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4. Convex optimization problems
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• convex optimization problems 
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Optimization problem in standard form


minimize	 f0(x) 
subject to	 fi(x) ≤ 0, i = 1, . . . , m 

hi(x) = 0, i = 1, . . . , p 

•	 x ∈ Rn is the optimization variable 

f0 : R
n R is the objective or cost function •	 →

fi : R
n R, i = 1, . . . , m, are the inequality constraint functions •	 →

hi	 : R
n R are the equality constraint functions •	 →

optimal value: 

⋆ p	 = inf{f0(x) | fi(x) ≤ 0, i = 1, . . . , m, hi(x) = 0, i = 1, . . . , p} 

⋆ •	 p = ∞ if problem is infeasible (no x satisfies the constraints) 

⋆ • p = −∞	 if problem is unbounded below 
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Optimal and locally optimal points


x is feasible if x ∈ dom f0 and it satisfies the constraints 

a feasible x is optimal if f0(x) = p ⋆ ; Xopt is the set of optimal points 

x is locally optimal if there is an R > 0 such that x is optimal for 

minimize (over z) f0(z)

subject to fi(z) ≤ 0, i = 1, . . . , m, hi(z) = 0, i = 1, . . . , p


�z	 − x�2 ≤ R 

examples (with n = 1, m = p = 0) 

⋆ •	 f0(x) = 1/x, dom f0 = R++: p = 0, no optimal point 

⋆ •	 f0(x) = − log x, dom f0 = R++: p = −∞ 
⋆ •	 f0(x) = x log x, dom f0 = R++: p = −1/e, x = 1/e is optimal 

f0(x) = x3 − 3x, p ⋆ = −∞, local optimum at x = 1• 

Convex optimization problems	 4–3 



� �


Implicit constraints


the standard form optimization problem has an implicit constraint 

m p 

x ∈ D = dom fi ∩ dom hi, 
i=0 i=1 

• we call D the domain of the problem 

• the constraints fi(x) ≤ 0, hi(x) = 0 are the explicit constraints 

• a problem is unconstrained if it has no explicit constraints (m = p = 0) 

example: 

minimize f0(x) = − �i
k 
=1 log(bi − ai

Tx) 

is an unconstrained problem with implicit constraints ai
Tx < bi 
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Feasibility problem


find	 x 
subject to	 fi(x) ≤ 0, i = 1, . . . , m 

hi(x) = 0, i = 1, . . . , p 

can be considered a special case of the general problem with f0(x) = 0: 

minimize	 0 
subject to	 fi(x) ≤ 0, i = 1, . . . , m 

hi(x) = 0, i = 1, . . . , p 

⋆ • p = 0 if	 constraints are feasible; any feasible x is optimal 

⋆ • p = ∞ if constraints are infeasible 
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Convex optimization problem 

standard form convex optimization problem 

minimize	 f0(x) 
subject to	 fi(x) ≤ 0, i = 1, . . . , m 

ai
Tx = bi, i = 1, . . . , p 

• f0, f1, . . . , fm are convex; equality constraints are affine 

• problem is quasiconvex if f0 is quasiconvex (and f1, . . . , fm convex) 

often written as 

minimize	 f0(x) 
subject to	 fi(x) ≤ 0, i = 1, . . . , m 

Ax = b 

important property: feasible set of a convex optimization problem is convex 
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example


minimize f0(x) = x2
1 + x2

2 
subject to f1(x) = x1/(1 + x2

2) ≤ 0 
h1(x) = (x1 + x2)

2 = 0 

•	 f0 is convex; feasible set {(x1, x2) | x1 = −x2 ≤ 0} is convex 

•	 not a convex problem (according to our definition): f1 is not convex, h1 

is not affine 

•	 equivalent (but not identical) to the convex problem 

minimize x1
2 + x2

2 

subject to x1 ≤ 0 
x1 + x2 = 0 
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Local and global optima


any locally optimal point of a convex problem is (globally) optimal 

proof: suppose x is locally optimal and y is optimal with f0(y) < f0(x) 

x locally optimal means there is an R > 0 such that 

z feasible, �z − x�2 ≤ R = ⇒ f0(z) ≥ f0(x) 

consider z = θy + (1 − θ)x with θ = R/(2�y − x�2) 

• �y − x�2 > R, so 0 < θ < 1/2 

• z is a convex combination of two feasible points, hence also feasible 

• �z − x�2 = R/2 and 

f0(z) ≤ θf0(x) + (1 − θ)f0(y) < f0(x)


which contradicts our assumption that x is locally optimal
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Optimality criterion for differentiable f0


x is optimal if and only if it is feasible and 

∇f0(x)T (y − x) ≥ 0 for all feasible y 

−∇f0(x) 

X 
x 

if nonzero, ∇f0(x) defines a supporting hyperplane to feasible set X at x 
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• unconstrained problem: x is optimal if and only if 

x ∈ dom f0, ∇f0(x) = 0 

• equality constrained problem 

minimize f0(x) subject to Ax = b 

x is optimal if and only if there exists a ν such that 

x ∈ dom f0, Ax = b, ∇f0(x) + ATν = 0 

• minimization over nonnegative orthant 

minimize f0(x) subject to x � 0


x is optimal if and only if


∇f0(x)i ≥ 0 xi = 0 
x ∈ dom f0, x � 0, ∇f0(x)i xi > 0= 0 
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Equivalent convex problems


two problems are (informally) equivalent if the solution of one is readily 
obtained from the solution of the other, and vice-versa 

some common transformations that preserve convexity: 

• eliminating equality constraints 

minimize f0(x) 
subject to fi(x) ≤ 0, i = 1, . . . , m 

Ax = b 

is equivalent to


minimize (over z) f0(Fz + x0)

subject to fi(Fz + x0) ≤ 0, i = 1, . . . , m


where F and x0 are such that


Ax = b x = Fz + x0 for some z⇐⇒ 

Convex optimization problems 4–11 



• introducing equality constraints 

minimize f0(A0x + b0)

subject to fi(Aix + bi) ≤ 0, i = 1, . . . , m


is equivalent to 

minimize (over x, yi) f0(y0) 
subject to fi(yi) ≤ 0, i = 1, . . . , m 

yi = Aix + bi, i = 0, 1, . . . , m 

• introducing slack variables for linear inequalities 

minimize f0(x)

subject to ai

Tx ≤ bi, i = 1, . . . , m


is equivalent to 

minimize (over x, s) f0(x) 
subject to aT

i x + si = bi, i = 1, . . . , m 
si ≥ 0, i = 1, . . . m 
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• epigraph form: standard form convex problem is equivalent to 

minimize (over x, t) t 
subject to f0(x) − t ≤ 0 

fi(x) ≤ 0, i = 1, . . . , m 
Ax = b 

• minimizing over some variables 

minimize f0(x1, x2)

subject to fi(x1) ≤ 0, i = 1, . . . , m


is equivalent to 

minimize f̃  
0(x1)


subject to fi(x1) ≤ 0, i = 1, . . . , m


where f̃  
0(x1) = infx2 f0(x1, x2) 
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Quasiconvex optimization


minimize f0(x) 
subject to fi(x) ≤ 0, i = 1, . . . , m 

Ax = b 

with f0 : R
n R quasiconvex, f1, . . . , fm convex →

can have locally optimal points that are not (globally) optimal 

(x, f0(x)) 
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convex representation of sublevel sets of f0


if f0 is quasiconvex, there exists a family of functions φt such that:


• φt(x) is convex in x for fixed t 

• t-sublevel set of f0 is 0-sublevel set of φt, i.e., 

f0(x) ≤ t φt(x) ≤ 0⇐⇒ 

example 
p(x)

f0(x) = 
q(x) 

with p convex, q concave, and p(x) ≥ 0, q(x) > 0 on dom f0 

can take φt(x) = p(x) − tq(x): 

• for t ≥ 0, φt convex in x 

• p(x)/q(x) ≤ t if and only if φt(x) ≤ 0 
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quasiconvex optimization via convex feasibility problems 

φt(x) ≤ 0, fi(x) ≤ 0, i = 1, . . . , m, Ax = b (1) 

•	 for fixed t, a convex feasibility problem in x 

if feasible, we can conclude that t ≥ p ⋆ ; if infeasible, t ≤ p ⋆ • 

Bisection method for quasiconvex optimization 

⋆ ⋆ given l ≤ p , u ≥ p , tolerance ǫ > 0. 

repeat 

1.	 t := (l + u)/2. 

2. Solve the convex feasibility problem (1). 

3. if (1) is feasible, u := t; else l := t. 
until u − l ≤ ǫ. 

requires exactly ⌈log2((u − l)/ǫ)⌉ iterations (where u, l are initial values) 
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Linear program (LP) 

minimize cTx + d 
subject to Gx � h 

Ax = b 

• convex problem with affine objective and constraint functions 

• feasible set is a polyhedron 

P x ⋆ 

−c 
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Examples 

diet problem: choose quantities x1, . . . , xn of n foods 

• one unit of food j costs cj, contains amount aij of nutrient i 

• healthy diet requires nutrient i in quantity at least bi 

to find cheapest healthy diet, 

minimize cTx 
subject to Ax � b, x � 0 

piecewise-linear minimization 

minimize maxi=1,...,m(ai
Tx + bi) 

equivalent to an LP 

minimize t 
subject to ai

Tx + bi ≤ t, i = 1, . . . , m 
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Chebyshev center of a polyhedron


Chebyshev center of 

P = {x | ai
T x	 ≤ bi, i = 1, . . . , m} 

is center of largest inscribed ball 

B = {xc + u	 | �u�2 ≤ r} 

xcx heh bc eb

•	 ai
Tx ≤ bi for all x ∈ B if and only if 

sup{ai
T (xc + u) | �u�2 ≤ r} = ai

T xc + r�ai�2 ≤ bi 

• hence, xc,	 r can be determined by solving the LP 

maximize r 
subject to ai

Txc + r�ai�2 ≤ bi, i = 1, . . . , m 
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(Generalized) linear-fractional program


minimize f0(x) 
subject to Gx � h 

Ax = b 

linear-fractional program 

cTx + d	 Tf0(x) = 
eTx + f

, dom f0(x) = {x | e x + f > 0} 

• a quasiconvex optimization problem; can be solved by bisection 

• also equivalent to the LP (variables y, z) 

minimize	 cTy + dz 
subject to	 Gy � hz 

Ay = bz 
eTy + fz = 1 
z ≥ 0 
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generalized linear-fractional program


ci
Tx + di Tf0(x) = max 
T 

, dom f0(x) = {x ei x+fi > 0, i = 1, . . . , r}
i=1,...,r ei x + fi 

|

a quasiconvex optimization problem; can be solved by bisection 

example: Von Neumann model of a growing economy 

maximize (over x, x+) mini=1,...,n x + 
i /xi 

subject to x+ � 0, Bx+ � Ax 

• x, x+ ∈ Rn: activity levels of n sectors, in current and next period 

• (Ax)i, (Bx+)i: produced, resp. consumed, amounts of good i 

+ • xi /xi: growth rate of sector i 

allocate activity to maximize growth rate of slowest growing sector 
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Quadratic program (QP) 

minimize (1/2)xTPx + qTx + r 
subject to Gx � h 

Ax = b 

• P ∈ Sn , so objective is convex quadratic +

• minimize a convex quadratic function over a polyhedron 

P 

x ⋆ 

−∇f0(x ⋆ ) 
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Examples 

least-squares 
minimize �Ax − b�2 

2 

analytical solution x ⋆ = A†b (A† is pseudo-inverse) • 
•	 can add linear constraints, e.g., l � x � u 

linear program with random cost 

minimize c̄Tx + γxTΣx = E cTx + γ var(cTx) 
subject to Gx � h, Ax = b 

c	 is random vector with mean c̄ and covariance Σ• 
hence, cTx is random variable with mean c̄Tx and variance xTΣx• 

•	 γ > 0 is risk aversion parameter; controls the trade-off between 
expected cost and variance (risk) 
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Quadratically constrained quadratic program (QCQP)


minimize (1/2)xTP0x + q0 
Tx + r0 

subject to (1/2)xTPix + qi
Tx + ri ≤ 0, i = 1, . . . , m 

Ax = b 

• Pi ∈ S+
n ; objective and constraints are convex quadratic 

• if P1, . . . , Pm ∈ Sn , feasible region is intersection of m ellipsoids and ++

an affine set 
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Second-order cone programming


minimize	 fTx 
subject to	 �Aix + bi�2 ≤ cT

i x + di, i = 1, . . . , m 
Fx = g 

(Ai ∈ Rni×n ,	 F ∈ Rp×n) 

•	 inequalities are called second-order cone (SOC) constraints: 

(Aix + bi, c i
T x + di) ∈ second-order cone in Rni+1 

• for ni = 0, reduces to an LP; if ci = 0, reduces to a QCQP 

• more general than QCQP and LP 
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Robust linear programming


the parameters in optimization problems are often uncertain, e.g., in an LP 

minimize cTx 
subject to aT

i x ≤ bi, i = 1, . . . , m, 

there can be uncertainty in c, ai, bi 

two common approaches to handling uncertainty (in ai, for simplicity) 

•	 deterministic model: constraints must hold for all ai ∈ Ei 

minimize cTx

subject to ai

Tx ≤ bi for all ai ∈ Ei, i = 1, . . . , m,


•	 stochastic model: ai is random variable; constraints must hold with 
probability η 

minimize cTx 
subject to prob(ai

Tx ≤ bi) ≥ η, i = 1, . . . , m 
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deterministic approach via SOCP 

• choose an ellipsoid as Ei: 

Ei = {āi + Piu | �u�2 ≤ 1} (āi ∈ Rn , Pi ∈ Rn×n)


center is āi, semi-axes determined by singular values/vectors of Pi


robust LP
• 

minimize cTx 
subject to ai

Tx ≤ bi ∀ai ∈ Ei, i = 1, . . . , m 

is equivalent to the SOCP


minimize cTx

subject to āi

Tx + �Pi
Tx�2 ≤ bi, i = 1, . . . , m


(follows from sup‖u‖2≤1(āi + Piu)Tx = āi
Tx + �Pi

Tx�2) 
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stochastic approach via SOCP 

•	 assume ai is Gaussian with mean āi, covariance Σi (ai ∼ N (āi,Σi)) 

aT
i x is Gaussian r.v. with mean āT

i x, variance xTΣix; hence • 

i	 x 
prob(ai

T x ≤ bi) = Φ 
bi − āT 

�Σi 
1/2 

x�2 

� x −t2where Φ(x) = (1/
√

2π) e /2 dt is CDF of N (0, 1) 
−∞ 

robust LP • 
minimize cTx 
subject to prob(ai

Tx ≤ bi) ≥ η, i = 1, . . . , m, 

with η ≥ 1/2, is equivalent to the SOCP 

minimize cTx 

subject to āi
Tx + Φ−1(η)�Σ1

i
/2 

x�2 ≤ bi, i = 1, . . . , m 
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Geometric programming 

monomial function 

f(x) = cx a1x a2 x an , dom f = Rn 
1 2 n ++ · · · 

with c > 0; exponent αi can be any real number 

posynomial function: sum of monomials 

K 

f(x) = ckx1 
a1kx2 

a2k xn
ank , dom f = R++ 

n · · · 
k=1 

geometric program (GP) 

minimize f0(x) 
subject to fi(x) ≤ 1, i = 1, . . . , m 

hi(x) = 1, i = 1, . . . , p 

with fi posynomial, hi monomial 
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Geometric program in convex form


change variables to yi = log xi, and take logarithm of cost, constraints 

• monomial	 f(x) = cx 1 
a1 · · · xn

an transforms to 

log f(ey1 , . . . , eyn) = a T y + b (b = log c) 

�K a1k a2k ank • posynomial f(x) = k=1 ckx1 x2 · · · xn transforms to 

K 
alog f(ey1 , . . . , eyn) = log 

� 
e k

T y+bk (bk = log ck) 
k=1 

• geometric program transforms to convex problem 

minimize	 log 
�K

k=1 exp(aT 
0ky + b0k) 

�K	 Tsubject to	 log k=1 exp(aiky + bik) ≤ 0, i = 1, . . . , m 

Gy + d = 0 

Convex optimization problems	 4–30 



Design of cantilever beam


F 

segment 4 segment 3 segment 2 segment 1 

• N segments with unit lengths, rectangular cross-sections of size wi × hi 

• given vertical force F applied at the right end 

design problem 

minimize total weight 
subject to upper & lower bounds on wi, hi 

upper bound & lower bounds on aspect ratios hi/wi 

upper bound on stress in each segment 
upper bound on vertical deflection at the end of the beam 

variables: wi, hi for i = 1, . . . , N 
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objective and constraint functions 

•	 total weight w1h1 + · · · + wNhN is posynomial 

•	 aspect ratio hi/wi and inverse aspect ratio wi/hi are monomials 

maximum stress in segment i is given by 6iF/(wih
2 
i ), a monomial • 

•	 the vertical deflection yi and slope vi of central axis at the right end of 
segment i are defined recursively as 

F 
vi = 12(i − 1/2) 

Ewih3 
i 

+ vi+1 

F 
yi = 6(i − 1/3) 

Ewih3 + vi+1 + yi+1 
i 

for i = N,N − 1, . . . , 1, with vN+1 = yN+1 = 0 (E is Young’s modulus) 

vi and yi are posynomial functions of w, h 
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formulation as a GP


minimize w1h1 + · · · + wNhN 

subject to w−1 
maxwi ≤ 1, wminw −1 

i ≤ 1, i = 1, . . . , N 

h−1 
maxhi ≤ 1, hminh

−1 
i ≤ 1, i = 1, . . . , N 

S−1 
maxw −1 

i hi ≤ 1, Sminwih
−1 
i ≤ 1, i = 1, . . . , N 

6iFσ−1 
maxw −1 

i h−2 
i ≤ 1, i = 1, . . . , N 

−1y	 y1 ≤ 1max

note 

•	 we write wmin ≤ wi ≤ wmax and hmin ≤ hi ≤ hmax 

wmin/wi ≤ 1, wi/wmax ≤ 1, hmin/hi ≤ 1, hi/hmax ≤ 1 

•	 we write Smin ≤ hi/wi ≤ Smax as 

Sminwi/hi ≤ 1, hi/(wiSmax) ≤ 1 
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Minimizing spectral radius of nonnegative matrix 

Perron-Frobenius eigenvalue λpf (A) 

exists for (elementwise) positive A ∈ Rn×n • 
• a real, positive eigenvalue of A, equal to spectral radius maxi |λi(A)| 
• determines asymptotic growth (decay) rate of Ak: Ak ∼ λpf 

k as k → ∞ 
• alternative characterization: λpf(A) = inf{λ | Av � λv for some v ≻ 0} 

minimizing spectral radius of matrix of posynomials 

• minimize λpf (A(x)), where the elements A(x)ij are posynomials of x 

• equivalent geometric program: 

minimize λ 
subject to 

�n 
A(x)ijvj/(λvi) ≤ 1, i = 1, . . . , n j=1 

variables λ, v, x 
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Generalized inequality constraints 

convex problem with generalized inequality constraints 

minimize	 f0(x) 
subject to	 fi(x) �Ki 

0, i = 1, . . . , m 
Ax = b 

f0 : R
n R convex; fi : R

n Rki Ki-convex w.r.t. proper cone Ki• →	 →
•	 same properties as standard convex problem (convex feasible set, local 

optimum is global, etc.) 

conic form problem: special case with affine objective and constraints 

minimize	 cTx 
subject to	 Fx + g �K 0 

Ax = b 

extends linear programming (K = Rm) to nonpolyhedral cones + 
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Semidefinite program (SDP)


minimize cTx 
subject to x1F1 + x2F2 + + xnFn + G � 0· · · 

Ax = b 

with Fi, G ∈ Sk 

• inequality constraint is called linear matrix inequality (LMI) 

• includes problems with multiple LMI constraints: for example, 

x1F̂1 + + xnF̂n + Ĝ � 0, x1F̃1 + + xnF̃n + G̃ � 0· · · · · · 

is equivalent to single LMI 

F̂1 0 F̂2 0 F̂n 0 Ĝ 0 
x1 +x2 + +xn + 

0 F̃1 0 F̃2 
· · ·

0 F̃n 0 G̃
� 0 
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LP and SOCP as SDP


LP and equivalent SDP 

LP:	 minimize cTx SDP: minimize cTx 
subject to Ax � b subject to diag(Ax − b) � 0 

(note different interpretation of generalized inequality �) 

SOCP	 and equivalent SDP 

SOCP:	 minimize fTx

subject to �Aix + bi�2 ≤ ci

Tx + di, i = 1, . . . , m


SDP:	 minimize fTx 
(ci

Tx + di)I Aix + bisubject to 
(Aix + bi)

T cT
i x + di 

� 0, i = 1, . . . , m 
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Eigenvalue minimization 

minimize λmax(A(x)) 

where A(x) = A0 + x1A1 + + xnAn (with given Ai ∈ Sk)· · ·


equivalent SDP 
minimize t 
subject to A(x) � tI 

•	 variables x ∈ Rn , t ∈ R 

follows from • 
λmax(A) ≤ t ⇐⇒ A � tI 
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Matrix norm minimization


minimize �A(x)�2 = 
� 
λmax(A(x)TA(x)) 

�1/2 

where A(x) = A0 + x1A1 + + xnAn (with given Ai ∈ Rp×q)· · · 
equivalent SDP 

minimize t 

subject to 
A(

tI
x)T 

A
tI 
(x) � 0 

• variables x ∈ Rn , t ∈ R 

constraint follows from • 

�A�2 ≤ t ATA � t2I, t ≥ 0⇐⇒ 
� � 

tI A ⇐⇒ 
AT tI 

� 0 
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Vector optimization


general vector optimization problem 

minimize (w.r.t. K)	 f0(x) 
subject to	 fi(x) ≤ 0, i = 1, . . . , m 

hi(x) ≤ 0, i = 1, . . . , p 

vector objective f0 : R
n Rq, minimized w.r.t. proper cone K ∈ Rq →

convex vector optimization problem 

minimize (w.r.t. K)	 f0(x) 
subject to	 fi(x) ≤ 0, i = 1, . . . , m 

Ax = b 

with f0 K-convex, f1, . . . , fm convex 
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Optimal and Pareto optimal points


set of achievable objective values 

O = {f0(x) | x feasible} 

• feasible x is optimal if f0(x) is a minimum value of O 
• feasible x is Pareto optimal if f0(x) is a minimal value of O 

O 

f0(x ⋆ ) 

O 

f0(x
po) 

x⋆ is optimal xpo is Pareto optimal 
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Multicriterion optimization 

vector optimization problem with K = Rq 
+ 

f0(x) = (F1(x), . . . , Fq(x)) 

•	 q different objectives Fi; roughly speaking we want all Fi’s to be small 

⋆ • feasible	 x is optimal if 

y feasible = ⇒ f0(x ⋆ ) � f0(y)


if there exists an optimal point, the objectives are noncompeting


•	 feasible xpo is Pareto optimal if 

y feasible, f0(y) � f0(x
po) = f0(x

po) = f0(y)⇒ 

if there are multiple Pareto optimal values, there is a trade-off between 
the objectives 
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Regularized least-squares
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example for A ∈ R100×10; heavy line is formed by Pareto optimal points 
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Risk return trade-off in portfolio optimization


minimize (w.r.t. R2 pTx, xTΣx)+) (−¯
subject to 1Tx = 1, x � 0 

• x ∈ Rn is investment portfolio; xi is fraction invested in asset i 

• p ∈ Rn is vector of relative asset price changes; modeled as a random 
variable with mean p̄, covariance Σ


p̄Tx = E r is expected return; xTΣx = var r is return variance
• 
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Scalarization


to find Pareto optimal points: choose λ ≻K∗ 0 and solve scalar problem 

minimize	 λTf0(x) 
subject to	 fi(x) ≤ 0, i = 1, . . . , m 

hi(x) = 0, i = 1, . . . , p 

if x is optimal for scalar problem, 
then it is Pareto-optimal for vector 
optimization problem 

O 

f0(x1) 

λ1 
f0(x2) λ2 

f0(x3) 

for convex vector optimization problems, can find (almost) all Pareto 
optimal points by varying λ ≻K∗ 0 

Convex optimization problems	 4–45 



Scalarization for multicriterion problems 

to find Pareto optimal points, minimize positive weighted sum 

λTf0(x) = λ1F1(x) + + λqFq(x)· · · 

examples 

• regularized least-squares problem of page 4–43 

20 

take λ = (1, γ) with γ > 0 15 
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2
 

γ = 1 

� x
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2
minimize �Ax − b�
 + γ�x�


5 

for fixed γ, a LS problem 

0
0 5 10 15 20 
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• risk-return trade-off of page 4–44


minimize −p̄Tx + γxTΣx 
subject to 1Tx = 1, x � 0 

for fixed γ > 0, a quadratic program 

Convex optimization problems 4–47 
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