
Convex Optimization — Boyd & Vandenberghe

9. Numerical linear algebra background

• matrix structure and algorithm complexity

• solving linear equations with factored matrices

• LU, Cholesky, LDLT factorization

• block elimination and the matrix inversion lemma

• solving underdetermined equations

9–1

Matrix structure and algorithm complexity

cost (execution time) of solving Ax = b with A ∈ Rn×n

•	 for general methods, grows as n3

•	 less if A is structured (banded, sparse, Toeplitz, . . .)

flop counts

•	 flop (floating-point operation): one addition, subtraction,
multiplication, or division of two floating-point numbers

•	 to estimate complexity of an algorithm: express number of flops as a
(polynomial) function of the problem dimensions, and simplify by
keeping only the leading terms

•	 not an accurate predictor of computation time on modern computers

•	 useful as a rough estimate of complexity

Numerical linear algebra background	 9–2

vector-vector operations (x, y ∈ Rn)

• inner product xTy: 2n − 1 flops (or 2n if n is large)

• sum x + y, scalar multiplication αx: n flops

matrix-vector product y = Ax with A ∈ Rm×n

• m(2n − 1) flops (or 2mn if n large)

• 2N if A is sparse with N nonzero elements

• 2p(n + m) if A is given as A = UV T , U ∈ Rm×p , V ∈ Rn×p

matrix-matrix product C = AB with A ∈ Rm×n , B ∈ Rn×p

• mp(2n − 1) flops (or 2mnp if n large)

• less if A and/or B are sparse

• (1/2)m(m + 1)(2n − 1) ≈ m2n if m = p and C symmetric

Numerical linear algebra background 9–3

Linear equations that are easy to solve

diagonal matrices (aij = 0 if i � n flops = j):

x = A−1b = (b1/a11, . . . , bn/ann)

lower triangular (aij = 0 if j > i): n2 flops

x1 := b1/a11

x2 := (b2 − a21x1)/a22

x3 := (b3 − a31x1 − a32x2)/a33

...

xn := (bn − an1x1 − an2x2 − · · · − an,n−1xn−1)/ann

called forward substitution

upper triangular (aij = 0 if j < i): n2 flops via backward substitution

Numerical linear algebra background 9–4

�

orthogonal matrices: A−1 = AT

•	 2n2 flops to compute x = AT b for general A

•	 less with structure, e.g., if A = I − 2uuT with �u�2 = 1, we can
compute x = AT b = b − 2(uT b)u in 4n flops

permutation matrices:

1 j = πi aij =
0 otherwise

where π = (π1, π2, . . . , πn) is a permutation of (1, 2, . . . , n)

•	 interpretation: Ax = (xπ1, . . . , xπn)

• satisfies A−1 = AT , hence cost of solving Ax = b is 0 flops

example:

   

0 1 0 0 0 1
A =  0 0 1  , A−1 = AT =  1 0 0 

1 0 0 0 1 0

Numerical linear algebra background	 9–5

The factor-solve method for solving Ax = b

•	 factor A as a product of simple matrices (usually 2 or 3):

A = A1A2 · · · Ak

(Ai diagonal, upper or lower triangular, etc)

A−1
•	 compute x = A−1b = A−

k
1 · · · A−

2
1

1 b by solving k ‘easy’ equations

A1x1 = b, A2x2 = x1, . . . , Akx = xk−1

cost of factorization step usually dominates cost of solve step

equations with multiple righthand sides

Ax1 = b1, Ax2 = b2, . . . , Axm = bm

cost: one factorization plus m solves

Numerical linear algebra background	 9–6

LU factorization

every nonsingular matrix A can be factored as

A = PLU

with P a permutation matrix, L lower triangular, U upper triangular

cost: (2/3)n3 flops

Solving linear equations by LU factorization.

given a set of linear equations Ax = b, with A nonsingular.

1. LU factorization. Factor A as A = PLU ((2/3)n 3 flops).

2. Permutation. Solve Pz1 = b (0 flops).

3. Forward substitution. Solve Lz2 = z1 (n 2 flops).

4. Backward substitution. Solve Ux = z2 (n 2 flops).

cost: (2/3)n3 + 2n2 ≈ (2/3)n3 for large n

Numerical linear algebra background 9–7

sparse LU factorization

A = P1LUP2

•	 adding permutation matrix P2 offers possibility of sparser L, U (hence,
cheaper factor and solve steps)

•	 P1 and P2 chosen (heuristically) to yield sparse L, U

•	 choice of P1 and P2 depends on sparsity pattern and values of A

•	 cost is usually much less than (2/3)n3; exact value depends in a
complicated way on n, number of zeros in A, sparsity pattern

Numerical linear algebra background	 9–8

Cholesky factorization

every positive definite A can be factored as

A = LLT

with L lower triangular

cost: (1/3)n3 flops

Solving linear equations by Cholesky factorization.

given a set of linear equations Ax = b, with A ∈ Sn .++

1. Cholesky factorization. Factor A as A = LLT ((1/3)n 3 flops).

2. Forward substitution. Solve Lz1 = b (n 2 flops).

3. Backward substitution. Solve LTx = z1 (n 2 flops).

cost: (1/3)n3 + 2n2 ≈ (1/3)n3 for large n

Numerical linear algebra background 9–9

sparse Cholesky factorization

A = PLLTPT

•	 adding permutation matrix P offers possibility of sparser L

•	 P chosen (heuristically) to yield sparse L

•	 choice of P only depends on sparsity pattern of A (unlike sparse LU)

•	 cost is usually much less than (1/3)n3; exact value depends in a
complicated way on n, number of zeros in A, sparsity pattern

Numerical linear algebra background	 9–10

LDLT factorization

every nonsingular symmetric matrix A can be factored as

A = PLDLTPT

with P a permutation matrix, L lower triangular, D block diagonal with
1 × 1 or 2 × 2 diagonal blocks

cost: (1/3)n3

•	 cost of solving symmetric sets of linear equations by LDLT factorization:
(1/3)n3 + 2n2 ≈ (1/3)n3 for large n

•	 for sparse A, can choose P to yield sparse L; cost ≪ (1/3)n3

Numerical linear algebra background	 9–11

�	 � � � � �

Equations with structured sub-blocks

A11 A12 x1 b1 =	 (1)
A21 A22 x2 b2

•	 variables x1 ∈ R
n1 , x2 ∈ R

n2; blocks Aij ∈ R
ni×nj

=	A−1 •	 if A11 is nonsingular, can eliminate x1: x1 11 (b1 − A12x2);
to compute x2, solve

(A22 − A21A
−1A12)x2 = b2 − A21A

−1b111	 11

Solving linear equations by block elimination.

given a nonsingular set of linear equations (1), with A11 nonsingular.

1. Form A−1A12 and A−1b1.11	 11

2. Form S = A22 − A21A
−1A12 and b̃ = b2 − A21A

−1b1.11	 11

3. Determine x2 by solving Sx2 = b̃.

4. Determine x1 by solving A11x1 = b1 − A12x2.

Numerical linear algebra background	 9–12

dominant terms in flop count

•	 step 1: f + n2s (f is cost of factoring A11; s is cost of solve step)

•	 step 2: 2n2
2n1 (cost dominated by product of A21 and A−1A12)11

• step 3: (2/3)n2
3

total: f + n2s + 2n2
2n1 + (2/3)n2

3

examples

•	 general A11 (f = (2/3)n1
3 , s = 2n1

2): no gain over standard method

#flops = (2/3)n 31 + 2n 21n2 + 2n 22n1 + (2/3)n 32 = (2/3)(n1 + n2)
3

•	 block elimination is useful for structured A11 (f ≪ n1
3)

for example, diagonal (f = 0, s = n1): #flops ≈ 2n2
2n1 + (2/3)n3

2

Numerical linear algebra background	 9–13

Structured matrix plus low rank term

(A + BC)x = b

• A ∈ Rn×n , B ∈ Rn×p , C ∈ Rp×n

• assume A has structure (Ax = b easy to solve)

first write as
� � � � � �

A B x b
=

C −I y 0

now apply block elimination: solve

(I + CA−1B)y = CA−1b,

then solve Ax = b − By

this proves the matrix inversion lemma: if A and A + BC nonsingular,

(A + BC)−1 = A−1 − A−1B(I + CA−1B)−1CA−1

Numerical linear algebra background 9–14

example: A diagonal, B, C dense

•	 method 1: form D = A + BC, then solve Dx = b

cost: (2/3)n3 + 2pn2

•	 method 2 (via matrix inversion lemma): solve

(I + CA−1B)y = CA−1b, (2)

then compute x = A−1b − A−1By

total cost is dominated by (2): 2p2n + (2/3)p3 (i.e., linear in n)

Numerical linear algebra background	 9–15

Underdetermined linear equations

if A ∈ Rp×n with p < n, rank A = p,

{x | Ax = b} = {Fz + x̂ | z ∈ Rn−p}

•	 x̂ is (any) particular solution

•	 columns of F ∈ Rn×(n−p) span nullspace of A

•	 there exist several numerical methods for computing F
(QR factorization, rectangular LU factorization, . . .)

Numerical linear algebra background	 9–16

MIT OpenCourseWare
http://ocw.mit.edu

6.079 / 6.975 Introduction to Convex Optimization
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

