Convex Optimization — Boyd & Vandenberghe

6. Approximation and fitting

e norm approximation
e |east-norm problems
e regularized approximation

e robust approximation

6-1



Norm approximation

minimize || Ax — b||

(A€ R™*"™ withm >mn, || - || is a norm on R™)
interpretations of solution z* = argmin,, ||Ax — b|]:

e geometric: Ax* is point in R(A) closest to b

e estimation: linear measurement model
y=Ax+v

Yy are measurements, = is unknown, v is measurement error
given y = b, best guess of x is x*
e optimal design: x are design variables (input), Ax is result (output)

x* is design that best approximates desired result b
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examples

e least-squares approximation (|| - ||2): solution satisfies normal equations
AT Az = A"

(x* = (ATA)"1ATD if rank A = n)
e Chebyshev approximation (|| - ||s): can be solved as an LP
minimize ¢
subject to —t1 < Az —b <11
e sum of absolute residuals approximation (|| - ||1): can be solved as an LP
minimize 17y

subjectto —y < Ax—b =<y
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Penalty function approximation

minimize  ¢(r1) + - + ¢(Tm)
subjectto r=Ax —b

(A€ R™ " ¢:R — Ris a convex penalty function)

examples

e quadratic: ¢(u) = u?

e deadzone-linear with width a: 157

¢(u) = maxi0, lu| — a}

0.57

e log-barrier with limit a:
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¢(’LL) _ { —a? log(l — (u/a)2) |u| <a

00 otherwise

Approximation and fitting

adratic

adzone-linear

.5



example (m = 100, n = 30): histogram of residuals for penalties

o(u) = lul, @u) =u* ¢(u) =max{0, |u[—a}, ¢(u)=—log(l-u?)
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shape of penalty function has large effect on distribution of residuals
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Huber penalty function (with parameter M)

[ P lu| < M
Prub{u) = { M(2Ju| — M) |u| > M

linear growth for large u makes approximation less sensitive to outliers
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o left: Huber penalty for M =1

e right: affine function f(t) = a + Bt fitted to 42 points t;, y; (circles)
using quadratic (dashed) and Huber (solid) penalty
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Least-norm problems

minimize |||
subject to Ax =1b

(A e R™ "™ withm <mn, | -] isanormon R")

interpretations of solution x* = argmin 4 ,._, ||x||:

e geometric: z* is point in affine set {z | Ax = b} with minimum
distance to 0

e estimation: b = Ax are (perfect) measurements of x; x* is smallest
("'most plausible’) estimate consistent with measurements

e design: x are design variables (inputs); b are required results (outputs)

x* is smallest ("most efficient’) design that satisfies requirements
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examples

e least-squares solution of linear equations (|| - ||2):

can be solved via optimality conditions

2+ Aty =0, Ax =0

e minimum sum of absolute values (|| - ||1): can be solved as an LP

minimize 17y
subjectto —y<x =<y, Ax=0>

tends to produce sparse solution x*

extension: least-penalty problem

minimize  ¢(x1) + -+ o(zy)
subject to Ax =0b

¢ : R — R is convex penalty function
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Regularized approximation

minimize (w.r.t. R%) (||Az — b}, ||z||)

A€ R™™ norms on R™ and R” can be different

interpretation: find good approximation Ax = b with small x

e estimation: linear measurement model y = Ax + v, with prior
knowledge that ||x|| is small

e optimal design: small = is cheaper or more efficient, or the linear
model y = Ax is only valid for small x

e robust approximation: good approximation Az =~ b with small x is
less sensitive to errors in A than good approximation with large x
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Scalarized problem

minimize ||Ax — b|| + v||z||

e solution for v > 0 traces out optimal trade-off curve

e other common method: minimize ||Az — b||? + §]|z||? with § > 0
Tikhonov regularization
minimize || Az — bl|3 + d||z||3

can be solved as a least-squares problem

2
2

. A7 o
minimize Va1 |® 0
solution * = (AT A+ 6I)~1ATD
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Optimal input design

linear dynamical system with impulse response h:

t

y(t) = h(r)u(t—7), t=0,1,...,N

=0
input design problem: multicriterion problem with 3 objectives
1. tracking error with desired output yges: Jirack = Zi\;o(y@) — ydes(t))2
2. input magnitude: Jpae = Zi\;o u(t)?
3. input variation: Jge = i\;l(u(t +1) —u(t))?
track desired output using a small and slowly varying input signal

regularized least-squares formulation

for fixed 9,7, a least-squares problem in w(0), ..., u(N)
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example: 3 solutions on optimal trade-off curve

(top) 0 = 0, small i; (middle) § = 0, larger n; (bottom) large &

0 50 100 150 200 0 50 100 150 200

0 50 100 150 200 0 50 100 150 200

Approximation and fitting 6-12



Signal reconstruction

A

minimize (w.r.t. Ri) (|2 — Tcor||2, ()

e z € R" is unknown signal
® T.or =&+ v is (known) corrupted version of z, with additive noise v
e variable & (reconstructed signal) is estimate of x

e ¢: R" — R is regularization function or smoothing objective

examples: quadratic smoothing, total variation smoothing:

n—1 n—1
Pquad(£) = Y (Eix1 — 2%, Gw(®) = D |&ip1 — &
1=1 =1
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quadratic smoothing example
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three solutions on trade-off curve
|Z — Zcor||2 versus dquad(Z)
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total variation reconstruction example
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three solutions on trade-off curve
|Z — Zcor||2 Versus dquad(Z)

quadratic smoothing smooths out noise and sharp transitions in signal
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three solutions on trade-off curve
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total variation smoothing preserves sharp transitions in signal
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Robust approximation

minimize ||Az — b|| with uncertain A
two approaches:

e stochastic: assume A is random, minimize E ||Ax — b||

e worst-case: set A of possible values of A, minimize sup 4¢ 4 ||Az — b||

, distributions, sets A)

tractable only in special cases (certain norms || -

example: A(u) = Ay + uA;
® T,om Minimizes [|Agz — b||5

® Zgiocn Minimizes E ||A(u)z — b3
with « uniform on [—1, 1]

® Ty Minimizes sup_q.,« ||A(u)z — b||3

figure shows 7(u) = |[|[A(u)z — b]|2 0
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stochastic robust LS with A = A+ U, U random, EU =0, EUTU =

minimize E||(A4+ U)z — b||3

e explicit expression for objective:

E|Az —b||3 = E|Az—-b+Uxz|3
= |Az - b||z+E2'U Uz
= |[Az —b||53 + 2! Px

e hence, robust LS problem is equivalent to LS problem
minimize || Az — b||3 + ||PY/?x||3
e for P =01, get Tikhonov regularized problem

minimize ||Ax — b||2 + 6||z||3

Approximation and fitting

P

6-18



worst-case robust LS with A = {A +ujA; + - +u,A, | |ull2 < 1}
minimize  sup ¢ 4 [|Az — b[|3 = supy <1 | P(x)u + q(z)||5
where P(z) = | Az Asz -+ Apz |, q(x) = Az —b

e from page 5—14, strong duality holds between the following problems

maximize ||[Pu + q||3 minimize ¢+ A
subject to  ||ul[3 < 1 I P q
subject to P X 0| =0
L 0t

e hence, robust LS problem is equivalent to SDP

minimize t-+ \

~
g
=
=
oS

subject to P(z)t A 0 =0
t
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example: histogram of residuals
T(U) = H(AO -+ ’LL1A1 + ’LLQAQ)CE — bHQ

with u uniformly distributed on unit disk, for three values of x
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2 3 4 5
r(u)

e x)s minimizes ||Agx — bl|2
e I minimizes ||Aox — b||3 + &||z||3 (Tikhonov solution)

® Ty Minimizes sup, <1 || Aoz — bl|5 + |lz||5
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