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Lagrangian
standard form problem (not necessarily convex)

minimize  fo(x)
subject to  fi(z) <

variable z € R", domain D, optimal value p*

Lagrangian: L : R" x R™ x RP - R, with dom L =D x R™ x R?,

Lz, \,v) —|—Z)\ fi(x -|—sz'hi($)
i=1

e weighted sum of objective and constraint functions
e )\; is Lagrange multiplier associated with f;(z) <0

e 1; is Lagrange multiplier associated with h;(z) = 0
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Lagrange dual function

Lagrange dual function: ¢ : R x R — R,

g\, v) = inf L(z,\,v)

xeD
= inf (fo(x) + ) Nifile) + ) VJ%(@)
i=1 i=1

g is concave, can be —oo for some A, v

*

lower bound property: if A > 0, then g(\,v) <p

proof: if T is feasible and A > 0, then

fol#) = L(E,\,v) > inf L(z, \,v) = g(\,»)
xre

minimizing over all feasible = gives p* > g(A,v)
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Least-norm solution of linear equations

minimize zlx

subject to Ax =1b
dual function
e Lagrangianis L(z,v) = 22 + v1(Az — b)

e to minimize L over x, set gradient equal to zero:

Vol(z,v) =22+ A'v=0 = z=—(1/2)A"v

e plug in in L to obtain g:
1
g(v) = L((-1/2)ATv,v) = —ZI/TAATV — bl
a concave function of v

lower bound property: p* > —(1/4)vT AATY — b1y for all v
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Standard form LP

minimize ¢!z

subjectto Ar=b, x>0
dual function
e Lagrangian is
Lz, \v) = cao+vi(Az—-b) - o
= b+ (c+ATv-—N'x
e [ is affine in z, hence

by ATy —A+c¢=0
— 00 otherwise

g\, v) =inf L(z,\,v) = {
g is linear on affine domain {(\,v) | AYv — XA+ ¢ = 0}, hence concave

lower bound property: p* > —blv if ATv+c¢>0
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Equality constrained norm minimization
minimize |||
subject to Ax =1b

dual function

vlv  ||ATY]. <1

_ T T N _
9(v) —12f(\\x|\ v Az +biv) { —oo0  otherwise

where ||v||. = sup,,j<; " v is dual norm of || - |

proof: follows from inf,(||z|| — y'z) = 0 if ||y||« < 1, —oo otherwise
o if ||ly|l« <1, then ||z]| — y'z > 0 for all 2, with equality if z =0

o if [|y|l. > 1, choose = = tu where [ju]] < 1, uly = ||y||. > 1:
|zl =y = t(llul] = [lyll.) — —c0 ast — o0

lower bound property: p* > bl if |ATv]], <1
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Two-way partitioning

minimize zIWzx
subjectto 2?2 =1, i=1,...,n

e a nonconvex problem; feasible set contains 2" discrete points

e interpretation: partition {1,...,n} in two sets; W;, is cost of assigning
i, j to the same set; —W,; is cost of assigning to different sets

dual function

g(v) = inf(z? Wz + Z vi(z? —1)) = infa? (W + diag(v))z — 17v

x

B —11Tv W +diag(v) = 0
- —00 otherwise

lower bound property: p* > —11v if W + diag(v) = 0
example: v = —Apin(W)1 gives bound p* > nAyin(W)
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Lagrange dual and conjugate function

minimize  fo(x)
subjectto Ax <b, Czx=d

dual function

g\, v) inf (fo(z)+ (A" X+ C"v) 'z —b"N—d'v)

rxedom fj

= —fr(=AT'N=CTv)—bvI'X—d'v

e recall definition of conjugate f*(y) = Sup,cqom s (' = — f())

e simplifies derivation of dual if conjugate of fj is kown

example: entropy maximization

n

mn
= E x;log x;, edi™
i=1

1=1
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The dual problem

Lagrange dual problem

maximize g(\,v)
subjectto A >0

e finds best lower bound on p*, obtained from Lagrange dual function
e a convex optimization problem; optimal value denoted d*
e )\, v are dual feasible if A = 0, (A\,) € dom g

e often simplified by making implicit constraint (A, ) € dom g explicit

example: standard form LP and its dual (page 5-5)

minimize clx maximize —blv
subject to Az =0b subject to ATv 4+ ¢ >0
x>0
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Weak and strong duality
weak duality: d* < p*
e always holds (for convex and nonconvex problems)

e can be used to find nontrivial lower bounds for difficult problems

for example, solving the SDP

maximize —11v
subject to W + diag(v) = 0

gives a lower bound for the two-way partitioning problem on page 57
strong duality: d* = p*
e does not hold in general

e (usually) holds for convex problems

e conditions that guarantee strong duality in convex problems are called
constraint qualifications
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Slater’s constraint qualification

strong duality holds for a convex problem
minimize

fo(z)
subject to  fi(x) <0, i=1,...,m
Axr =0

if it is strictly feasible, 7.e.,

dr € int D : filz) <0, i=1,...,m, Ax =D

e also guarantees that the dual optimum is attained (if p* > —o0)

e can be sharpened: e.g., can replace int D with relint D (interior

relative to affine hull); linear inequalities do not need to hold with strict
inequality, . . .

e there exist many other types of constraint qualifications
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Inequality form LP

primal problem

minimize clzx

subject to Ax <b

dual function

g(\) = inf ((c+ AT )T g — bT)\) —

x

TN ATA+¢=0
— 00 otherwise

dual problem
maximize —b1 )\
subjectto ATA4+c=0, A>0

e from Slater’'s condition: p* = d* if Axz < b for some ¥

e in fact, p* = d* except when primal and dual are infeasible
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Quadratic program

primal problem (assume P € S” )
minimize 2! Px
subject to Az <b

dual function

g(A) = inf (azTPa; + )\T(Ax _ b)) —

X

—%ATAP”ATA — b\

dual problem
maximize —(1/HNTAP7TATN — b1\
subject to A >0

e from Slater’s condition: p* = d* if Ax < b for some ¥

e in fact, p* = d* always

5-13
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A nonconvex problem with strong duality

minimize z? Ax + 2b%x
subject to z'z <1

A % 0, hence nonconvex
dual function: g(\) = inf, (21 (A + M)z + 2012 — \)
e unbounded below if A+ Al /#0orif A+ Al = 0and b¢g R(A+ \)

e minimized by x = —(A + M\ )Th otherwise: g(\) = —bT (A + XI)Tb — X

dual problem and equivalent SDP:

maximize —bT (A + \I)Th — ) maximize —t— A
subjectto A+ A >0 : A+ b
be R(A+ ) subject to [ T ] =

strong duality although primal problem is not convex (not easy to show)
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Geometric interpretation

for simplicity, consider problem with one constraint fi(x) <0

interpretation of dual function:

o) = inf (t+Xu).  where G={(i(2).fol@) |z € D)

e \u+t=g(\)is (non-vertical) supporting hyperplane to G
e hyperplane intersects t-axis at t = g(\)
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epigraph variation: same interpretation if G is replaced with

A= {(u,t) | fi(x) <wu, fo(xr) <t for some x € D}
t

A

\u+t = g()\)\p
g(N)

strong duality

e holds if there is a non-vertical supporting hyperplane to A at (0, p*)

e for convex problem, A is convex, hence has supp. hyperplane at (0, p*)

~

e Slater's condition: if there exist (u,t) € A with @ < 0, then supporting
hyperplanes at (0, p*) must be non-vertical
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Complementary slackness

*

assume strong duality holds, x* is primal optimal, (A\*, v*) is dual optimal

inf (fo<x> RHOEDS v:hi<:c>>

< fola) + D N filat) + ) vihi(a?)
1=1 1 =1
< fo(z")

fo(z") = g(A*,v7)

hence, the two inequalities hold with equality
e x* minimizes L(xz, \*,v*)

e \'fi(x*) =0fori=1,...,m (known as complementary slackness):

N> 0= fi(z*) =0, filz*) <0= A\ =0
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Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with
differentiable f;, h;):

1. primal constraints: f;(z) <0,i=1,...,m, hi(x) =0,i=1,...,p
2. dual constraints: A = 0
3. complementary slackness: \;fi(z) =0,1=1,...,m

4. gradient of Lagrangian with respect to x vanishes:

V fo(z +§:AVﬂ +§:%Vh

from page 5-17: if strong duality holds and x, A, v are optimal, then they
must satisfy the KK'T conditions
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KKT conditions for convex problem

~

if x, \, U satisfy KKT for a convex problem, then they are optimal:

e from complementary slackness: fo(2) = L(Z, A, )

~

hence, fo() = g(A, )

if Slater’s condition is satisfied:

x is optimal if and only if there exist A, v that satisfy KKT conditions

e recall that Slater implies strong duality, and dual optimum is attained

e generalizes optimality condition V fy(x) = 0 for unconstrained problem
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example: water-filling (assume «; > 0)

minimize  — Z?:1 log(z; + ;)
subjectto >0, 1lz=1

x Is optimal iff x > O, 172 = 1, and there exist A € R", v € R such that

1

A > O, )\sz — O,
T; + Qy

+ XN =V

o ifr<l/a;: \j=0and z; =1/v — o
o ifv>1/a;: \y=v—1/a; and z; =0

e determine v from 172z =>"" max{0,1/v —a;} =1

interpretation

e n patches; level of patch 7 is at height «; Lo
1 %4
|

e flood area with unit amount of water

e resulting level is 1/v*
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Perturbation and sensitivity analysis
(unperturbed) optimization problem and its dual
minimize  fo(x) maximize g(\,v)

subject to  fi(x) <0, ¢=1,....,m subject to A >0
hi(x) =0, i=1,...,p

perturbed problem and its dual

min. fo(x) max. g(\,v)—ulX—ovly
st.  filx) <wy, i=1,....m st. A>0
hi() =vi, 1=1,...,p

e x is primal variable; u, v are parameters
e p*(u,v) is optimal value as a function of u, v

e we are interested in information about p*(u,v) that we can obtain from
the solution of the unperturbed problem and its dual
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global sensitivity result

assume strong duality holds for unperturbed problem, and that \*, v* are
dual optimal for unperturbed problem

apply weak duality to perturbed problem:

Ple) = g ) —uTA = Ty
= p*(0,0) —u' N —o'V*

sensitivity interpretation

e if \* large: p* increases greatly if we tighten constraint ¢ (u; < 0)
e if \¥ small: p* does not decrease much if we loosen constraint i (u; > 0)

o if v large and positive: p* increases greatly if we take v; < 0;
if v large and negative: p* increases greatly if we take v; > 0

e if v small and positive: p* does not decrease much if we take v; > 0;
if v small and negative: p* does not decrease much if we take v; < 0
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local sensitivity: if (in addition) p*(u, v) is differentiable at (0,0), then

v w00 9(0.0)

¢ 8uz ¢ c%z-

proof (for A¥): from global sensitivity result,

ap*(oa O) p*<t€i7 O) o p*(oa O) >

= i —\¥
Ou; t{% t - !
ou; t 0 t

hence, equality

p*(u) for a problem with one (inequality)
constraint:

p* (u)

p*(0) — \u
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Duality and problem reformulations

e equivalent formulations of a problem can lead to very different duals

e reformulating the primal problem can be useful when the dual is difficult
to derive, or uninteresting

common reformulations

e introduce new variables and equality constraints
e make explicit constraints implicit or vice-versa

e transform objective or constraint functions

e.g., replace fo(x) by oé(fo(x)) with ¢ convex, increasing
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Introducing new variables and equality constraints

minimize  fo(Ax + b)

e dual function is constant: g = inf, L(z) = inf, fo(Ax + b) = p*

e we have strong duality, but dual is quite useless

reformulated problem and its dual

minimize  fo(y) maximize blv — fi(v)
subject to Ax+b—y =0 subject to A'v =0

dual function follows from
g(v) = mf(fo(y) —viy+vi Az +0'v)
T,y

_ {—f{{(y)+bTV Aty =0

—00 otherwise
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norm approximation problem: minimize ||Ax — b||

minimize  ||y||
subjectto y=Ax —b

can look up conjugate of || - ||, or derive dual directly

g(v) = f(|lyll+ vy — v Az +b7v)
x7y

[ Vot (] +0Ty) ATy =0
- —00 otherwise

B vlv Altv =0, |v|s<1
—0o0 otherwise

(see page 5—4)

dual of norm approximation problem

maximize blv
subject to ATv =0, |v|.<1
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Implicit constraints

LP with box constraints: primal and dual problem

minimize c¢l'x maximize —blv — 1T ;1 — 17\,
subject to Ax =0b subjectto c+ ATv+ X =Xy =0
—-1=<z=x1 A=0, A2=0

reformulation with box constraints made implicit

e —1<2x=<1
00 otherwise

minimize  fo(z) = {
subject to Az =1b
dual function
glv) = _1i<n£<1(cT:z: + v (Az — b))
= —blv—||ATv + |

dual problem: maximize —b1v — ||ATv + ¢|;

Duality

5-27



Problems with generalized inequalities

minimize  fo(x)
subject to  fi(z) <k, 0, i=1,...,m
hz():O, ’i:l,...,p

=<k, Is generalized inequality on R”i

definitions are parallel to scalar case:

e Lagrange multiplier for f;(x) <k, 0 is vector \; € R¥

e Lagrangian L: R" x R"' x ... x R"™ x R? — R, is defined as

L(:E, ALy s Am, V) — fO(aj) + Z )‘szz(x) + Z Vihi(x)
1=1 1=1

e dual function g : R ... x R" x R? — R, is defined as

g(A1, .o s A, v) = inf L(x, A1, A, V)

xeD
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lower bound property: if A; = 0, then g(A1, -y A, V) < p*

proof: if T is feasible and A EK; 0, then

SR

fo(z) > fo(i’f)+z>\ffi(f)+ZVihi(f)

> inf L(xz, A1, ..., Am, V)

xeD
= g()\l,...,)\m,l/)
minimizing over all feasible & gives p* > g(A1,..., A\, V)
dual problem
maximize  g(A1,..., Am, V)
subject to  \; ~ K 0, 2=1,....m

e weak duality: p* > d* always

e strong duality: p* = d* for convex problem with constraint qualification
(for example, Slater’s: primal problem is strictly feasible)
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Semidefinite program

primal SDP (F;, G € S%)
minimize ¢’z
subjectto x1F1+---+x,F, G
e Lagrange multiplier is matrix Z € S*
e Lagrangian L(z,Z) =cla +tr (Z(z1F1 + -+ + 2, F, — Q))

e dual function

9(Z) = igf[’(% Z) = { — 00 otherwise

dual SDP

maximize —tr(GZ2)
subjectto Z >0, tr(F;Z)+c¢;=0, i=1,...,n

—tr(GZ) tr(FiZ)+c¢; =0, i=1,...

, N

p* = d* if primal SDP is strictly feasible (3 with 21 F} + - - - 4+ 2, F,, < G)
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