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� � 

Lagrangian 

standard form problem (not necessarily convex) 

minimize f0(x) 
subject to fi(x) ≤ 0, i = 1, . . . , m 

hi(x) = 0, i = 1, . . . , p 

variable x ∈ Rn, domain D, optimal value p ⋆ 

Lagrangian: L : Rn × Rm × Rp → R, with dom L = D × Rm × Rp , 

m p 

L(x, λ, ν) = f0(x) + λifi(x) + νihi(x) 
i=1 i=1 

• weighted sum of objective and constraint functions 

• λi is Lagrange multiplier associated with fi(x) ≤ 0 

• νi is Lagrange multiplier associated with hi(x) = 0 
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� � 
� � 

Lagrange dual function


Lagrange dual function: g : Rm × Rp → R, 

g(λ, ν) = inf L(x, λ, ν) 
x∈D 

m p 

= inf f0(x) + λifi(x) + νihi(x) 
x∈D 

i=1 i=1 

g is concave, can be −∞ for some λ, ν 

⋆lower bound property: if λ � 0, then g(λ, ν) ≤ p 

proof: if x̃ is feasible and λ � 0, then 

f0(x̃) ≥ L(x̃, λ, ν) ≥ inf L(x, λ, ν) = g(λ, ν) 
x∈D 

minimizing over all feasible x̃ gives p ⋆ ≥ g(λ, ν) 
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Least-norm solution of linear equations


minimize xTx 
subject to Ax = b 

dual function 

• Lagrangian is L(x, ν) = xTx + νT (Ax − b) 

•	 to minimize L over x, set gradient equal to zero: 

∇xL(x, ν) = 2x + ATν = 0 =⇒ x = −(1/2)ATν 

•	 plug in in L to obtain g: 

g(ν) = L((−1/2)ATν, ν) = − 
1 
νTAATν −	 bTν 

4 

a concave function of ν 

lower bound property: p ⋆ ≥ −(1/4)νTAATν − bTν for all ν 
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�


Standard form LP


minimize cTx 
subject to Ax = b, x � 0 

dual function 

• Lagrangian is 

L(x, λ, ν) = c T x + νT (Ax − b) − λT x 

= −bTν + (c + ATν − λ)T x 

• L is affine in x, hence 

−bTν ATν − λ + c = 0 
g(λ, ν) = inf L(x, λ, ν) = 

x −∞ otherwise 

g is linear on affine domain {(λ, ν) | ATν − λ + c = 0}, hence concave 

lower bound property: p ⋆ ≥ −bTν if ATν + c � 0 

Duality 5–5 



� 

Equality constrained norm minimization


minimize �x� 
subject to Ax = b 

dual function 

g(ν) = inf (�x� − νTAx + bTν) = 
bTν �ATν�∗ ≤ 1 

x −∞ otherwise 

where �v�∗ = sup‖u‖≤1 u
Tv is dual norm of � · � 

proof: follows from infx(�x� − yTx) = 0 if �y�∗ ≤ 1, −∞ otherwise 

• if �y�∗ ≤ 1, then �x� − yTx ≥ 0 for all x, with equality if x = 0 

• if �y�∗ > 1, choose x = tu where �u� ≤ 1, uTy = �y�∗ > 1: 

�x� − y T x = t(�u� − �y�∗) → −∞ as t → ∞ 

lower bound property: p ⋆ ≥ bTν if �ATν�∗ ≤ 1 
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� 

� 

Two-way partitioning


minimize xTWx 
subject to xi 

2 = 1, i = 1, . . . , n 

•	 a nonconvex problem; feasible set contains 2n discrete points 

•	 interpretation: partition {1, . . . , n} in two sets; Wij is cost of assigning 
i, j to the same set; −Wij is cost of assigning to different sets 

dual function 

g(ν) = inf (x TWx + νi(xi 
2 − 1)) = inf x T (W + diag(ν))x − 1Tν 

x	 x 
i 

−1Tν W + diag(ν) � 0 
= 

−∞ otherwise 

lower bound property: p ⋆ ≥ −1Tν if W + diag(ν) � 0 

example: ν = −λmin(W )1 gives bound p ⋆ ≥ nλmin(W ) 
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� � 

Lagrange dual and conjugate function


minimize f0(x)

subject to Ax � b, Cx = d


dual function 

g(λ, ν) = inf 
� 
f0(x) + (ATλ + CTν)T x − bTλ − dTν 

� 

x∈dom f0 

= −f0 
∗ (−ATλ − CTν) − bTλ − dTν 

• recall definition of conjugate f∗(y) = supx∈dom f(yTx − f(x)) 

• simplifies derivation of dual if conjugate of f0 is kown 

example: entropy maximization 

n n 

f0(x) = xi log xi, f0 
∗ (y) = eyi−1 

i=1 i=1 
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The dual problem 

Lagrange dual problem 

maximize g(λ, ν) 
subject to λ � 0 

• finds best lower bound on p ⋆, obtained from Lagrange dual function 

• a convex optimization problem; optimal value denoted d⋆ 

• λ, ν are dual feasible if λ � 0, (λ, ν) ∈ dom g 

• often simplified by making implicit constraint (λ, ν) ∈ dom g explicit 

example: standard form LP and its dual (page 5–5) 

minimize	 cTx maximize −bTν 
subject to	 Ax = b subject to ATν + c � 0 

x � 0 
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Weak and strong duality 

weak duality: d⋆ ≤ p ⋆ 

•	 always holds (for convex and nonconvex problems) 

•	 can be used to find nontrivial lower bounds for difficult problems 

for example, solving the SDP 

maximize −1Tν 
subject to W + diag(ν) � 0 

gives a lower bound for the two-way partitioning problem on page 5–7 

strong duality: d⋆ = p ⋆ 

•	 does not hold in general 

•	 (usually) holds for convex problems 

•	 conditions that guarantee strong duality in convex problems are called 
constraint qualifications 
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Slater’s constraint qualification


strong duality holds for a convex problem 

minimize	 f0(x) 
subject to	 fi(x) ≤ 0, i = 1, . . . , m 

Ax = b 

if it is strictly feasible, i.e., 

∃x ∈ int D : fi(x) < 0, i = 1, . . . , m, Ax = b 

•	 also guarantees that the dual optimum is attained (if p ⋆ > −∞) 

•	 can be sharpened: e.g., can replace int D with relint D (interior 
relative to affine hull); linear inequalities do not need to hold with strict 
inequality, . . . 

•	 there exist many other types of constraint qualifications 
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� 

Inequality form LP


primal problem 
minimize cTx 
subject to Ax � b 

dual function 

g(λ) = inf 
� 
(c + ATλ)T x − bTλ 

� 
= 

−bTλ ATλ + c = 0 
x −∞ otherwise 

dual problem 
maximize −bTλ 
subject to ATλ + c = 0, λ � 0 

• from Slater’s condition: p ⋆ = d⋆ if Ax̃ ≺ b for some x̃

• in fact, p ⋆ = d⋆ except when primal and dual are infeasible 
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Quadratic program 

primal problem (assume P ∈ Sn )++

minimize xTPx 
subject to Ax � b 

dual function 

g(λ) = inf 
� 
x TPx + λT (Ax − b) 

� 
= − 

1 
λTAP−1ATλ − bTλ 

x 4 

dual problem 

maximize −(1/4)λTAP−1ATλ − bTλ 
subject to λ � 0 

• from Slater’s condition: p ⋆ = d⋆ if Ax̃ ≺ b for some x̃

• in fact, p ⋆ = d⋆ always 
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�	 � 

A nonconvex problem with strong duality


minimize xTAx + 2bTx 
subject to xTx ≤ 1 

A �� 0, hence nonconvex 

dual function: g(λ) = infx(xT (A + λI)x + 2bTx − λ) 

• unbounded below if A + λI �� 0 or if A + λI � 0 and b �∈ R(A + λI) 

• minimized by x = −(A + λI)†b otherwise: g(λ) = −bT (A + λI)†b − λ 

dual problem and equivalent SDP: 

maximize	 −bT (A + λI)†b − λ maximize −t − λ 
subject to	 A + λI � 0 A + λI b 

b ∈ R(A + λI) 
subject to 

bT t 
� 0 

strong duality although primal problem is not convex (not easy to show) 
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Geometric interpretation 

for simplicity, consider problem with one constraint f1(x) ≤ 0 

interpretation of dual function: 

g(λ) = inf (t + λu), where G = {(f1(x), f0(x)) | x ∈ D} 
(u,t)∈G 

G 

p ⋆ 

g(λ) 
λu + t = g(λ) 

t 

u 

G 

p ⋆ 

d ⋆ 

t 

u 

• λu + t = g(λ) is (non-vertical) supporting hyperplane to G 

• hyperplane intersects t-axis at t = g(λ) 
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epigraph variation: same interpretation if G is replaced with 

A = {(u, t) | f1(x) ≤ u, f0(x) ≤ t for some x ∈ D} 

t 

λu + t = g(λ) 

A 

p ⋆ 

g(λ) 
u 

strong duality 

• holds if there is a non-vertical supporting hyperplane to A at (0, p ⋆) 

• for convex problem, A is convex, hence has supp. hyperplane at (0, p ⋆) 

• Slater’s condition: if there exist (˜ t) ∈ A with ˜u, ˜ u < 0, then supporting 
hyperplanes at (0, p ⋆) must be non-vertical 
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� � 
� � 

� � 

Complementary slackness


assume strong duality holds, x ⋆ is primal optimal, (λ⋆, ν⋆) is dual optimal 

m p 

f0(x ⋆ ) = g(λ ⋆ , ν ⋆ ) = inf f0(x) + λi
⋆ fi(x) + νi

⋆ hi(x) 
x 

i=1 i=1 

m p 

≤ f0(x ⋆ ) + λi
⋆ fi(x ⋆ ) + νi

⋆ hi(x ⋆ ) 
i=1 i=1 

≤ f0(x ⋆ ) 

hence, the two inequalities hold with equality 

• x ⋆ minimizes L(x, λ⋆, ν⋆) 

• λi
⋆fi(x ⋆) = 0 for i = 1, . . . , m (known as complementary slackness): 

λ ⋆i > 0 =⇒ fi(x ⋆ ) = 0, fi(x ⋆ ) < 0 =⇒ λi
⋆ = 0 

Duality 5–17 



� �


Karush-Kuhn-Tucker (KKT) conditions


the following four conditions are called KKT conditions (for a problem with 
differentiable fi, hi): 

1. primal constraints: fi(x) ≤ 0, i = 1, . . . , m, hi(x) = 0, i = 1, . . . , p 

2. dual constraints: λ � 0 

3. complementary slackness: λifi(x) = 0, i = 1, . . . , m 

4. gradient of Lagrangian with respect to x vanishes: 

m p 

∇f0(x) + λi∇fi(x) + νi∇hi(x) = 0 
i=1 i=1 

from page 5–17: if strong duality holds and x, λ, ν are optimal, then they 
must satisfy the KKT conditions 
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KKT conditions for convex problem


if x̃, λ̃, ν̃ satisfy KKT for a convex problem, then they are optimal: 

˜• from complementary slackness: f0(x̃) = L(x̃, λ, ν̃) 

• from 4th condition (and convexity): g(˜ ν) = L(˜ λ, ν̃)λ, ˜ x, ˜

hence, f0(x̃) = g(˜ ν)λ, ˜

if Slater’s condition is satisfied:


x is optimal if and only if there exist λ, ν that satisfy KKT conditions


• recall that Slater implies strong duality, and dual optimum is attained 

• generalizes optimality condition ∇f0(x) = 0 for unconstrained problem 
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example: water-filling (assume αi > 0)


minimize − 
�n

i=1 log(xi + αi) 
subject to x � 0, 1Tx = 1 

x is optimal iff x � 0, 1Tx = 1, and there exist λ ∈ Rn , ν ∈ R such that 

1 
λ � 0, λixi = 0, + λi = ν 

xi + αi 

• if ν < 1/αi: λi = 0 and xi = 1/ν − αi 

• if ν ≥ 1/αi: λi = ν − 1/αi and xi = 0 

• determine ν from 1Tx = 
�n

i=1 max{0, 1/ν − αi} = 1 

interpretation 

• n patches; level of patch i is at height αi 
1/ν ⋆ 

xi 
• flood area with unit amount of water 

αi 

• resulting level is 1/ν⋆ 

i 
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Perturbation and sensitivity analysis


(unperturbed) optimization problem and its dual 

minimize f0(x) maximize g(λ, ν) 
subject to fi(x) ≤ 0, i = 1, . . . , m subject to λ � 0 

hi(x) = 0, i = 1, . . . , p 

perturbed problem and its dual 

min.	 f0(x) max. g(λ, ν) − uTλ − vTν 
s.t.	 fi(x) ≤ ui, i = 1, . . . , m s.t. λ � 0


hi(x) = vi, i = 1, . . . , p


•	 x is primal variable; u, v are parameters 

•	 p ⋆(u, v) is optimal value as a function of u, v 

•	 we are interested in information about p ⋆(u, v) that we can obtain from 
the solution of the unperturbed problem and its dual 
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global sensitivity result 

assume strong duality holds for unperturbed problem, and that λ⋆ , ν⋆ are 
dual optimal for unperturbed problem 

apply weak duality to perturbed problem: 

p ⋆ (u, v)	 ≥ g(λ ⋆ , ν ⋆ ) − u Tλ ⋆ − v Tν ⋆ 

= p ⋆ (0, 0) − u Tλ ⋆ − v Tν ⋆ 

sensitivity interpretation 

•	 if λ⋆
i large: p ⋆ increases greatly if we tighten constraint i (ui < 0) 

•	 if λ⋆
i small: p ⋆ does not decrease much if we loosen constraint i (ui > 0) 

•	 if νi
⋆ large and positive: p ⋆ increases greatly if we take vi < 0; 

if νi
⋆ large and negative: p ⋆ increases greatly if we take vi > 0 

•	 if νi
⋆ small and positive: p ⋆ does not decrease much if we take vi > 0; 

if νi
⋆ small and negative: p ⋆ does not decrease much if we take vi < 0 
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local sensitivity: if (in addition) p ⋆(u, v) is differentiable at (0, 0), then


λ ⋆i = −
∂p⋆(0, 0) 

, ν ⋆ = −
∂p⋆(0, 0) 

∂ui
i ∂vi 

proof (for λ⋆
i ): from global sensitivity result, 

∂p⋆(0, 0) p ⋆(tei, 0) − p ⋆(0, 0) 
= lim ≥ −λ ⋆ 

∂ui tց0 t i 

∂p⋆(0, 0) 
= lim 

p ⋆(tei, 0) − p ⋆(0, 0) 
≤ −λ ⋆i∂ui tր0 t 

hence, equality 

p ⋆(u) for a problem with one (inequality) 
constraint: u 

p ⋆ (u)u = 0 

p⋆ (0) − λ⋆u
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Duality and problem reformulations


•	 equivalent formulations of a problem can lead to very different duals 

•	 reformulating the primal problem can be useful when the dual is difficult 
to derive, or uninteresting 

common reformulations 

•	 introduce new variables and equality constraints 

•	 make explicit constraints implicit or vice-versa 

•	 transform objective or constraint functions 

e.g., replace f0(x) by φ(f0(x)) with φ convex, increasing 
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� 

Introducing new variables and equality constraints


minimize f0(Ax + b) 

⋆ • dual function is constant: g = infx L(x) = infx f0(Ax + b) = p 

• we have strong duality, but dual is quite useless 

reformulated problem and its dual 

minimize f0(y) maximize bTν − f0 
∗(ν) 

subject to Ax + b − y = 0 subject to ATν = 0 

dual function follows from 

g(ν) = inf (f0(y) − νT y + νTAx + bTν) 
x,y 

−f0 
∗(ν) + bTν ATν = 0 

= 
−∞ otherwise 
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� 

� 

norm approximation problem: minimize �Ax − b� 

minimize �y� 
subject to y = Ax − b 

can look up conjugate of � · �, or derive dual directly 

g(ν) = inf (�y� + νT y − νTAx + bTν) 
x,y 

bTν + infy(�y� + νTy) ATν = 0 
= 

−∞ otherwise 

bTν ATν = 0, �ν�∗ ≤ 1 
= 

−∞ otherwise 

(see page 5–4) 

dual of norm approximation problem 

maximize bTν 
subject to ATν = 0, �ν�∗ ≤ 1 
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Implicit constraints


LP with box constraints: primal and dual problem 

minimize cTx maximize −bTν − 1Tλ1 − 1Tλ2


subject to Ax = b subject to c + ATν + λ1 − λ2 = 0

−1 � x � 1 λ1 � 0, λ2 � 0


reformulation with box constraints made implicit 

cTx −1 � x � 1 
minimize f0(x) = 

∞ otherwise 
subject to Ax = b 

dual function 

g(ν) = inf (c T x + νT (Ax − b)) 
−1�x�1 

= −bTν − �ATν + c�1 

dual problem: maximize −bTν − �ATν + c�1 
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�	 � 

Problems with generalized inequalities 

minimize	 f0(x) 
subject to	 fi(x) �Ki 

0, i = 1, . . . , m 
hi(x) = 0, i = 1, . . . , p 

�Ki 
is generalized inequality on Rki 

definitions are parallel to scalar case: 

• Lagrange multiplier for fi(x) �Ki 
0 is vector λi ∈ R

ki 

• Lagrangian L	 : Rn × Rk1 × · · · × Rkm × Rp → R, is defined as 

m	 p 

L(x, λ1, · · · , λm, ν) = f0(x) + λi
Tfi(x) + νihi(x) 

i=1 i=1 

•	 dual function g : Rk1 × · · · × Rkm × Rp → R, is defined as 

g(λ1, . . . , λm, ν) = inf L(x, λ1, · · · , λm, ν) 
x∈D 
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�	 � 

⋆lower bound property: if λi �K∗ 0, then g(λ1, . . . , λm, ν) ≤ p
i 

proof: if x̃ is feasible and λ �K∗ 0, then 
i 

m	 p 

f0(x̃) ≥ f0(x̃) + λT
i fi(x̃) + νihi(x̃) 

i=1 i=1 

≥ inf L(x, λ1, . . . , λm, ν) 
x∈D 

= g(λ1, . . . , λm, ν) 

minimizing over all feasible x̃ gives p ⋆ ≥ g(λ1, . . . , λm, ν) 

dual problem 

maximize g(λ1, . . . , λm, ν) 
subject to λi �K∗ 0, i = 1, . . . , m 

i 

•	 weak duality: p ⋆ ≥ d⋆ always 

•	 strong duality: p ⋆ = d⋆ for convex problem with constraint qualification 
(for example, Slater’s: primal problem is strictly feasible) 
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� 

Semidefinite program


primal SDP (Fi, G ∈ Sk) 

minimize cTx 
subject to x1F1 + · · · + xnFn � G 

• Lagrange multiplier is matrix Z ∈ Sk 

• Lagrangian L(x, Z) = cTx + tr (Z(x1F1 + · · · + xnFn − G)) 

• dual function 

− tr(GZ) tr(FiZ) + ci = 0, i = 1, . . . , n 
g(Z) = inf L(x, Z) = 

x −∞ otherwise 

dual SDP 

maximize − tr(GZ)

subject to Z � 0, tr(FiZ) + ci = 0, i = 1, . . . , n


p ⋆ = d⋆ if primal SDP is strictly feasible (∃x with x1F1 + · · · + xnFn ≺ G) 
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