
Convex Optimization — Boyd & Vandenberghe 

9. Numerical linear algebra background


• matrix structure and algorithm complexity 

• solving linear equations with factored matrices 

• LU, Cholesky, LDLT factorization 

• block elimination and the matrix inversion lemma 

• solving underdetermined equations 
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Matrix structure and algorithm complexity


cost (execution time) of solving Ax = b with A ∈ Rn×n 

•	 for general methods, grows as n3 

•	 less if A is structured (banded, sparse, Toeplitz, . . . ) 

flop counts 

•	 flop (floating-point operation): one addition, subtraction, 
multiplication, or division of two floating-point numbers 

•	 to estimate complexity of an algorithm: express number of flops as a 
(polynomial) function of the problem dimensions, and simplify by 
keeping only the leading terms 

•	 not an accurate predictor of computation time on modern computers 

•	 useful as a rough estimate of complexity 
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vector-vector operations (x, y ∈ Rn) 

• inner product xTy: 2n − 1 flops (or 2n if n is large) 

• sum x + y, scalar multiplication αx: n flops 

matrix-vector product y = Ax with A ∈ Rm×n 

• m(2n − 1) flops (or 2mn if n large) 

• 2N if A is sparse with N nonzero elements 

• 2p(n + m) if A is given as A = UV T , U ∈ Rm×p , V ∈ Rn×p 

matrix-matrix product C = AB with A ∈ Rm×n , B ∈ Rn×p 

• mp(2n − 1) flops (or 2mnp if n large) 

• less if A and/or B are sparse 

• (1/2)m(m + 1)(2n − 1) ≈ m2n if m = p and C symmetric 
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Linear equations that are easy to solve


diagonal matrices (aij = 0 if i � n flops = j): 

x = A−1b = (b1/a11, . . . , bn/ann) 

lower triangular (aij = 0 if j > i): n2 flops 

x1 := b1/a11


x2 := (b2 − a21x1)/a22


x3 := (b3 − a31x1 − a32x2)/a33


... 

xn := (bn − an1x1 − an2x2 − · · · − an,n−1xn−1)/ann 

called forward substitution 

upper triangular (aij = 0 if j < i): n2 flops via backward substitution 
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orthogonal matrices: A−1 = AT 

•	 2n2 flops to compute x = AT b for general A 

•	 less with structure, e.g., if A = I − 2uuT with �u�2 = 1, we can 
compute x = AT b = b − 2(uT b)u in 4n flops 

permutation matrices: 

1 j = πi aij = 
0 otherwise 

where π = (π1, π2, . . . , πn) is a permutation of (1, 2, . . . , n) 

•	 interpretation: Ax = (xπ1, . . . , xπn) 

• satisfies A−1 = AT , hence cost of solving Ax = b is 0 flops 

example: 

    

0 1 0 0 0 1 
A =  0 0 1  , A−1 = AT =  1 0 0  

1 0 0 0 1 0 
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The factor-solve method for solving Ax = b


•	 factor A as a product of simple matrices (usually 2 or 3): 

A = A1A2 · · · Ak 

(Ai diagonal, upper or lower triangular, etc)


A−1
•	 compute x = A−1b = A−

k 
1 · · · A−

2
1 

1 b by solving k ‘easy’ equations 

A1x1 = b, A2x2 = x1, . . . , Akx = xk−1 

cost of factorization step usually dominates cost of solve step 

equations with multiple righthand sides 

Ax1 = b1, Ax2 = b2, . . . , Axm = bm 

cost: one factorization plus m solves 
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LU factorization 

every nonsingular matrix A can be factored as 

A = PLU 

with P a permutation matrix, L lower triangular, U upper triangular 

cost: (2/3)n3 flops 

Solving linear equations by LU factorization. 

given a set of linear equations Ax = b, with A nonsingular. 

1. LU factorization. Factor A as A = PLU ((2/3)n 3 flops). 

2. Permutation. Solve Pz1 = b (0 flops). 

3. Forward substitution. Solve Lz2 = z1 (n 2 flops). 

4. Backward substitution. Solve Ux = z2 (n 2 flops). 

cost: (2/3)n3 + 2n2 ≈ (2/3)n3 for large n 
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sparse LU factorization


A = P1LUP2 

•	 adding permutation matrix P2 offers possibility of sparser L, U (hence, 
cheaper factor and solve steps) 

•	 P1 and P2 chosen (heuristically) to yield sparse L, U 

•	 choice of P1 and P2 depends on sparsity pattern and values of A 

•	 cost is usually much less than (2/3)n3; exact value depends in a 
complicated way on n, number of zeros in A, sparsity pattern 
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Cholesky factorization 

every positive definite A can be factored as 

A = LLT 

with L lower triangular 

cost: (1/3)n3 flops 

Solving linear equations by Cholesky factorization. 

given a set of linear equations Ax = b, with A ∈ Sn .++

1. Cholesky factorization. Factor A as A = LLT ((1/3)n 3 flops). 

2. Forward substitution. Solve Lz1 = b (n 2 flops). 

3. Backward substitution. Solve LTx = z1 (n 2 flops). 

cost: (1/3)n3 + 2n2 ≈ (1/3)n3 for large n 
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sparse Cholesky factorization 

A = PLLTPT 

•	 adding permutation matrix P offers possibility of sparser L 

•	 P chosen (heuristically) to yield sparse L 

•	 choice of P only depends on sparsity pattern of A (unlike sparse LU) 

•	 cost is usually much less than (1/3)n3; exact value depends in a 
complicated way on n, number of zeros in A, sparsity pattern 

Numerical linear algebra background	 9–10 



LDLT factorization


every nonsingular symmetric matrix A can be factored as 

A = PLDLTPT 

with P a permutation matrix, L lower triangular, D block diagonal with 
1 × 1 or 2 × 2 diagonal blocks 

cost: (1/3)n3 

•	 cost of solving symmetric sets of linear equations by LDLT factorization: 
(1/3)n3 + 2n2 ≈ (1/3)n3 for large n 

•	 for sparse A, can choose P to yield sparse L; cost ≪ (1/3)n3 
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�	 � � � � � 

Equations with structured sub-blocks


A11 A12 x1 b1 =	 (1) 
A21 A22 x2 b2 

•	 variables x1 ∈ R
n1 , x2 ∈ R

n2; blocks Aij ∈ R
ni×nj 

=	A−1 •	 if A11 is nonsingular, can eliminate x1: x1 11 (b1 − A12x2); 
to compute x2, solve 

(A22 − A21A
−1A12)x2 = b2 − A21A

−1b111	 11 

Solving linear equations by block elimination. 

given a nonsingular set of linear equations (1), with A11 nonsingular. 

1. Form A−1A12 and A−1b1.11	 11 

2. Form S = A22 − A21A
−1A12 and b̃ = b2 − A21A

−1b1.11	 11 

3. Determine x2 by solving Sx2 = b̃. 

4. Determine x1 by solving A11x1 = b1 − A12x2. 
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dominant terms in flop count 

•	 step 1: f + n2s (f is cost of factoring A11; s is cost of solve step) 

•	 step 2: 2n2
2n1 (cost dominated by product of A21 and A−1A12)11 

• step 3: (2/3)n2
3 

total: f + n2s + 2n2
2n1 + (2/3)n2

3 

examples 

•	 general A11 (f = (2/3)n1
3 , s = 2n1

2): no gain over standard method 

#flops = (2/3)n 31 + 2n 21n2 + 2n 22n1 + (2/3)n 32 = (2/3)(n1 + n2)
3 

•	 block elimination is useful for structured A11 (f ≪ n1
3) 

for example, diagonal (f = 0, s = n1): #flops ≈ 2n2
2n1 + (2/3)n3

2 
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Structured matrix plus low rank term


(A + BC)x = b 

• A ∈ Rn×n , B ∈ Rn×p , C ∈ Rp×n 

• assume A has structure (Ax = b easy to solve) 

first write as 
� � � � � � 

A B x b 
= 

C −I y 0 

now apply block elimination: solve 

(I + CA−1B)y = CA−1b, 

then solve Ax = b − By 

this proves the matrix inversion lemma: if A and A + BC nonsingular, 

(A + BC)−1 = A−1 − A−1B(I + CA−1B)−1CA−1
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example: A diagonal, B, C dense 

•	 method 1: form D = A + BC, then solve Dx = b 

cost: (2/3)n3 + 2pn2 

•	 method 2 (via matrix inversion lemma): solve 

(I + CA−1B)y = CA−1b, (2) 

then compute x = A−1b − A−1By


total cost is dominated by (2): 2p2n + (2/3)p3 (i.e., linear in n)
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Underdetermined linear equations 

if A ∈ Rp×n with p < n, rank A = p, 

{x | Ax = b} = {Fz + x̂ | z ∈ Rn−p} 

•	 x̂ is (any) particular solution 

•	 columns of F ∈ Rn×(n−p) span nullspace of A 

•	 there exist several numerical methods for computing F 
(QR factorization, rectangular LU factorization, . . . ) 
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