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FIR filters

finite impulse response (FIR) filter:

n—1
y(t) =Y hou(t—7), teZ
7=0

e (sequence) u : Z — R is input signal
e (sequence) y : Z — R is output signal
e h; are called filter coefficients

e n is filter order or length
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filter frequency response: H : R — C

H(W) = hO -+ hle_i“ + -+ hn_le—z’(n—l)w
n—1 n—1
= Z hy costw + 1 Z h; sin tw
t=0 t=0

e (EE tradition uses j = +/—1 instead of 7)

e H is periodic and conjugate symmetric, so only need to know/specify
forO0<w<rw

FIR filter design problem: choose h so it and H satisfy/optimize specs
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example: (lowpass) FIR filter, order n = 21

iImpulse response h;:

h(t)
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frequency response magnitude (i.e., |H(w)]):
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Chebychev design

minimize m[ax] |H(w) — Hyes(w)|
we |0,

e h is optimization variable
e Hys: R — Cis (given) desired transfer function

e convex problem

e can add constraints, e.g., |h;| <1

sample (discretize) frequency:

minimize max |H (wi) — Haes(wi)|
k=1,....m

e sample points 0 < w;y < -+ < wy, < 1 are fixed (e.g., wp = kn/m)
e m > n (common rule-of-thumb: m = 15n)

e yields approximation (relaxation) of problem above
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Chebychev design via SOCP:

minimize ¢
subject to HA(k>h — b("“)H <t, k=1,....m

where
ne 1 coswp - cos(n—1)wy
0 —sinwg -+ —sin(n—1)wy
) | RHaes(wi)
%Hdes(wk)
by
h = :
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Linear phase filters

suppose

e n=2N +1is odd

e impulse response is symmetric about midpoint:

ht:hn—l—ty t:O,,'n,—l

then

H(w) = ho + h1e™™ 4 - - 4 hyqe D

11>

e—z'waI(w)
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—tNw

e term e represents N-sample delay

~

e H(w) is real

o |H(w)| = |H(w)

e called linear phase filter (/ H(w) is linear except for jumps of +7)
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Lowpass filter specifications

W L
V77

1/61

iIdea:

e pass frequencies in passband [0, wy)|

e block frequencies in stopband |ws, 7]

Filter design
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specifications:

e maximum passband ripple (£201og,,d1 in dB):

1/51§‘H(W)|§51, nggwp

e minimum stopband attenuation (—20log,, 2 in dB):

Filter design
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Linear phase lowpass filter design

e sample frequency

e can assume wlog f[(()) > 0, so ripple spec is

1/61 < H(wg) < 0y

design for maximum stopband attenuation:
minimize 0o

subject to  1/6; < H(wi) <81, 0<wy < Wp
—02 < H(wy) <02, ws<wp<m

Filter design
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e passband ripple 07 is given
e an LP in variables h, 45

e known (and used) since 1960’s

e can add other constraints, e.g., |h;| < «

variations and extensions:

e fix 3, minimize §; (convex, but not LP)
e fix §; and 03, minimize wy (quasiconvex)

e fix 91 and d2, minimize order n (quasiconvex)
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example

e linear phase filter, n = 21

e passband [0,0.127]; stopband [0.247, 7]
e max ripple 61 = 1.012 (£0.1dB)

e design for maximum stopband attenuation

impulse response h:
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frequency response magnitude (i.e., |H(w)]):

3, .

2, .
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Equalizer design

— H(w) > G(w) —

equalization: given
e (G (unequalized frequency response)

e (G4es (desired frequency response)

design (FIR equalizer) H so that G 2 GH ~ Ges

e common choice: Gyes(w) = e~ *P¥ (delay)
i.e., equalization is deconvolution (up to delay)

e can add constraints on H, e.g., limits on |h;| or max,, |H (w)|
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Chebychev equalizer design:

minimize max |G(w)
wel[0,7]

convex; SOCP after sampling frequency

Filter design
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time-domain equalization: optimize impulse response g of equalized
system

e.g., with Gges(w) = e P,

sample design:
minimize  max;xp |§(?)]

subject to g(D) =1
e an LP

e canuse >, g(t)? or >, 1g(t)]

Filter design
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extensions:

e can impose (convex) constraints
e can mix time- and frequency-domain specifications

e can equalize multiple systems, i.e., choose H so

GPH~Gis, k=1,....K

e can equalize multi-input multi-output systems
(i.e., G and H are matrices)

e extends to multidimensional systems, e.g., image processing

Filter design
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Equalizer design example

unequalized system G is 10th order FIR:
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|G (w)]

0 0.5 1 15 2 2.5 3
w
37 —
27 —
/N 1F 1
3
o ° |
~N -1r )
-2 |
_37 | 1 1 1 1 1
0 05 1 1.5 2 25 3
w

design 30th order FIR equalizer with é(w) ~ ¢ t10w

Filter design

21



Chebychev equalizer design:

minimize max |G (w) — e~ "%
w

equalized system impulse response g
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equalized frequency response magnitude |é\

equalized frequency response phase /G
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time-domain equalizer design:

L "
minimize g%%'g( )|

equalized system impulse response g
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equalized frequency response magnitude |é\
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Filter magnitude specifications

transfer function magnitude spec has form

Lw)<|Hw)| <U(w), we]0,mn]

where L,U : R — R are given
e |lower bound is not convex in filter coefficients h
e arises in many applications, e.g., audio, spectrum shaping

e can change variables to solve via convex optimization
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Autocorrelation coefficients

autocorrelation coefficients associated with impulse response
h=(hg,...,hn1) € R" are

ry = Z hrhr i

(we take hy =0 for k <0 or k > n)

o ry=1r_y4; 1y =0for [t| >n

e hence suffices to specify r = (rg,...,7,1) € R”

Filter design
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Fourier transform of autocorrelation coefficients is

n—1

R(w) = Z e WTr, =g+ Z 2ry coswt = |H(w)|?

T t=1

e always have R(w) > 0 for all w

e can express magnitude specification as
L(w)* < R(w) < U(w)?

...convexinr

Filter design
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Spectral factorization

question: when is » € R™ the autocorrelation coefficients of some h € R"?
answer: (spectral factorization theorem) if and only if R(w) > 0 for all w
e spectral factorization condition is convex in r

e many algorithms for spectral factorization, i.e., finding an h s.t.
R(w) = [H(w)]*

magnitude design via autocorrelation coefficients:

e use r as variable (instead of h)

e add spectral factorization condition R(w) > 0 for all w
e optimize over r

e use spectral factorization to recover h
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log-Chebychev magnitude design

choose h to minimize

max |20logyq |[H (w)| — 201log,y D(w)]

e D is desired transfer function magnitude
(D(w) > 0 for all w)

e find minimax logarithmic (dB) fit
reformulate as

minimize t
subject to D(w)?/t < R(w) <tD(w)?, 0<w<m

e convex in variables r, ¢

e constraint includes spectral factorization condition

Filter design
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example: 1/f (pink noise) filter (i.e., D(w) = 1/y/w), n = 50,
log-Chebychev design over 0.01l7r < w <7

10 10

optimal fit: +0.5dB
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