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¢1-norm heuristics for cardinality problems
e cardinality problems arise often, but are hard to solve exactly
e a simple heuristic, that relies on £1-norm, seems to work well

e used for many years, in many fields

— sparse design

— LASSO, robust estimation in statistics

— support vector machine (SVM) in machine learning

— total variation reconstruction in signal processing, geophysics
— compressed sensing

e new theoretical results guarantee the method works, at least for a few
problems
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Cardinality

the cardinality of x € R", denoted card(xz), is the number of nonzero
components of x

0 =0
1 #0

card is quasiconcave on R” (but not R") since

card is separable; for scalar x, card(x) = {

card(x + y) > min{card(z), card(y)}

holds for x,y = 0
but otherwise has no convexity properties

arises in many problems

Prof. S. Boyd, EE364b, Stanford University



General convex-cardinality problems

a convex-cardinality problem is one that would be convex, except for
appearance of card in objective or constraints

examples (with C, f convex):

e convex minimum cardinality problem:

minimize  card(z)
subjectto x €C

e convex problem with cardinality constraint:

minimize  f(x)
subjectto x €, card(z) <k
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Solving convex-cardinality problems
convex-cardinality problem with z € R"
e if we fix the sparsity pattern of x (i.e., which entries are zero/nonzero)

we get a convex problem

e by solving 2™ convex problems associated with all possible sparsity
patterns, we can solve convex-cardinality problem
(possibly practical for n < 10; not practical forn > 15o0rso ... )

e general convex-cardinality problem is (NP-) hard

e can solve globally by branch-and-bound

— can work for particular problem instances (with some luck)
— in worst case reduces to checking all (or many of ) 2" sparsity patterns
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Boolean LP as convex-cardinality problem

Boolean LP:

minimize ¢!z

subject to Az <0b, x; €{0,1}
includes many famous (hard) problems, e.g., 3-SAT, traveling salesman

can be expressed as

minimize ¢!z

subject to Ax <b, card(z)+card(l —z) <n
since card(x) + card(1 —x) <n <= z; € {0,1}

conclusion: general convex-cardinality problem is hard
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Sparse design

minimize card(x)
subjectto = €C

e find sparsest design vector x that satisfies a set of specifications

e zero values of x simplify design, or correspond to components that
aren’'t even needed

e examples:

— FIR filter design (zero coefficients reduce required hardware)

— antenna array beamforming (zero coefficients correspond to unneeded
antenna elements)

— truss design (zero coefficients correspond to bars that are not needed)

— wire sizing (zero coefficients correspond to wires that are not needed)
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Sparse modeling / regressor selection

fit vector b € R as a linear combination of k regressors (chosen from n
possible regressors)

minimize || Ax — b||2
subject to card(x) < k

e gives k-term model

e chooses subset of k regressors that (together) best fit or explain b

n

k) choices

e can solve (in principle) by trying all (

e variations:

— minimize card(x) subject to ||Ax — bl[2 <€
— minimize ||Axz — b||2 + A card(x)
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Sparse signal reconstruction

e estimate signal x, given

— noisy measurement y = Az +wv, v ~ N(0,0°I) (A is known; v is not)
— prior information card(z) < k

e maximum likelihood estimate Z,,; is solution of

minimize || Ax — y||2
subject to card(x) <k
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Estimation with outliers

e we have measurements y; = alz +v; +w;, i =1,...,m
e noises v; ~ N(0,0?) are independent

e only assumption on w is sparsity: card(w) < k

o B={i|w; # 0} is set of bad measurements or outliers

e maximum likelihood estimate of x found by solving

minimize Y, p(yi — af ©)°

subject to |B| <k

with variables x and B C {1,...,m}

e equivalent to
minimize ||y — Az — w||3
subject to card(w) <k
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Minimum number of violations

e set of convex inequalities

filz) <0, ..., fm(z) <0, v el

e choose x to minimize the number of violated inequalities:
minimize  card(t)

subject to  fi(z) <t;,, i=1,....m
xel, t>0

e determining whether zero inequalities can be violated is (easy) convex
feasibility problem
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Linear classifier with fewest errors

e given data (x1,v1),---, (Tm,yYm) € R" x {—1,1}
o we seek linear (affine) classifier y ~ sign(w!z + v)
e classification error corresponds to yi(wTa: +v) <0
e to find w, v that give fewest classification errors:

minimize  card(t)
subject to y;(wlaz; +v)+t;>1, i=1,...,m

with variables w, v, t (we use homogeneity in w, v here)
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Smallest set of mutually infeasible inequalities

e given a set of mutually infeasible convex inequalities
fi(x) <0,..., fm(x) <0

e find smallest (cardinality) subset of these that is infeasible
e certificate of infeasibility is g(A) = inf, (> ;" Aifi(z)) > 1, A= 0

e to find smallest cardinality infeasible subset, we solve

minimize  card()\)
subjectto g(A)>1, A =0

(assuming some constraint qualifications)
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Portfolio investment with linear and fixed costs

e we use budget B to purchase (dollar) amount z; > 0 of stock i

e trading fee is fixed cost plus linear cost: Bcard(z) + a'lx

e budget constraint is 17z + Scard(z) + o'z < B

e mean return on investment is ,uT:E; variance is 1Yz

e minimize investment variance (risk) with mean return > R,y
minimize 'Yz

subject to ,uTx > Rpin, x>0
172 4+ Becard(x) + alx < B
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Piecewise constant fitting

fit corrupted x..- by a piecewise constant signal & with k£ or fewer jumps

problem is convex once location (indices) of jumps are fixed

T is piecewise constant with < k jumps <= card(Dz) < k, where

1 -1
1 -1
D =
as convex-cardinality problem:
minimize || — Teorl|2

c R(n—l)Xn

subject to card(Dz) < k
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Piecewise linear fitting

o fit x.or by a piecewise linear signal  with k£ or fewer kinks
e as convex-cardinality problem:

minimize || — Teorl|2
subject to card(Vz) <k

where
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/1-norm heuristic

1, or add regularization term || z||; to

e replace card(z) with ~||z|
objective

e v > (0 is parameter used to achieve desired sparsity
(when card appears in constraint, or as term in objective)

e more sophisticated versions use ) . w;|z;| or Y. w;(z:)+ + >, vi(2i)—,
where w, v are positive weights
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Example: Minimum cardinality problem

e start with (hard) minimum cardinality problem

minimize  card(x)
subjectto z €C

(C convex)
e apply heuristic to get (easy) ¢1-norm minimization problem

minimize  ||z||1
subjectto x €C
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Example: Cardinality constrained problem

e start with (hard) cardinality constrained problem (f, C convex)
minimize  f(x)
subject to x €C, card(z) <k
e apply heuristic to get (easy) ¢1-constrained problem
minimize  f(x)
subjectto z €C, ||z|1 <p
or {1-regularized problem
minimize  f(x) + v||z||1
subjectto = €C

3, ~v adjusted so that card(z) < k
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Polishing

e use /1 heuristic to find 2 with required sparsity

e fix the sparsity pattern of &

e re-solve the (convex) optimization problem with this sparsity pattern to
obtain final (heuristic) solution
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Interpretation as convex relaxation

e start with
minimize card(z)
subjectto z€C, ||z]lc <R

e equivalent to mixed Boolean convex problem

minimize 171z
subject to |z;| < Rz;, i=1,...,n

relC, 2z €{0,1}, i=1,...

with variables z, z
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e now relax z; € {0,1} to z; € [0, 1] to obtain
minimize 1712
subject to |x;| < Rz;, i=1,...,n
xeC
OSZZSL izl,...,n

which is equivalent to

minimize  (1/R)||z|1
subjectto x €C

the ¢ heuristic

e optimal value of this problem is lower bound on original problem
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Interpretation via convex envelope

e convex envelope f°"V of a function f on set C is the largest convex
function that is an underestimator of f on C

e epi(f") = Co(epi(/f))

o " = (f*)* (with some technical conditions)

e for x scalar, |z| is the convex envelope of card(x) on [—1, 1]

o for x € R" scalar, (1/R)||z||1 is convex envelope of card(z) on

12| llzlle < R}
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Weighted and asymmetric /; heuristics

minimize card(x) over convex set C

suppose we know lower and upper bounds on x; over C
relC — [; <ux; <uy

(best values for these can be found by solving 2n convex problems)
if u; <0orl; >0, then card(x;) =1 (i.e., x; #0) forall z € C

assuming [; < 0, u; > 0, convex relaxation and convex envelope
Interpretations suggest using

3 (<x53+ N <_l>)

1=1

as surrogate (and also lower bound) for card(x)
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Regressor selection

minimize  |[Az — b||2
subject to card(x) <k

e heuristic:

— minimize ||Ax — b||2 + v||z||1
— find smallest value of ~ that gives card(z) < k
— fix associated sparsity pattern (i.e., subset of selected regressors) and

find x that minimizes ||Az — b||2
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Example (6.4 in BV book)

° A c R10X20, T E R2O, b c RlO
e dashed curve: exact optimal (via enumeration)

e solid curve: £; heuristic with polishing

2 R e
5
% 1 2 3 4
| Az — bl
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Sparse signal reconstruction

e convex-cardinality problem:

minimize || Az — y||2
subject to card(x) < k

e /1 heuristic:
minimize  ||Ax — y||2
subject to  ||z||1 <

(called LASSO)

e another form: minimize || Az — yl|2 + v||z]|1
(called basis pursuit denoising)
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Example

e signal x € R" with n = 1000, card(x) = 30

e m = 200 (random) noisy measurements: y = Az + v, v ~ N (0, 0%1),

Aij ~ N(07 1)

e left: original; right: {1 reconstruction with v = 1073
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e /5 reconstruction; minimizes | Az — yl|2 + 7||z||2, where v = 1073

e /eft: original; right: {5 reconstruction
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Some recent theoretical results

o suppose y = Az, A € R™*", card(z) < k
e to reconstruct x, clearly need m > k

e if m > n and A is full rank, we can reconstruct & without cardinality
assumption

e when does the ¢; heuristic (minimizing ||z||; subject to Az = y)
reconstruct x (exactly)?
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recent results by Candes, Donoho, Romberg, Tao, . ..

e (for some choices of A) if m > (C'logn)k, ¢1 heuristic reconstructs x
exactly, with overwhelming probability

e (' is absolute constant: valid A's include

- Aij ~ ./\/'(0,02)
— Ax gives Fourier transform of x at m frequencies, chosen from
uniform distribution
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