Convex Optimization — Boyd & Vandenberghe

9. Numerical linear algebra background

matrix structure and algorithm complexity
solving linear equations with factored matrices
LU, Cholesky, LDL factorization

block elimination and the matrix inversion lemma

solving underdetermined equations

9-1

Matrix structure and algorithm complexity

cost (execution time) of solving Az = b with A € R"*"

e for general methods, grows as n?

e less if A is structured (banded, sparse, Toeplitz, ...)

flop counts

e flop (floating-point operation): one addition, subtraction,
multiplication, or division of two floating-point numbers

e to estimate complexity of an algorithm: express number of flops as a
(polynomial) function of the problem dimensions, and simplify by
keeping only the leading terms

e not an accurate predictor of computation time on modern computers

e useful as a rough estimate of complexity

Numerical linear algebra background 9-2

vector-vector operations (z, y € R")
e inner product 21y: 2n — 1 flops (or 2n if n is large)

e sum x + y, scalar multiplication ax: n flops

matrix-vector product y = Ax with A € R™*"

e m(2n — 1) flops (or 2mn if n large)
e 2N if A is sparse with N nonzero elements

e 2p(n+m) if Ais given as A = UVT U ¢ R™*P V ¢ R™¥P

matrix-matrix product C = AB with A €¢ R™*", B ¢ R"*?
e mp(2n — 1) flops (or 2mnp if n large)
e less if A and/or B are sparse

e (1/2)ym(m +1)(2n — 1) & m?n if m = p and C' symmetric

Numerical linear algebra background

9-3

Linear equations that are easy to solve

diagonal matrices (a;; = 0 if i # j): n flops

T = A_lb = (bl/a,ll, Ce ey bn/ann)

lower triangular (a;; = 0 if 7 > 4): n? flops

I = bl/all

Ly = (b2 — a21£131)/a22

r3 = (b3 — a31r1 — a32$2)/a33

Lp = (bn — Ap1d1 — Ap2x2 — =+ — an,n—lxn—l)/ann

called forward substitution

upper triangular (a;; = 0 if j < i): n* flops via backward substitution

Numerical linear algebra background 94

orthogonal matrices: A=! = A"

e 2n? flops to compute x = A’D for general A

e less with structure, e.g., if A =1 — 2uu? with ||ul|s = 1, we can
compute x = ATb = b — 2(ulb)u in 4n flops

permutation matrices:
s — L y=m
“ 1 0 otherwise
where m = (71, T, ..., T,) is a permutation of (1,2,...,n)

e interpretation: Ax = (xm, e ,l‘wn)

e satisfies A~! = A’ hence cost of solving Az = b is 0 flops

example:
0 1 0] 0 0 1]
A=10 0 1|, At=4AT=11 0 0
1 0 0 01 0

Numerical linear algebra background

9-5

The factor-solve method for solving Ax = b

e factor A as a product of simple matrices (usually 2 or 3):
A=A1Ay--- Ay
(A; diagonal, upper or lower triangular, etc)
e compute x = A~ 1b = A,;l e A2_1A1_1b by solving k ‘easy’ equations
Aix1 = b, Aosxo = a1, e Arr = 11

cost of factorization step usually dominates cost of solve step

equations with multiple righthand sides
AZE‘l = bl, AQ?Q = bg, NP Aa:m = bm
cost: one factorization plus m solves

Numerical linear algebra background 9-6

LU factorization
every nonsingular matrix A can be factored as
A=PLU

with P a permutation matrix, L lower triangular, U upper triangular

cost: (2/3)n? flops

Solving linear equations by LU factorization.

given a set of linear equations Ax = b, with A nonsingular.
1. LU factorization. Factor A as A = PLU ((2/3)n” flops).
2. Permutation. Solve Pz; = b (0 flops).
3. Forward substitution. Solve Lzy = z; (n? flops).
4. Backward substitution. Solve Uz = z3 (n? flops).

cost: (2/3)n + 2n? ~ (2/3)n? for large n

Numerical linear algebra background

sparse LU factorization

A=PLUP;

e adding permutation matrix P, offers possibility of sparser L, U (hence,
cheaper factor and solve steps)

e P, and P, chosen (heuristically) to yield sparse L, U
e choice of P; and P, depends on sparsity pattern and values of A

e cost is usually much less than (2/3)n?; exact value depends in a
complicated way on n, number of zeros in A, sparsity pattern

Numerical linear algebra background 9-8

Cholesky factorization
every positive definite A can be factored as
A=LL*Y

with L lower triangular

cost: (1/3)n?> flops

Solving linear equations by Cholesky factorization.

given a set of linear equations Ax = b, with A € ST .
1. Cholesky factorization. Factor A as A = LL* ((1/3)n? flops).
2. Forward substitution. Solve Lz, = b (n? flops).
3. Backward substitution. Solve L'z = z; (n? flops).

cost: (1/3)n + 2n? ~ (1/3)n? for large n

Numerical linear algebra background 9-9

sparse Cholesky factorization

A=PLL"P"
e adding permutation matrix P offers possibility of sparser L
e P chosen (heuristically) to yield sparse L

e choice of P only depends on sparsity pattern of A (unlike sparse LU)

e cost is usually much less than (1/3)n?; exact value depends in a
complicated way on n, number of zeros in A, sparsity pattern

Numerical linear algebra background 9-10

LDLT factorization

every nonsingular symmetric matrix A can be factored as
A=PLDL'P"

with P a permutation matrix, L lower triangular, D block diagonal with
1 x 1 or 2 x 2 diagonal blocks

cost: (1/3)n3
e cost of solving symmetric sets of linear equations by LDL' factorization:
(1/3)n3 + 2n? ~ (1/3)n3 for large n

e for sparse A, can choose P to yield sparse L; cost < (1/3)n?

Numerical linear algebra background 9-11

Equations with structured sub-blocks

=] 0

e variables 1 € R™, 25 € R"?; blocks A;; € R"™*™

[All A12]
A21 A22

e if Aiy is nonsingular, can eliminate x1: x1 = Al_ll(bl — Aq2x9);
to compute x5, solve

(Agg — A21A1_11A12)5132 = by — A21A1_1151

Solving linear equations by block elimination.

given a nonsingular set of linear equations (1), with Ay nonsingular.
1. Form A1_11A12 and Al_llbl.
2. Form S = A22 — A21A1_11A12 and I; = b2 — A21A1_11b1.
3. Determine x5 by solving Szs = b.
4. Determine x1 by solving Aj1x1 = b1 — Aqisxs.

Numerical linear algebra background 9-12

dominant terms in flop count

e step 1: f 4+ ngs (f is cost of factoring A11; s is cost of solve step)
o step 2: 2n3n, (cost dominated by product of As; and A1_11A12)
e step 3: (2/3)n3

total: f + nags + 2n3ng + (2/3)n3

examples

e general Ay1 (f = (2/3)n7, s = 2n%): no gain over standard method

Hflops = (2/3)n] 4+ 2n%ng + 2nang + (2/3)ns = (2/3)(n1 + n)?

e block elimination is useful for structured A1 (f < nz{’)

for example, diagonal (f =0, s = n1): #flops ~ 2n3n; + (2/3)n3

Numerical linear algebra background 9-13

Structured matrix plus low rank term

(A+ BC)x =1

e AcR"" BecR"P C e RP"

e assume A has structure (Ax = b easy to solve)

e)=l

now apply block elimination: solve
(I +CA'By=CA™ ',

first write as

then solve Ax = b — By

this proves the matrix inversion lemma: if A and A + BC nonsingular,
(A+BC) t=A"t'—A'BU+CcA'B) tcA™

Numerical linear algebra background 9-14

example: A diagonal, B, C dense

e method 1: form D = A + BC, then solve Dx = b
cost: (2/3)n3 + 2pn?

e method 2 (via matrix inversion lemma): solve
(I+CA'B)y=CA ", (2)

then compute x = A~ 'b — A~ By
total cost is dominated by (2): 2p?n + (2/3)p> (i.e., linear in n)

Numerical linear algebra background 9-15

Underdetermined linear equations
if A€ RP*™ with p < n, rank A = p,
{x| Az =b}={Fz+2|2€ R""}

e I is (any) particular solution
e columns of F' € R™("~P) gpan nullspace of A

e there exist several numerical methods for computing F
(QR factorization, rectangular LU factorization, . . .)

Numerical linear algebra background 9-16

MIT OpenCourseWare
|http://ocw.mit.edu

6.079 / 6.975 Introduction to Convex Optimization
Fall 2009

For information about citing these materials or our Terms of Use, visit: [http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

