
Convex Optimization — Boyd & Vandenberghe 

8. Geometric problems


•	 extremal volume ellipsoids 

•	 centering 

classification • 

•	 placement and facility location 

8–1




Minimum volume ellipsoid around a set


Löwner-John ellipsoid of a set C: minimum volume ellipsoid E s.t. C ⊆ E 

• parametrize E as E | �Av + b�2 ≤ 1}; w.l.o.g. assume A ∈ Sn = {v ++ 

vol E is proportional to det A−1; to compute minimum volume ellipsoid, • 

minimize (over A, b) log det A−1


subject to supv∈C �Av + b�2 ≤ 1


convex, but evaluating the constraint can be hard (for general C)


finite set C = {x1, . . . , xm}: 

minimize (over A, b) log det A−1 

subject to �Axi + b�2 ≤ 1, i = 1, . . . , m 

also gives Löwner-John ellipsoid for polyhedron conv{x1, . . . , xm} 
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Maximum volume inscribed ellipsoid 

maximum volume ellipsoid E inside a convex set C ⊆ Rn 

• parametrize E as E = {Bu + d | �u�2 ≤ 1}; w.l.o.g. assume B ∈ Sn 
++ 

• vol E is proportional to det B; can compute E by solving 

maximize log det B 
subject to sup‖u‖2≤1 IC(Bu + d) ≤ 0 

(where IC(x) = 0 for x ∈ C and IC(x) = ∞ for x �∈ C)


convex, but evaluating the constraint can be hard (for general C)


polyhedron {x | ai
T x ≤ bi, i = 1, . . . , m}: 

maximize log det B 
subject to �Bai�2 + ai

T d ≤ bi, i = 1, . . . , m 

(constraint follows from sup‖u‖2≤1 a
T (Bu + d) = �Bai�2 + aT d)i i 
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Efficiency of ellipsoidal approximations


C ⊆ Rn convex, bounded, with nonempty interior 

• Löwner-John ellipsoid, shrunk by a factor n, lies inside C 

• maximum volume inscribed ellipsoid, expanded by a factor n, covers C 

example (for two polyhedra in R2) 

factor n can be improved to 
√

n if C is symmetric 
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Centering


some possible definitions of ‘center’ of a convex set C: 

•	 center of largest inscribed ball (’Chebyshev center’) 

for polyhedron, can be computed via linear programming (page 4–19) 

•	 center of maximum volume inscribed ellipsoid (page 8–3) 

xchebxcheb xmve 

MVE center is invariant under affine coordinate transformations 
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Analytic center of a set of inequalities


the analytic center of set of convex inequalities and linear equations 

fi(x) ≤ 0, i = 1, . . . , m, Fx = g 

is defined as the optimal point of 

minimize − 
�m 

log(−fi(x)) i=1 
subject to Fx = g 

•	 more easily computed than MVE or Chebyshev center (see later) 

•	 not just a property of the feasible set: two sets of inequalities can 
describe the same set, but have different analytic centers 
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analytic center of linear inequalities ai
T x ≤ bi, i = 1, . . . , m 

xac is minimizer of 

m 
� 

xac 

φ(x) = − log(bi − ai
T x) 

i=1 

inner and outer ellipsoids from analytic center: 

Einner ⊆ {x | ai
T x ≤ bi, i = 1, . . . , m} ⊆ Eouter 

where 

Einner = {x | (x − xac)
T ∇ 2φ(xac)(x − xac) ≤ 1}


Eouter = {x | (x − xac)
T ∇ 2φ(xac)(x − xac) ≤ m(m − 1)}
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Linear discrimination


separate two sets of points {x1, . . . , xN }, {y1, . . . , yM } by a hyperplane: 

a T xi + b > 0, i = 1, . . . , N, a T yi + b < 0, i = 1, . . . , M 

homogeneous in a, b, hence equivalent to 

a T xi + b ≥ 1, i = 1, . . . , N, a T yi + b ≤ −1, i = 1, . . . , M 

a set of linear inequalities in a, b 
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Robust linear discrimination


(Euclidean) distance between hyperplanes 

H1 = {z | a T z + b = 1} 
H2 = {z | a T z + b = −1} 

is dist(H1,H2) = 2/�a�2 

to separate two sets of points by maximum margin, 

minimize (1/2)�a�2 

subject to aT xi + b ≥ 1, 
aT yi + b ≤ −1, 

(after squaring objective) a QP in a, b 

i = 1, . . . , N 
i = 1, . . . , M 

(1) 

Geometric problems 8–9 



� � 

� � 

Lagrange dual of maximum margin separation problem (1) 

maximize 1
T λ + 1T µ 
�

�N �M �

subject to 2 
� i=1 λixi − i=1 µiyi� 

2 
≤ 1 (2) 

1
T λ = 1T µ, λ � 0, µ � 0 

from duality, optimal value is inverse of maximum margin of separation 

interpretation 

• change variables to θi = λi/1
T λ, γi = µi/1

T µ, t = 1/(1T λ + 1T µ) 

• invert objective to minimize 1/(1T λ + 1T µ) = t 

minimize t 
�

�N �M �

subject to 
� i=1 θixi − i=1 γiyi� 

2 
≤ t 

θ � 0, 1
T θ = 1, γ � 0, 1

T γ = 1 

optimal value is distance between convex hulls 
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Approximate linear separation of non-separable sets


minimize	 1
T u + 1T v 

subject to	 aT xi + b ≥ 1 − ui, i = 1, . . . , N 
aT yi + b ≤ −1 + vi, i = 1, . . . , M 
u � 0, v � 0 

• an LP in	 a, b, u, v 

• at optimum, ui = max{0, 1 − aT xi − b}, vi = max{0, 1 + aT yi + b} 
• can be interpreted as a heuristic for minimizing #misclassified points 
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Support vector classifier 

minimize	 �a�2 + γ(1T u + 1T v) 
subject to	 aT xi + b ≥ 1 − ui, i = 1, . . . , N 

aT yi + b ≤ −1 + vi, i = 1, . . . , M 
u � 0, v � 0 

produces point on trade-off curve between inverse of margin 2/�a�2 and 
classification error, measured by total slack 1T u + 1T v 

same example as previous page, 
with γ = 0.1: 
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Nonlinear discrimination


separate two sets of points by a nonlinear function: 

f(xi) > 0, i = 1, . . . , N, f(yi) < 0, i = 1, . . . , M 

• choose a linearly parametrized family of functions 

f(z) = θT F (z)


F = (F1, . . . , Fk) : Rn Rk are basis functions
→

•	 solve a set of linear inequalities in θ: 

θT F (xi) ≥ 1, i = 1, . . . , N, θT F (yi) ≤ −1, i = 1, . . . , M 
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quadratic discrimination: f(z) = zT Pz + qT z + r


x T Pxi + q T xi + r ≥ 1, y T Pyi + q T yi + r ≤ −1i i 

can add additional constraints (e.g., P � −I to separate by an ellipsoid) 

polynomial discrimination: F (z) are all monomials up to a given degree 

separation by ellipsoid separation by 4th degree polynomial 
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� 

Placement and facility location


N	 points with coordinates xi ∈ R2 (or R3)• 
•	 some positions xi are given; the other xi’s are variables 

•	 for each pair of points, a cost function fij(xi, xj) 

placement problem 

minimize i 6 fij(xi, xj)=j 

variables are positions of free points 

interpretations 

•	 points represent plants or warehouses; fij is transportation cost between 
facilities i and j 

•	 points represent cells on an IC; fij represents wirelength 
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� 

example: minimize (i,j)∈A h(�xi − xj�2), with 6 free points, 27 links 

optimal placement for h(z) = z, h(z) = z2 , h(z) = z4 
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