	 convex f : R → R is self-concordant if |f ′′′ (x)| ≤ 2f ′′ (x)3/2 for all 
x ∈ dom f 

•	 f : Rn → R is self-concordant if g(t) = f(x + tv) is self-concordant for 
all x ∈ dom f , v ∈ Rn 

examples on R 

•	 linear and quadratic functions 

•	 negative logarithm f(x) = − log x 

•	 negative entropy plus negative logarithm: f(x) = x log x − log x 

affine invariance: if f : R → R is s.c., then f̃(y) = f(ay + b) is s.c.: 

f̃ ′′′ (y) 3f ′′′ (ay + b), f̃ ′′ (y) 2f ′′ (ay + b)= a	 = a 
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Self-concordant calculus


properties 

• preserved under positive scaling α ≥ 1, and sum 

• preserved under composition with affine function 

• if g is convex with dom g = R++ and |g ′′′ (x)| ≤ 3g ′′ (x)/x then 

f(x) = log(−g(x)) − log x 

is self-concordant 

examples: properties can be used to show that the following are s.c. 

• f(x) = −
�m

i=1 log(bi − ai
Tx) on {x | ai

Tx < bi, i = 1, . . . ,m} 

• f(X) = − log detX on Sn 
++ 

• f(x) = − log(y2 − xTx) on {(x, y) | �x�2 < y} 
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Convergence analysis for self-concordant functions


summary: there exist constants η ∈ (0, 1/4], γ > 0 such that 

• if λ(x) > η, then 
f(x(k+1)) − f(x(k)) ≤ −γ 

• if λ(x) ≤ η, then 

2λ(x(k+1)) ≤ 
�
2λ(x(k))

�2 

(η and γ only depend on backtracking parameters α, β) 

complexity bound: number of Newton iterations bounded by 

f(x(0)) − p ⋆ 

+ log2 log2(1/ǫ)γ 

for α = 0.1, β = 0.8, ǫ = 10−10, bound evaluates to 375(f(x(0)) − p ⋆) + 6 
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numerical example: 150 randomly generated instances of 

Tminimize f(x) = −
�m

i=1 log(bi − ai x) 

25 

20 

◦: m = 100, n = 50

�: m = 1000, n = 500

♦: m = 1000, n = 50
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f(x(0)) − p⋆ 

• number of iterations much smaller than 375(f(x(0)) − p ⋆) + 6 

• bound of the form c(f(x(0)) − p ⋆) + 6 with smaller c (empirically) valid 
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Implementation


main effort in each iteration: evaluate derivatives and solve Newton system 

HΔx = g 

where H = ∇2f(x), g = −∇f(x) 

via Cholesky factorization 

H = LLT , Δxnt = L−TL−1 g, λ(x) = �L−1 g�2 

• cost (1/3)n3 flops for unstructured system 

• cost ≪ (1/3)n3 if H sparse, banded 
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example of dense Newton system with structure


n

f(x) = 
�

ψi(xi) + ψ0(Ax + b), H = D + ATH0A 
i=1 

• assume A ∈ Rp×n, dense, with p ≪ n 

• D diagonal with diagonal elements ψi 
′′ (xi); H0 = ∇2ψ0(Ax + b) 

method 1: form H, solve via dense Cholesky factorization: (cost (1/3)n3) 

method 2 (page 9–15): factor H0 = L0L0 
T ; write Newton system as 

DΔx + ATL0w = −g, LT 
0 AΔx − w = 0 

eliminate Δx from first equation; compute w and Δx from 

(I + LT 
0 AD

−1ATL0)w = −LT 
0 AD

−1 g, DΔx = −g −ATL0w 

cost: 2p2n (dominated by computation of LT 
0 AD

−1ATL0) 
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