Convex optimization examples

multi-period processor speed scheduling
minimum time optimal control

grasp force optimization

optimal broadcast transmitter power allocation
phased-array antenna beamforming

optimal receiver location



Multi-period processor speed scheduling
processor adjusts its speed s; € [s™, s™3%] in each of T time periods
energy consumed in period t is ¢(s;); total energy is E = Zle o(st)

n jobs

— job 7 available at ¢t = A;; must finish by deadline t = D;
— job ¢ requires total work W; > 0

6., > 0 is fraction of processor effort allocated to job ¢ in period ¢

D;
170, =1, Z Orise > W
t=A;

choose speeds s; and allocations 6;; to minimize total energy E



Minimum energy processor speed scheduling

e work with variables Sti = etist
n D;
St = Zsm', Z Sii > W
=1 t=A,

e solve convex problem

minimize F = Zthl b (s¢)

subject to ™ <5, < s, =1, T
st= Sy, t=1,...,T
ZtD:iAz.Stz' >W;, 1=1,....n

e a convex problem when ¢ is convex

* * * *
e can recover 07 as 0, = (1/s})S}:



Example

e 7' =16 periods, n = 12 jobs
o SN — ] WA — G (s;) = 57
e jobs shown as bars over [A;, D;| with area oc W;
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Optimal and uniform schedules

e uniform schedule: Sy; = W;/(D; — A; + 1); gives B = 204.3
e optimal schedule: S};; gives E* = 167.1

optimal uniform




Minimum-time optimal control
e linear dynamical system:

Tir1 = Ary + Bug, t=0,1,..., K, zo = oMt

e inputs constraints:

uminjutjumam t:0717°°'7K

e minimum time to reach state xges:

flug,...,ug) =min{T |x; = xges for T <t < K + 1}



state transfer time f is quasiconvex function of (ug,...,uk):

f(U(),’LLl,...,’LLK) ST
if and only if forallt=1T,..., K +1
;= Alx™ 4+ A 1Bug + -+ Bup_ 1 = Tdes

i.e., sublevel sets are affine
minimum-time optimal control problem:

minimize  f(ug,u1,...,UK)

subject to  Umin X Ut =X Umax, t=0,..., K

with variables ug, ..., ug

a quasiconvex problem; can be solved via bisection



Minimum-time control example
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e force (us)1 moves object modeled as 3 masses (2 vibration modes)
e force (u;)o used for active vibration suppression

e goal: move object to commanded position as quickly as possible, with

((weh| <1, (w2l <01, t=0,....K



Ignoring vibration modes

e treat object as single mass; apply only u;

e analytical (‘bang-bang’) solution
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With vibration modes

e no analytical solution

e a quasiconvex problem; solved using bisection
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Grasp force optimization

e choose K grasping forces on object

— resist external wrench
— respect friction cone constraints
— minimize maximum grasp force

e convex problem (second-order cone program):

minimize  max; || f® || max contact force

subject to Y. QU f(1) = fext force equillibrium
Sopl x (QW f1)) = rext torque equillibrium
Mz‘fgi) > (fli)2 + f2i>2> v friction cone contraints

variables (V) € R®, i =1,..., K (contact forces)
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Optimal broadcast transmitter power allocation

e m transmitters, mn receivers all at same frequency

e transmitter ¢ wants to transmit to n receivers labeled (¢,7), j =1,...

o A, is path gain from transmitter k to receiver (i, j)
e NN, is (self) noise power of receiver (i, 7)

e variables: transmitter powers pr, k=1,...,m

o transmitter k

g

receiver (i, 7) o

transmitter 7 N
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at receiver (i, j):
e signal power:

Sz'j = Az’jz’pi
e noise plus interference power:

Li; = Z Aijkpr + Nij
ki

e signal to interference/noise ratio (SINR): S;;/1;;

problem: choose p; to maximize smallest SINR:

maximize min Aijipi
i, Zk#i Aijkpr + Nij
subject to 0 < p; < Pmax

... a (generalized) linear fractional program
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Phased-array antenna beamforming

(xzay’b) ©
©
0
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© G
e omnidirectional antenna elements at positions (z1,41), - . -, (Tn,Yn)

e unit plane wave incident from angle 6 induces in ith element a signal
ej(a;i cos 0+y; sin 0 —wt)

(7 = v/—1, frequency w, wavelength 2m)
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e demodulate to get output e/ (FicosO+yisinb) c C

e linearly combine with complex weights w;:

mn
y(0) = Z w, el (#i €03 0+y; sin 0)
i=1

e y(0) is (complex) antenna array gain pattern
e |y(0)| gives sensitivity of array as function of incident angle 6

e depends on design variables Re w, Im w
(called antenna array weights or shading coefficients)

design problem: choose w to achieve desired gain pattern
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Sidelobe level minimization

make |y(0)| small for |0 — Oy | >
(0iar: target direction; 2a: beamwidth)

via least-squares (discretize angles)

minimize Zz ‘y(ez)‘Q
subject to  y(biar) = 1

(sum is over angles outside beam)

least-squares problem with two (real) linear equality constraints
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minimize sidelobe level (discretize angles)

minimize  max; Iy 9@)|
subject to  y(fiar) =

(max over angles outside beam)

can be cast as SOCP

minimize t
subject to  |y(6;)]
y(‘gtar)

A

t
1
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Extensions

convex (& quasiconvex) extensions:

e y(6y) =0 (null in direction 6y)

e w is real (amplitude only shading)

e |w;| <1 (attenuation only shading)

e minimize 02 . | |w;|* (thermal noise power in )

e minimize beamwidth given a maximum sidelobe level

nonconvex extension:

e maximize number of zero weights
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Optimal receiver location

e N transmitter frequencies 1,..., N

e transmitters at locations a;, b; € R? use frequency 17
e transmitters at a1, ao, ..., an are the wanted ones
e transmitters at by, bo, . .., by are interfering

e receiver at position x € R-

61,3o

as. by

CL1°



(signal) receiver power from a;: ||z — a;||; % (o =~ 2.1)
(interfering) receiver power from b;: || — b;||5“ (o =~ 2.1)

worst signal to interference ratio, over all frequencies, is

/1 = min 12~ %ill2
sl — bl

what receiver location x maximizes S/I7
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S/l is quasiconcave on {x | S/l > 1}, i.e., on

{z |z —aillz < |lz—bill2, i=1,...,N}

can use bisection; every iteration is a convex quadratic feasibility problem
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