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Optimization problem in standard form

minimize  fo(z)
subject to  fi(x) <

e © € R" is the optimization variable
e fo: R" — R is the objective or cost function
e /;:R" =R, i=1,...,m, are the inequality constraint functions

e h; : R" — R are the equality constraint functions
optimal value:
p* = inf{fo(z) | fi(x) <0, i=1,...,m, hi(x) =0, i =1,...,p}

e p* = ¢ if problem is infeasible (no x satisfies the constraints)

e p* = —oo if problem is unbounded below
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Optimal and locally optimal points

x is feasible if € dom f; and it satisfies the constraints
a feasible x is optimal if fy(x) = p*; X,pt is the set of optimal points

x is locally optimal if there is an R > 0 such that = is optimal for

minimize (over z) fo(2)

subject to fi(z) <0, i=1,....,m, hi(z)=0, i=1,...

Iz =zl < R

examples (with n =1, m = p = 0)

e fo(r)=1/x, dom fy =R, : p* =0, no optimal point

e fo(r)=—logx, dom fy =R,,: p* = -

e fo(r)==xlogx, dom fy =Ry : p* = —1/e, x = 1/e is optimal
e fo(x) =a°— 3z, p* = —o0, local optimum at z =1

Convex optimization problems



Implicit constraints

the standard form optimization problem has an implicit constraint
m p
xeD= ﬂdomfi N ﬂdomhi,

e we call D the domain of the problem
e the constraints f;(x) <0, h;(x) = 0 are the explicit constraints

e a problem is unconstrained if it has no explicit constraints (m = p = 0)

example:
minimize fo(x) = — Zle log(b; — alx)

is an unconstrained problem with implicit constraints a!z < b;
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Feasibility problem

find T
subject to  fi(z) <0, i=1,...,m
hz(x) — 07 1 =1, 5D

can be considered a special case of the general problem with fo(x) = 0:

minimize 0

e p* = 0 if constraints are feasible; any feasible x is optimal

e p* = oo Iif constraints are infeasible
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Convex optimization problem

standard form convex optimization problem
minimize  fo(x)

subject to fz(az) i=1,....,m
a; aj—bz, r1=1,...,p

e fo, f1, ..., fm are convex; equality constraints are affine

e problem is quasiconvex if fy is quasiconvex (and f1, ..., fm convex)

often written as

minimize  fy(x)
subject to fz( ) <0, i=1,....m
Ax =0

important property: feasible set of a convex optimization problem is convex
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example

minimize  fo(x) = 27 + 23
subject to  fi(z) = x1/(1+23) <0
e fy is convex; feasible set {(x1,x2) | 1 = —x2 < 0} is convex

e not a convex problem (according to our definition): f7 is not convex, hq
is not affine

e equivalent (but not identical) to the convex problem
minimize 2% + 23

subject to x1 <0
xr1 + Io9 = 0
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Local and global optima

any locally optimal point of a convex problem is (globally) optimal
proof: suppose x is locally optimal and y is optimal with fo(y) < fo(x)

x locally optimal means there is an R > 0 such that

z feasible, ||z—z|o <R = fo(2) > fo(x)

consider z = 0y + (1 — 0)x with 8 = R/(2|ly — x||2)

o |[y—x|2>R, s00<6<1/2
e 2 is a convex combination of two feasible points, hence also feasible

e ||[z—x|2=R/2 and

fo(z) < 0fo(z) + (1 —0)foly) < folx)

which contradicts our assumption that x is locally optimal
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Optimality criterion for differentiable f

x Is optimal if and only if it is feasible and

Vfolx) ' (y —x) >0 for all feasible y

if nonzero, V fy(x) defines a supporting hyperplane to feasible set X at z
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e unconstrained problem: x is optimal if and only if

xr € dom f, Vfolx)=0

e equality constrained problem
minimize fo(x) subjectto Ax =10
x is optimal if and only if there exists a v such that

r € dom fo, Ax = b, Vio(x)+ Atv =0

e minimization over nonnegative orthant
minimize fo(x) subjectto x>0

x is optimal if and only if

Vfo(z); >0 x;=0

—
v €domfo,  zz0, {vfo(:v)z:o i > 0
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Equivalent convex problems

two problems are (informally) equivalent if the solution of one is readily
obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

e eliminating equality constraints
minimize  fo(x)
subject to fz( )<0, i=1,....,m
Ax =10
Is equivalent to

minimize (over z) fo(Fz + xg)
subject to filFz4+x9) <0, i=1,...,m

where F' and z( are such that

Ar=b <= x = Fz+ xo for some z
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¢ introducing equality constraints

minimize  fo(Aoz + bo)
subject to  f;(A;x+b;) <0, i=1,...

Is equivalent to

minimize (over z, v;)  fo(yo)

subject to fily;) <0, i=1,...,m

yz:AZI—I—bZ, izO,l,...,m

e introducing slack variables for linear inequalities

minimize  fo(z)
subject to alx <b;, i=1,...,m

Is equivalent to

minimize (over z, s) fo(x)

subject to alr+s;=0b; i=1,...

Convex optimization problems
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e epigraph form: standard form convex problem is equivalent to

minimize (over x, t) t
subject to folx) =t <0
fz( , 1=1,...,m

) -
750

@l/\

Ax

e mMinimizing over some variables

minimize  fo(z1, 72)
subject to  fi(x1) <0, i=1,...,m

Is equivalent to

minimize  fo(z1)
subject to  fi(x1) <0, 1=1,...,m

where fo(z1) = infy, fo(z1, z2)
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Quasiconvex optimization

minimize  fo(z)
subject to  fi(x) <0, i=1,...,m
Az =0

with fy : R" — R quasiconvex, fi, ..., fm convex

can have locally optimal points that are not (globally) optimal
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convex representation of sublevel sets of f

if fo Is quasiconvex, there exists a family of functions ¢; such that:

e ¢.(x) is convex in x for fixed ¢

e t-sublevel set of fj is O-sublevel set of ¢y, i.e.,

fox) <t <= ¢(x) <0

example

with p convex, ¢ concave, and p(x) > 0, g(x) > 0 on dom f

can take ¢;(z) = p(x) — tq(x):
o fort >0, ¢; convex in x

e p(x)/q(x) <t if and only if ¢(x) <O
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quasiconvex optimization via convex feasibility problems

e for fixed t, a convex feasibility problem in z

e if feasible, we can conclude that ¢ > p*; if infeasible, t < p*

Bisection method for quasiconvex optimization

given | < p*, u > p”*, tolerance ¢ > 0.

repeat
L.t:=4+u)/2.
2. Solve the convex feasibility problem (1).
3.if (1) is feasible, u :=t; elsel :=t.
until w — [ < e.

requires exactly [log,((u —1)/€)] iterations (where u, [ are initial values)
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Linear program (LP)

minimize ¢z 4+ d
subject to Gax <X h
Ax =D
e convex problem with affine objective and constraint functions

e feasible set is a polyhedron
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Examples

diet problem: choose quantities z1, .. ., x, of n foods

e one unit of food j costs c;, contains amount a;; of nutrient ¢

e healthy diet requires nutrient 7 in quantity at least b;

to find cheapest healthy diet,

minimize ¢!z

subjectto Axr >b, x>0

piecewise-linear minimization
minimize max;—1 . m,(alx + b;)
equivalent to an LP

minimize t
subject to alx +b; <t, i=1,...,m

Convex optimization problems
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Chebyshev center of a polyhedron

Chebyshev center of
P={x|ale<b,i=1,...,m}

is center of largest inscribed ball

B={ze+ulllullz <7}

e al'z <b; for all x € B if and only if

sup{a; (zc +u) | [lull2 <7} = aj @c + rllaill2 < b;

e hence, x., r can be determined by solving the LP

maximize 7
subject to  alx.+7llais <b;, i=1,...,m
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(Generalized) linear-fractional program

minimize  fo(z)
subject to Gx = h

Ax =D
linear-fractional program
T d
folx) = %, dom fy(z) = {z | e’ 2 + f > 0}

e a quasiconvex optimization problem; can be solved by bisection

e also equivalent to the LP (variables y, z)

minimize ¢’y + dz
subject to Gy =< hz
Ay = bz
ely+ fz=1
z>0

Convex optimization problems

4-20



generalized linear-fractional program

folw) = max SEFh T Gom (@) = (o | €Tt fy > 0, i = 1,... v}
o(T _i:rlil??.(,reiTx+fi’ om fo(x)={x|e;x+f; >0,i=1,...,r

a quasiconvex optimization problem; can be solved by bisection

example: Von Neumann model of a growing economy
maximize (over z, ) min,—y .,z /x;

subject to xt >0, Bzt < Ax

e 1,z € R™: activity levels of n sectors, in current and next period
e (Ax);, (Bx™);: produced, resp. consumed, amounts of good i

e 17 /xz;: growth rate of sector i

allocate activity to maximize growth rate of slowest growing sector
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Quadratic program (QP)

minimize  (1/2)z!' Pz +q¢lz +r
subject to Gx X h
Ax =10

e P c S, so objective is convex quadratic

e minimize a convex quadratic function over a polyhedron

Convex optimization problems
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Examples

least-squares
minimize ||Ax — b||3

e analytical solution 2* = ATh (AT is pseudo-inverse)

e can add linear constraints, e.g., | 2z <X u

linear program with random cost

minimize iz +yxlYr = Ecl'y + yvar(clz)
subjectto Gax < h, Ax =D

e c is random vector with mean ¢ and covariance X

T T

e hence, ¢Lx is random variable with mean &% 2 and variance 21Xz

e v > (0 is risk aversion parameter; controls the trade-off between
expected cost and variance (risk)

Convex optimization problems
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Quadratically constrained quadratic program (QCQP)

minimize  (1/2)z! Pox + ¢ + 179
subject to  (1/2)z'Px+qlz+r; <0, i=1,...,m
Ax =D

e P, € S”; objective and constraints are convex quadratic

o if P,..., P, €S, feasible region is intersection of m ellipsoids and
an affine set
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Second-order cone programming

minimize  flx
subject to ||z +bill2s < clz+d;, i=1,...,m
Fr=g
(A; € R"*" F € RP™™)

e inequalities are called second-order cone (SOC) constraints:

(A + by, C;-rw + d;) € second-order cone in R"it1

e for n; = 0, reduces to an LP; if ¢; = 0, reduces to a QCQP

e more general than QCQP and LP

Convex optimization problems
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Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP
minimize clz
subject to alx <b;, i=1,...,m,

there can be uncertainty in ¢, a;, b;

two common approaches to handling uncertainty (in a;, for simplicity)

e deterministic model: constraints must hold for all a; € &;

minimize cl'z

subject to alx <b;foralla; €&, i=1,...,m,

e stochastic model: a; is random variable; constraints must hold with
probability 7

minimize clzx

subject to prob(alz <b;)>n, i=1,...,m
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deterministic approach via SOCP

e choose an ellipsoid as &;:
E; = {C_Lq; + Pu ‘ HUHQ < 1} (C_LZ' < Rn, P, € Ran)
center is a;, semi-axes determined by singular values/vectors of P;

e robust LP

minimize ¢!z

subject to alx <b; Va; €&, i=1,....m
is equivalent to the SOCP

minimize ey

subject to  alz+ [|[Plz|a <b;, i=1,....,m

(follows from sup,,<1(@: + Piu)'z = aj z + || P z||2)

Convex optimization problems
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stochastic approach via SOCP

e assume a; is Gaussian with mean a;, covariance ¥; (a; ~ N (a;, %;))

T
)

bz' — C_LTZC
prob(alz < b;) = ® !
|53 %)

e a!z is Gaussian r.v. with mean @z, variance 7 ¥;x; hence

where ®(z) = (1/v/2x) [*_ e~ /2dt is CDF of N(0,1)

e robust LP
minimize c¢lx
subject to prob(alz <b;))>n, i=1,...,m,

with n > 1/2, is equivalent to the SOCP

minimize L'y

subject to  alx + <I>_1(77)H23/2x||2 <b;, i=1,....,m

Convex optimization problems
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Geometric programming

monomial function

ai, a2 an

f(x) = cxitay? - - - xon, dom f =R

with ¢ > 0; exponent a; can be any real number
posynomial function: sum of monomials

K

flz) = eraf™ay? - agnk,  domf =R,
k=1

geometric program (GP)

minimize  fo(z)
subject to  f;(x) <

with f; posynomial, h; monomial
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Geometric program in convex form

change variables to y; = log x;, and take logarithm of cost, constraints

e monomial f(xz) = cx{'---z% transforms to
log f(e¥!,...,e"") =aly+b (b =logc)

. K
e posynomial f(z) =, cxx]Fas?* -+ xn"* transforms to

K
log f(e¥t,...,e¥") = log (Z eagerbk) (b = log ci)
k=1

e geometric program transforms to convex problem

minimize  log Zle exp(al,y + b%))
subject to log Zle exp(aly + bzk)> <0, 1=1,....m
Gy+d=20
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Design of cantilever beam

segment 4 segment 3 segment 2 segment 1

\

e NV segments with unit lengths, rectangular cross-sections of size w; X h;

e given vertical force F' applied at the right end

design problem

minimize  total weight
subject to upper & lower bounds on w;, h;

upper bound & lower bounds on aspect ratios h;/w;
upper bound on stress in each segment
upper bound on vertical deflection at the end of the beam

variables: w;, h; fort =1,..., N
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objective and constraint functions

e total weight wihy + --- 4+ wyhy is posynomial

e aspect ratio h;/w; and inverse aspect ratio w;/h; are monomials
e maximum stress in segment i is given by 6iF/(w;h?), a monomial

e the vertical deflection y; and slope v; of central axis at the right end of
segment ¢ are defined recursively as

UV, = 12(Z - 1/2) -+ Vi+1

y, = 6(i—1/3) + Vi1 + Yit1

fori=N,N—1,...,1, with vy11 =yn11 =0 (£ is Young's modulus)

v; and y; are posynomial functions of w, h
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formulation as a GP
minimize wihy +---+wyhy

subject to w -l w; <1, wminwi_lgl, 1=1,...,N

hol hi <1, hpwh; ' <1, i=1,...,N
S—lw th; <1, Spimwh; ' <1, i=1,...,N
6iFol w'h7?2<1, i=1,...,N
Ymaxh1 < 1

note

e we write Wyin < W; < Wmax and hmin < hz < hmax

wmin/wi S 17 wi/wmax S 17 hmin/hi S 17 hi/hmax <1

e we write Spin < h;/w; < Shax as
Sminwi/hi S 17 hi/<szmax) S 1
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Minimizing spectral radius of nonnegative matrix

Perron-Frobenius eigenvalue )\ ¢(A)

e exists for (elementwise) positive A € R"*"
e a real, positive eigenvalue of A, equal to spectral radius max; |A;(A)|
e determines asymptotic growth (decay) rate of A*: A% ~ Agf as k — o0

e alternative characterization: Apf(A) = inf{\ | Av < Av for some v > 0}

minimizing spectral radius of matrix of posynomials

e minimize \,¢(A(z)), where the elements A(z);; are posynomials of x

e equivalent geometric program:

minimize A\
subject to Z?:1 A(CIZ)ZJU]/<)\’01) <1, 72=1,...,n

variables \, v, x
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Generalized inequality constraints

convex problem with generalized inequality constraints

minimize  fy(x)
subject to fz( ) 2k, i=1,....m
Ax =b

e fo:R" = R convex; f; : R" — R* K,-convex w.r.t. proper cone K;
e same properties as standard convex problem (convex feasible set, local
optimum is global, etc.)
conic form problem: special case with affine objective and constraints
minimize ¢’z

subject to Fr+ g <0
Ax =0b

extends linear programming (K = R'") to nonpolyhedral cones
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Semidefinite program (SDP)

minimize ¢!z

subject to x1Fy + a2l + -+ x,F, + G X0
Az = b

with I, G € S”

e inequality constraint is called linear matrix inequality (LMI)

e includes problems with multiple LMI constraints: for example,

AN

o 44y +G =<0, P4 4z,F,+G =0

~

is equivalent to single LMI

F, 0 F, 0 F 0 G 0
N N ety N > 1 =<0
5131[ 0 F1]—|—332[ 0 F2]-|- +x [ 0 Fn]-I—[O G]_
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LP and SOCP as SDP

LP and equivalent SDP

LP: minimize cl'z SDP: minimize clzx

subject to Ax <b subject to diag(Ax —b) =0

(note different interpretation of generalized inequality <)

SOCP and equivalent SDP

SOCP: minimize flx
subject to  ||Ajz + il < clz+d;, i=1,...,m

SDP: minimize flx
subject to (Az + )7 Lo+ d, ~0, 72=1,...,m
4-37
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Eigenvalue minimization

minimize Apax(A(x))
where A(z) = Ao + z1 41 + - - + 2, A,, (with given 4; € %)
equivalent SDP

minimize ¢
subject to A(x) < tI

e variables z € R", t € R

e follows from
Amax(A) <t <— A=<tI
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Matrix norm minimization

minimize [ A()]|2 = (Amax(A(z) " A(2)))
where A(x) = Ag+ 2141 + - - - + x, A, (with given A; € RP™*Y)
equivalent SDP

minimize ¢

subject to ¢
ubj A(

e variables x € R", t € R

e constraint follows from
[Alls <t <= A"A<tI, t>0

tI A
[AT tl]io
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Vector optimization
general vector optimization problem

minimize (w.r.t. K) fo(x)
subject to fi(z)

<0, z2=1,....,m
hi(x) <0, 1

vector objective fp : R” — RY, minimized w.r.t. proper cone K € R?

convex vector optimization problem

minimize (w.r.t. K) fo(z

)
subject to filz) <0, i=1,...,m
Axr =10

with fo K-convex, f1, ...,

Convex optimization problems
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Optimal and Pareto optimal points

set of achievable objective values

O = {fo(z) | x feasible}

e feasible z is optimal if fy(x) is a minimum value of O

o feasible x is Pareto optimal if fy(x) is a minimal value of O

fo(xP?)

fo(z™)

2™ is optimal 2P is Pareto optimal
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Multicriterion optimization
vector optimization problem with K = R%.
folz) = (Fi(x), ..., Fq(x))

e ¢ different objectives Fj; roughly speaking we want all F;'s to be small

e feasible x* is optimal if
yfeasible = fo(a*) < fo()

if there exists an optimal point, the objectives are noncompeting

e feasible xP° is Pareto optimal if

y feasible,  fo(y) = fo(2°) = fo(2™) = fo(y)

if there are multiple Pareto optimal values, there is a trade-off between
the objectives
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Regularized least-squares

minimize (w.r.t. Ri) (|| Az — b3, ||z]|3)

0 10 20 30 40 50

Fi(z) = || Az — bl|3

example for A € R100x10. heavy line is formed by Pareto optimal points
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Risk return trade-off in portfolio optimization

minimize (w.r.t. R%) plx, 2! )

(_p y L
subject to 17z2=1, x>0

e 2 € R" is investment portfolio; x; is fraction invested in asset 4

e p € R" is vector of relative asset price changes; modeled as a random
variable with mean p, covariance

e pl'z = Er is expected return; ! ¥z = varr is return variance

example
15%; ‘ ‘ 4
x(4)) =(3) x(2)
c 8
% 10%" .5
L S 0.5 4
(g} O
GE) 5%+ =
0,
0% 504 10% 20% 0% 10% 20%
standard deviation of return standard deviation of return
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Scalarization

to find Pareto optimal points: choose A >+ 0 and solve scalar problem

minimize A fo(2)
subject to  f;(z) <0, i=1,...,m
hZ(ZC):O, iZl,...,p

if x is optimal for scalar problem,
then it is Pareto-optimal for vector
optimization problem

for convex vector optimization problems, can find (almost) all Pareto
optimal points by varying A > g+ 0
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Scalarization for multicriterion problems

to find Pareto optimal points, minimize positive weighted sum

M fo(z) = MF1(x) + -+ + A Fy(x)

examples

e regularized least-squares problem of page 4-43

20

take \ = (1,fy) with v >0 157
minimize ||Az — b5 + ||z

for fixed ~, a LS problem

Convex optimization problems

20
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e risk-return trade-off of page 4—44

minimize —plz + vzl Yz
subjectto 17z =1, >0

for fixed v > 0, a quadratic program
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