Convex optimization examples

- multi-period processor speed scheduling
- minimum time optimal control
- grasp force optimization
- optimal broadcast transmitter power allocation
- phased-array antenna beamforming
- optimal receiver location

Multi-period processor speed scheduling

- ullet processor adjusts its speed $s_t \in [s^{\min}, s^{\max}]$ in each of T time periods
- ullet energy consumed in period t is $\phi(s_t)$; total energy is $E = \sum_{t=1}^T \phi(s_t)$
- \bullet *n* jobs
 - job i available at $t = A_i$; must finish by deadline $t = D_i$
 - job i requires total work $W_i \ge 0$
- $\theta_{ti} \geq 0$ is fraction of processor effort allocated to job i in period t

$$\mathbf{1}^T \theta_t = 1, \qquad \sum_{t=A_i}^{D_i} \theta_{ti} s_t \ge W_i$$

ullet choose speeds s_t and allocations θ_{ti} to minimize total energy E

Minimum energy processor speed scheduling

• work with variables $S_{ti} = \theta_{ti} s_t$

$$s_t = \sum_{i=1}^n S_{ti}, \qquad \sum_{t=A_i}^{D_i} S_{ti} \ge W_i$$

solve convex problem

minimize
$$E = \sum_{t=1}^{T} \phi(s_t)$$
 subject to $s^{\min} \leq s_t \leq s^{\max}, \quad t = 1, \dots, T$ $s_t = \sum_{i=1}^{n} S_{ti}, \quad t = 1, \dots, T$ $\sum_{t=A_i}^{D_i} S_{ti} \geq W_i, \quad i = 1, \dots, n$

- ullet a convex problem when ϕ is convex
- can recover θ_t^{\star} as $\theta_{ti}^{\star} = (1/s_t^{\star})S_{ti}^{\star}$

Example

- \bullet T=16 periods, n=12 jobs
- $s^{\min} = 1$, $s^{\max} = 6$, $\phi(s_t) = s_t^2$
- ullet jobs shown as bars over $[A_i,D_i]$ with area $\propto W_i$

Optimal and uniform schedules

• uniform schedule: $S_{ti} = W_i/(D_i - A_i + 1)$; gives $E^{\text{unif}} = 204.3$

• optimal schedule: S_{ti}^{\star} ; gives $E^{\star} = 167.1$

Minimum-time optimal control

• linear dynamical system:

$$x_{t+1} = Ax_t + Bu_t, \quad t = 0, 1, \dots, K, \qquad x_0 = x^{\text{init}}$$

• inputs constraints:

$$u_{\min} \leq u_t \leq u_{\max}, \quad t = 0, 1, \dots, K$$

• minimum time to reach state x_{des} :

$$f(u_0, \dots, u_K) = \min \{ T \mid x_t = x_{\text{des}} \text{ for } T \le t \le K + 1 \}$$

state transfer time f is quasiconvex function of (u_0, \ldots, u_K) :

$$f(u_0, u_1, \dots, u_K) \le T$$

if and only if for all $t = T, \dots, K+1$

$$x_t = A^t x^{\text{init}} + A^{t-1} B u_0 + \dots + B u_{t-1} = x_{\text{des}}$$

i.e., sublevel sets are affine

minimum-time optimal control problem:

minimize
$$f(u_0, u_1, \dots, u_K)$$

subject to $u_{\min} \leq u_t \leq u_{\max}, \quad t = 0, \dots, K$

with variables u_0, \ldots, u_K a quasiconvex problem; can be solved via bisection

Minimum-time control example

- force $(u_t)_1$ moves object modeled as 3 masses (2 vibration modes)
- force $(u_t)_2$ used for active vibration suppression
- goal: move object to commanded position as quickly as possible, with

$$|(u_t)_1| \le 1,$$
 $|(u_t)_2| \le 0.1,$ $t = 0, \dots, K$

Ignoring vibration modes

- ullet treat object as single mass; apply only u_1
- analytical ('bang-bang') solution

With vibration modes

- no analytical solution
- a quasiconvex problem; solved using bisection

Grasp force optimization

- choose K grasping forces on object
 - resist external wrench
 - respect friction cone constraints
 - minimize maximum grasp force
- convex problem (second-order cone program):

$$\begin{array}{ll} \text{minimize} & \max_i \|f^{(i)}\|_2 & \text{max contact force} \\ \text{subject to} & \sum_i Q^{(i)} f^{(i)} = f^{\text{ext}} & \text{force equillibrium} \\ & \sum_i p^{(i)} \times (Q^{(i)} f^{(i)}) = \tau^{\text{ext}} & \text{torque equillibrium} \\ & \mu_i f_3^{(i)} \geq \left(f_1^{(i)2} + f_2^{(i)2}\right)^{1/2} & \text{friction cone contraints} \end{array}$$

variables $f^{(i)} \in \mathbf{R}^3$, $i = 1, \dots, K$ (contact forces)

Example

Optimal broadcast transmitter power allocation

- ullet m transmitters, mn receivers all at same frequency
- ullet transmitter i wants to transmit to n receivers labeled (i,j), $j=1,\ldots,n$
- A_{ijk} is path gain from transmitter k to receiver (i,j)
- N_{ij} is (self) noise power of receiver (i, j)
- variables: transmitter powers p_k , $k = 1, \ldots, m$

at receiver (i, j):

• signal power:

$$S_{ij} = A_{iji}p_i$$

• noise plus interference power:

$$I_{ij} = \sum_{k \neq i} A_{ijk} p_k + N_{ij}$$

• signal to interference/noise ratio (SINR): S_{ij}/I_{ij} **problem:** choose p_i to maximize smallest SINR:

maximize
$$\min_{i,j} \frac{A_{iji}p_i}{\sum_{k\neq i} A_{ijk}p_k + N_{ij}}$$
 subject to
$$0 \leq p_i \leq p_{\max}$$

... a (generalized) linear fractional program

Phased-array antenna beamforming

- ullet omnidirectional antenna elements at positions (x_1,y_1) , . . . , (x_n,y_n)
- unit plane wave incident from angle θ induces in ith element a signal $_{e}j(x_{i}\cos\theta+y_{i}\sin\theta-\omega t)$

$$(j = \sqrt{-1}, \text{ frequency } \omega, \text{ wavelength } 2\pi)$$

- demodulate to get output $e^{j(x_i\cos\theta+y_i\sin\theta)} \in \mathbf{C}$
- linearly combine with complex weights w_i :

$$y(\theta) = \sum_{i=1}^{n} w_i e^{j(x_i \cos \theta + y_i \sin \theta)}$$

- $y(\theta)$ is (complex) antenna array gain pattern
- ullet |y(heta)| gives sensitivity of array as function of incident angle heta
- depends on design variables $\mathbf{Re} \ w$, $\mathbf{Im} \ w$ (called *antenna array weights* or *shading coefficients*)

design problem: choose w to achieve desired gain pattern

Sidelobe level minimization

make
$$|y(\theta)|$$
 small for $|\theta - \theta_{\rm tar}| > \alpha$

(θ_{tar} : target direction; 2α : beamwidth)

via least-squares (discretize angles)

minimize
$$\sum_i |y(\theta_i)|^2$$
 subject to $y(\theta_{tar}) = 1$

(sum is over angles outside beam)

least-squares problem with two (real) linear equality constraints

minimize sidelobe level (discretize angles)

minimize
$$\max_i |y(\theta_i)|$$
 subject to $y(\theta_{tar}) = 1$

(max over angles outside beam)

can be cast as SOCP

$$\begin{array}{ll} \text{minimize} & t \\ \text{subject to} & |y(\theta_i)| \leq t \\ & y(\theta_{\text{tar}}) = 1 \end{array}$$

Extensions

convex (& quasiconvex) extensions:

- $y(\theta_0) = 0$ (null in direction θ_0)
- w is real (amplitude only shading)
- $|w_i| \le 1$ (attenuation only shading)
- minimize $\sigma^2 \sum_{i=1}^n |w_i|^2$ (thermal noise power in y)
- minimize beamwidth given a maximum sidelobe level

nonconvex extension:

• maximize number of zero weights

Optimal receiver location

- ullet N transmitter frequencies $1,\ldots,N$
- transmitters at locations $a_i, b_i \in \mathbf{R}^2$ use frequency i
- ullet transmitters at a_1 , a_2 , . . . , a_N are the wanted ones
- ullet transmitters at b_1 , b_2 , . . . , b_N are interfering
- receiver at position $x \in \mathbf{R}^2$

 $.b_3$ a_{3_\circ} a_{2_\circ} $.b_2$ x_ullet a_{1_\circ} $.b_1$

- (signal) receiver power from a_i : $||x a_i||_2^{-\alpha}$ ($\alpha \approx 2.1$)
- (interfering) receiver power from b_i : $||x b_i||_2^{-\alpha}$ ($\alpha \approx 2.1$)
- worst signal to interference ratio, over all frequencies, is

$$S/I = \min_{i} \frac{\|x - a_i\|_2^{-\alpha}}{\|x - b_i\|_2^{-\alpha}}$$

• what receiver location x maximizes S/I?

S/I is quasiconcave on $\{x \mid S/I \geq 1\}$, *i.e.*, on

$$\{x \mid ||x - a_i||_2 \le ||x - b_i||_2, i = 1, \dots, N\}$$

can use bisection; every iteration is a convex quadratic feasibility problem

MIT OpenCourseWare http://ocw.mit.edu

6.079 / 6.975 Introduction to Convex Optimization

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.