
Stochastic programming


• stochastic programming 

• ’certainty equivalent’ problem 

• violation/shortfall constraints and penalties 

• Monte Carlo sampling methods 

• validation 

sources: Nemirovsky & Shapiro 
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Stochastic programming


•	 objective and constraint functions fi(x, ω) depend on optimization 
variable x and a random variable ω 

•	 ω models 

–	 parameter variation and uncertainty 
–	 random variation in implementation, manufacture, operation 

•	 value of ω is not known, but its distribution is 

•	 goal: choose x so that 

– constraints are satisfied on average, or with high probability

– objective is small on average, or with high probability
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Stochastic programming


•	 basic stochastic programming problem: 

minimize F0(x) = E f0(x, ω)

subject to Fi(x) = E fi(x, ω) ≤ 0, i = 1, . . . ,m


–	 variable is x 
–	 problem data are fi, distribution of ω 

•	 if fi(x, ω) are convex in x for each ω 

–	 Fi are convex 
–	 hence stochastic programming problem is convex 

•	 Fi have analytical expressions in only a few cases; 
in other cases we will solve the problem approximately 
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Example with analytic form for Fi


• f(x) = �Ax − b�
22
, with A, b random


• F (x) = E f(x) = xT Px − 2qT x + r, where


P = E(AT A), q = E(AT b), r = E(�b�
22
)


•	 only need second moments of (A, b) 

•	 stochastic constraint E f(x) ≤ 0 can be expressed as standard 
quadratic inequality 
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‘Certainty-equivalent’ problem 

•	 ‘certainty-equivalent’ (a.k.a. ‘mean field’) problem: 

minimize f0(x,E ω)

subject to fi(x,E ω) ≤ 0, i = 1, . . . , m


•	 roughly speaking: ignore parameter variation 

•	 if fi convex in ω for each x, then 

–	 fi(x,E ω) ≤ E fi(x, ω) 
–	 so optimal value of certainty-equivalent problem is lower bound on 

optimal value of stochastic problem 
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Stochastic programming example


• minimize E �Ax − b�1; Aij uniform on Āij ± γij; bi uniform on b̄i ± δi 

• objective PDFs for stochastic optimal and certainty-equivalent solutions 

• lower bound from CE problem: 5.96 

0 2 4 6 8 10 12 14 16 18 

stochastic solution 

certainty equivalent solution


0 2 4 6 8 10 12 14 16 18
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�

Expected violation/shortfall constraints/penalties


• replace E fi(x, ω) ≤ 0 with 

– E fi(x, ω)+ ≤ ǫ (LHS is expected violation) 
– E (maxi fi(x, ω)+) ≤ ǫ (LHS is expected worst violation) 

• variation: add violation/shortfall penalty to objective 

mminimize E (f0(x, ω) + i=1 cifi(x, ω)+)


where ci > 0 are penalty rates for violating constraints


• these are convex problems if fi are convex in x 
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Chance constraints and percentile optimization


•	 ‘chance constraints’ (η is ‘confidence level’): 

Prob(fi(x, ω) ≤ 0) ≥ η 

– convex in some cases 
– generally interested in	 η = 0.9, 0.95, 0.99 
– η = 0.999 meaningless (unless you’re sure about the distribution tails) 

• percentile optimization (γ is ‘η-percentile’): 

minimize γ 
subject to Prob(f0(x, ω) ≤ γ) ≥ η 

– convex or quasi-convex in some cases 

• these topics covered next lecture 
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Solving stochastic programming problems


•	 analytical solution in special cases, e.g., when expectations can be 
found analytically 

–	 ω enters quadratically in fi 

–	 ω takes on finitely many values 

•	 general case: approximate solution via (Monte Carlo) sampling 
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Finite event set


• suppose ω ∈ {ω1, . . . , ωN }, with πj = Prob(ω = ωj) 

• sometime called ‘scenarios’; often we have πj = 1/N 

• stochastic programming problem becomes 

�Nminimize F0(x) = j=1 πjf0(x, ωj) 
�Nsubject to Fi(x) = j=1 πjfi(x, ωj) ≤ 0, i = 1, . . . , m 

• a (standard) convex problem if fi convex in x 

• computational complexity grows linearly in the number of scenarios N


EE364A — Stochastic Programming 10 
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Monte Carlo sampling method


•	 a general method for (approximately) solving stochastic programming 
problem 

•	 generate N samples (realizations) ω1, . . . , ωN , with associated 
probabilities π1, . . . , πN (usually πj = 1/N) 

•	 form sample average approximations 

N 

F̂i(x) = πjfi(x, ωj), i = 0, . . . ,m 
j=1 

• these are RVs (via ω1, . . . , ωN ) with mean E fi(x, ω)
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•	 now solve finite event problem 

minimize F̂0(x)


subject to F̂i(x) ≤ 0, i = 1, . . . , m


⋆	 ⋆ •	 solution x mcs and optimal value F̂0(x mcs) are random variables 
(hopefully close to x ⋆ and p ⋆, optimal value of original problem) 

•	 theory says 

– (with some technical conditions) as N → ∞, x ⋆ → x ⋆ 
mcs 

⋆ ⋆ –	 E F̂0(x mcs) ≤ p 
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Out-of-sample validation


• a practical method to check if N is ‘large enough’ 

• use a second set of samples (‘validation set’) ωval , . . . , ωval , with 1 M

probabilities πval , . . . , πval (usually M ≫ N)
1 M 

(original set of samples called ‘training set’) 

• evaluate 

M 

F̂ val (x ⋆ ) = πval fi(x ⋆ , ωval ), i = 0, . . . , m i mcs j mcs j 
j=1 

• if F̂i(x mcs
⋆ ) ≈ F̂i 

val (x mcs
⋆ ), our confidence that x mcs 

⋆ ≈ x ⋆ is enhanced 

• if not, increase N and re-compute x ⋆ 
mcs 
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Example


• we consider problem 

minimize F0(x) = E maxi(Ax + b)i 

subject to F1(x) = E maxi(Cx + d)i ≤ 0 

with optimization variable x ∈ Rn


A ∈ Rm×n , b ∈ Rm , C ∈ Rk×n , d ∈ Rk are random


• we consider instance with n = 10, m = 20, k = 5 

• certainty-equivalent optimal value yields lower bound 19.1 

• we use Monte Carlo sampling with N = 10, 100, 1000 

• validation set uses M = 10000 
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F0 (training) 
F0 (validation) 
F1 (training) 
F1 (validation) 

we conclude: 

N = 10

51.8

56.0

0


1.3


N = 100

54.0

54.8

0


0.7


N = 1000

55.4

55.2

0


−0.03


• N = 10 is too few samples 

• N = 100 is better, but not enough


• N = 1000 is probably fine 
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Production planning with uncertain demand


•	 manufacture quantities q = (q1, . . . , qm) of m finished products 

•	 purchase raw materials in quantities r = (r1, . . . , rn) with costs 
c = (c1, . . . , cn), so total cost is cT r 

•	 manufacturing process requires r � Aq 

Aij is amount of raw material i needed per unit of finished product j 

•	 product demand d = (d1, . . . , dm) is random, with known distribution 

•	 product prices are p = (p1, . . . , pm), so total revenue is pT min(d, q) 

•	 maximize (expected) net revenue (over optimization variables q, r):


maximize E pT min(d, q) − cT r 
subject to r � Aq, q � 0, r � 0 
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Problem instance


• problem instance has n = 10, m = 5, d log-normal 

• certainty-equivalent problem yields upper bound 170.7 

• we use Monte Carlo sampling with N = 2000 training samples


• validated with M = 10000 validation samples 

training 
validation 
CE (using d̄) 
CE validation 

F0 

155.7

155.1

170.7

141.1
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training set stochastic solution


100 150 200 250 300 

validation set stochastic solution


100 150 200 250 300 

validation set CE solution 

100 150 200 250 300 
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Minimum average loss prediction 

•	 (x, y) ∈ Rn × R have some joint distribution 

•	 find weight vector w ∈ Rn for which wT x is a good estimator of y 

•	 choose w to minimize expected value of a convex loss function l 

J(w) = E l(w T x − y) 

–	 l(u) = u2: mean-square error 
–	 l(u) = |u|: mean-absolute error 

•	 we do not know joint distribution, but we have independent samples 
(‘training data’) 

(xi, yi), i = 1, . . . , N 

EE364A — Stochastic Programming	 19




�	 � 
� 

�


•	 Monte Carlo sampling method (called training): 
choose w to minimize sample average loss 

N
1 

wsa = argmin l(w T xi − yi) 
w N 

i=1 

with associated sample average loss Jsa 

•	 validate predictor y ≈ wT x on a different set of M samples: sa 

M
1	 T val val Jval = 
M

l(wsaxi − yi ) 
i=1 

•	 if Jsa ≈ Jval (and M is large enough), we say predictor generalizes 
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Example


• n = 10; N = 1000 training samples; M = 10000 validation samples 

•	 l(u) = (u)+ + 4(u)− (under-predicting 4× more expensive) 
training set prediction errors 

200


150


100


50


0

−0.2 −0.1 0 0.1 0.2 0.3 0.4 

validation set prediction errors 
2000


1500


1000


500


0

−0.2 −0.1 0 0.1 0.2 0.3 0.4 
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