Convex Optimization — Boyd & Vandenberghe

7. Statistical estimation

e maximum likelihood estimation
e optimal detector design

e experiment design
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Parametric distribution estimation

e distribution estimation problem: estimate probability density p(y) of a
random variable from observed values

e parametric distribution estimation: choose from a family of densities
p.(y), indexed by a parameter x

maximum likelihood estimation
maximize (over ) logp.(y)

e y is observed value
o [(x) =logp.(y) is called log-likelihood function
e can add constraints = € C' explicitly, or define p,(y) =0 for x € C

e a convex optimization problem if log p..(y) is concave in x for fixed y
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Linear measurements with |ID noise

linear measurement model

T .
yi=a; x+v, 1=1,...,m

e © € R" is vector of unknown parameters
e v; is IID measurement noise, with density p(z2)

e y; is measurement: y € R™ has density p,(y) =

maximum likelihood estimate: any solution x of

maximize I(z) =" logp(y; —aj x

(y is observed value)
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examples
e Gaussian noise N'(0,02): p(z) = (2m02)~1/2e=2"/(277),

1 m
l(x):—%log (2mo?) Q—Z a; v —1y;)*

ML estimate is LS solution

e Laplacian noise: p(z) = (1/(2a))e~1?I/¢,

1 m
[(x) = —mlog(2a) — — Z [
a

i=1
ML estimate is £1-norm solution

e uniform noise on |—a,al:

— Ty 4l < _
l(w):{_mlog@a) a; x —yi| <a, i=1,...

00 otherwise

ML estimate is any = with |alz — y;| < a
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Logistic regression

random variable y € {0, 1} with distribution

exp(alu + b)
= prob(y =1) =
e a, b are parameters; u € R" are (observable) explanatory variables

e estimation problem: estimate a, b from m observations (u;, y;)

log-likelihood function (for y1 = - - =y =1, yp4o1 =+ = Yym = 0):

k m

exp(alu; + b) !
[(a,b) = 1
(a,b) 08 H 1 + exp(alu; + b) H , 1+ exp(a’u; +b)

=1 1=k-+

= > (a"u;+b) =) log(1 +exp(a’u; + b))

concave in a, b
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example (n = 1, m = 50 measurements)
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e circles show 50 points (uz,yz)

e solid curve is ML estimate of p = exp(au + b)/(1 + exp(au + b))
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(Binary) hypothesis testing

detection (hypothesis testing) problem

given observation of a random variable X € {1,...,n}, choose between:

e hypothesis 1: X was generated by distribution p = (p1,...,pn)
e hypothesis 2: X was generated by distribution ¢ = (q1,--.,qn)

randomized detector

e a nonnegative matrix 7' € R**", with 177 = 17

e if we observe X = k, we choose hypothesis 1 with probability 1,
hypothesis 2 with probability o

e if all elements of T are 0 or 1, it is called a deterministic detector
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detection probability matrix:

1 — P Pr,

D:[Tp Tq]: Py, 1 _ P,

e Pk, is probability of selecting hypothesis 2 if X is generated by
distribution 1 (false positive)

e P4, is probability of selecting hypothesis 1 if X is generated by
distribution 2 (false negative)

multicriterion formulation of detector design

minimize (w.r.t. R2) (P, Pr) = ((T'p)2, (T'q)1)
subject to tik+tor=1, k=1,...,n
tix >0, i=1,2 k=1,...,n

variable T' € R**"™
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scalarization (with weight A > 0)

minimize  (Tp)s + A(T'q);
subject to t1x +tor =1, t;3 >0, 1=1,2, k=1,....n

an LP with a simple analytical solution

, (07 1) Pr < >‘Qk

e a deterministic detector, given by a likelihood ratio test

o if p. = Aqi for some k, any value 0 <t <1, t1 = 1 — t9; is optimal
(i.e., Pareto-optimal detectors include non-deterministic detectors)

minimax detector

minimize  max{ Py, Pt} = max{(Tp)s2, (T'q)1}
subject to t1x +tor =1, >0, 1=1,2, k=1,...,n

an LP; solution is usually not deterministic
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example

[ 0.70
0.20
0.05

| 0.05

0.10
0.10
0.70
0.10

solutions 1, 2, 3 (and endpoints) are deterministic; 4 is minimax detector
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Experiment design

m linear measurements y; = a; x +w;, i = 1,...,m of unknown z € R"

e measurement errors w; are |ID N (0, 1)

e ML (least-squares) estimate is

m —1 m
A T
r = E a;a; E Yia;

® error e = & — x has zero mean and covariance

E =Eeel = f:aiaT

i—1
confidence ellipsoids are given by {z | (z — 2)'E~}(x — %) < 3}

experiment design: choose a; € {v1,...,v,} (a set of possible test
vectors) to make E ‘small’
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vector optimization formulation
L i 7 —1
minimize (w.r.t. ) E = (3°%_, mpopvl)
subject to my >0, mi—+---+my,=m
my € Z

e variables are my, (# vectors a; equal to vy)

e difficult in general, due to integer constraint

relaxed experiment design

assume m > p, use Ay = my/m as (continuous) real variable

minimize (w.r.t. S%) E
subject to A

e common scalarizations: minimize logdet F, tr E, Apax(F), . . .

e can add other convex constraints, e.g., bound experiment cost c'\< B
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D-optimal design

minimize logdet( 1 )\kUkUIZ)_l

subjectto A >0, 1A =1

interpretation: minimizes volume of confidence ellipsoids

dual problem

maximize logdet W + nlogn
subject to v,vak <1, k=1,...,p

interpretation: {x | xI Wz < 1} is minimum volume ellipsoid centered at
origin, that includes all test vectors vy

complementary slackness: for A\, W primal and dual optimal
Me(l =i W) =0, k=1,....p
optimal experiment uses vectors v on boundary of ellipsoid defined by W
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example (p = 20)

A1 = 0.5
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design uses two vectors, on boundary of ellipse defined by optimal W
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derivation of dual of page 7-13

first reformulate primal problem with new variable X:

minimize  logdet X!
subject to X =Y P_ Mugvi, A =0, 1'A=1

p
L(X,\, Z,z,v) =logdet X 1 +tr (Z <X — > Avrvi ) ) — 2" (1P A1)
k=1
e minimize over X by setting gradient to zero: — X 14+ 27 =0

e minimum over )\ is —oo unless —v{ Zvy — 2, +v =0

dual problem

maximize n + logdetZ — v
subject to v} Zvy <v, k=1,...,p

change variable W = Z/v, and optimize over v to get dual of page 7-13
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