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3. Convex functions


• basic properties and examples 

• operations that preserve convexity 

• the conjugate function 

• quasiconvex functions 

• log-concave and log-convex functions 

• convexity with respect to generalized inequalities 
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Definition


f : Rn R is convex if dom f is a convex set and →

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y) 

for all x, y ∈ dom f , 0 ≤ θ ≤ 1 

(x, f(x)) 

(y, f(y)) 

• f is concave if −f is convex 

• f is strictly convex if dom f is convex and 

f(θx + (1 − θ)y) < θf(x) + (1 − θ)f(y)


for x, y ∈ dom f , x =� y, 0 < θ < 1
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Examples on R


convex: 

•	 affine: ax + b on R, for any a, b ∈ R 

•	 exponential: eax, for any a ∈ R 

powers: xα on R++, for α ≥ 1 or α ≤ 0• 
•	 powers of absolute value: |x|p on R, for p ≥ 1 

•	 negative entropy: x log x on R++ 

concave: 

•	 affine: ax + b on R, for any a, b ∈ R 

•	 powers: xα on R++, for 0 ≤ α ≤ 1 

•	 logarithm: log x on R++ 
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Examples on Rn and Rm×n 

affine functions are convex and concave; all norms are convex 

examples on Rn 

affine function f(x) = aTx + b• 
• norms: �x�p = ( 

�n |xi|p)1/p for p ≥ 1; �x�∞ = maxk |xk|i=1 

examples on Rm×n (m n matrices) ×
affine function • 

m n 

f(X) = tr(ATX) + b = AijXij + b 
i=1 j=1 

• spectral (maximum singular value) norm 

f(X) = �X�2 = σmax(X) = (λmax(X
TX))1/2 
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Restriction of a convex function to a line


f : Rn R is convex if and only if the function g : R R,→ →

g(t) = f(x + tv), dom g = {t | x + tv ∈ dom f} 

is convex (in t) for any x ∈ dom f , v ∈ Rn 

can check convexity of f by checking convexity of functions of one variable 

example. f : Sn R with f(X) = log detX, dom f = S++ 
n →

g(t) = log det(X + tV ) = log detX + log det(I + tX−1/2V X−1/2) 
n 

= log detX + log(1 + tλi) 
i=1 

where λi are the eigenvalues of X−1/2V X−1/2 

g is concave in t (for any choice of X ≻ 0, V ); hence f is concave 
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Extended-value extension


extended-value extension f̃ of f is 

f̃(x) = f(x), dom f, f̃(x) = dom fx ∈	 ∞, x �∈ 

often simplifies notation; for example, the condition 

0 ≤ θ ≤	 1 = f̃(θx + (1 − θ)y) ≤ θf̃(x) + (1 − θ)f̃(y)⇒ 

(as an inequality in R ∪ {∞}), means the same as the two conditions 

dom f	 is convex • 
•	 for x, y ∈ dom f , 

0 ≤ θ ≤ 1 = ⇒ f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y) 
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First-order condition


f is differentiable if dom f is open and the gradient 

∂f(x) ∂f(x) ∂f(x) 
= , , . . . , ∇f(x)

∂x1 ∂x2 ∂xn 

exists at each x ∈ dom f 

1st-order condition: differentiable f with convex domain is convex iff 

f(y) ≥ f(x) + ∇f(x)T (y − x) for all x, y ∈ dom f 

(x, f(x)) 

f(y) 

f(x) + ∇f(x)T (y − x)


first-order approximation of f is global underestimator 

Convex functions 3–7 



Second-order conditions


f is twice differentiable if dom f is open and the Hessian ∇2f(x) ∈ Sn , 

2f(x)ij = 
∂2f(x) 

,	 i, j = 1, . . . , n, ∇	
∂xi∂xj 

exists at each x ∈ dom f 

2nd-order conditions: for twice differentiable f with convex domain 

•	 f is convex if and only if 

∇ 2f(x) � 0 for all x ∈ dom f 

• if ∇2f(x) ≻ 0 for all x ∈ dom f , then f is strictly convex 
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Examples 

quadratic function: f(x) = (1/2)xTPx + qTx + r (with P ∈ Sn) 

∇f(x) = Px + q, ∇ 2f(x) = P 

convex if P � 0 

least-squares objective: f(x) = �Ax − b�2 
2 

∇f(x) = 2AT (Ax − b), ∇ 2f(x) = 2ATA 

convex (for any A) 

quadratic-over-linear: f(x, y) = x2/y 
2 

� � � �T 1 

∇ 2f(x, y) = 
y

2 
3 −

y
x −

y
x 

� 0 
0 
2 2 

1 0 

convex for y > 0 y 0 −2 x 

f
(x

,
y
)
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log-sum-exp: f(x) = log 
�

k
n 
=1 expxk is convex


∇ 2f(x) = 
1T

1 

z 
diag(z) −

(1T

1 

z)2
zz T (zk = exp xk)


to show ∇2f(x) � 0, we must verify that vT∇2f(x)v ≥ 0 for all v:


T ( 
� 

k zkvk
2)( 

� 

k zk) − ( 
� 

k vkzk)
2 

v ∇ 2f(x)v =
( 
� 

k zk)2 
≥ 0 

since ( 
� 

k vkzk)
2 ≤ ( 

� 

k zkvk
2)( 

� 

k zk) (from Cauchy-Schwarz inequality)


geometric mean: f(x) = ( 
�

k
n 
=1 xk)

1/n on Rn is concave ++ 

(similar proof as for log-sum-exp) 
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Epigraph and sublevel set


α-sublevel set of f : Rn R:→

Cα = {x ∈ dom f | f(x) ≤ α} 

sublevel sets of convex functions are convex (converse is false) 

epigraph of f : Rn R:→

epi f = {(x, t) ∈ Rn+1 | x ∈ dom f, f(x) ≤ t} 

epi f 

f 

f is convex if and only if epi f is a convex set 
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Jensen’s inequality


basic inequality: if f is convex, then for 0 ≤ θ ≤ 1, 

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y) 

extension: if f is convex, then 

f(E z) ≤ E f(z) 

for any random variable z 

basic inequality is special case with discrete distribution 

prob(z = x) = θ, prob(z = y) = 1 − θ 
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Operations that preserve convexity


practical methods for establishing convexity of a function 

1.	 verify definition (often simplified by restricting to a line) 

2.	 for twice differentiable functions, show ∇2f(x) � 0 

3. show that f is obtained from simple convex functions by operations 
that preserve convexity 

•	 nonnegative weighted sum 
•	 composition with affine function 
•	 pointwise maximum and supremum 
•	 composition


minimization
• 
•	 perspective 
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Positive weighted sum & composition with affine function


nonnegative multiple: αf is convex if f is convex, α ≥ 0 

sum: f1 + f2 convex if f1, f2 convex (extends to infinite sums, integrals) 

composition with affine function: f(Ax + b) is convex if f is convex 

examples 

• log barrier for linear inequalities 

m 

f(x) = − log(bi − a Ti x), dom f = {x | ai
Tx < bi, i = 1, . . . , m}

i=1 

• (any) norm of affine function: f(x) = �Ax + b� 
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Pointwise maximum


if f1, . . . , fm are convex, then f(x) = max{f1(x), . . . , fm(x)} is convex 

examples 

piecewise-linear function: f(x) = maxi=1,...,m(ai
Tx + bi) is convex • 

• sum of r largest components of x ∈ Rn: 

f(x) = x[1] + x[2] + + x[r]· · · 

is convex (x[i] is ith largest component of x) 

proof: 

f(x) = max{xi1 + xi2 + · · · + xir | 1 ≤ i1 < i2 < · · · < ir ≤ n} 
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Pointwise supremum 

if f(x, y) is convex in x for each y ∈ A, then 

g(x) = sup f(x, y) 
y∈A 

is convex 

examples 

• support function of a set	 C: SC(x) = supy∈C y
Tx is convex 

•	 distance to farthest point in a set C: 

f(x) = sup 
y∈C 

�x − y� 

• maximum eigenvalue of symmetric matrix: for X ∈ Sn , 

λmax(X) = sup y TXy 
‖y‖2=1 
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Composition with scalar functions


composition of g : Rn R and h : R R:→ →

f(x) = h(g(x)) 

g convex, h convex, h̃ nondecreasing 
f is convex if 

g concave, h convex, h̃ nonincreasing 

• proof (for n = 1, differentiable g, h) 

f ′′ (x) = h ′′ (g(x))g ′ (x)2 + h ′ (g(x))g ′′ (x) 

note: monotonicity must hold for extended-value extension h̃• 

examples 

• exp g(x) is convex if g is convex 

• 1/g(x) is convex if g is concave and positive 
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Vector composition


composition of g : Rn Rk and h : Rk R:→ →

f(x) = h(g(x)) = h(g1(x), g2(x), . . . , gk(x)) 

gi convex, h convex, h̃ nondecreasing in each argument 
f is convex if 

gi concave, h convex, h̃ nonincreasing in each argument 

proof (for n = 1, differentiable g, h) 

f ′′ (x) = g ′ (x)T ∇ 2h(g(x))g ′ (x) + ∇h(g(x))T g ′′ (x) 

examples 

m 
log gi(x) is concave if gi are concave and positive • i=1 

m • log i=1 exp gi(x) is convex if gi are convex 
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Minimization


if f(x, y) is convex in (x, y) and C is a convex set, then 

g(x) = inf f(x, y) 
y∈C 

is convex 

examples 

f(x, y) = xTAx + 2xTBy + yTCy with • 

A B 
BT C 

� 0, C ≻ 0 

minimizing over y gives g(x) = infy f(x, y) = xT (A − BC−1BT )x 

g is convex, hence Schur complement A − BC−1BT � 0 

• distance to a set: dist(x, S) = infy∈S �x − y� is convex if S is convex 
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Perspective


the perspective of a function f : Rn R is the function g : Rn ×R R,→	 →

g(x, t) = tf(x/t), dom g = {(x, t) | x/t ∈ dom f, t > 0} 

g is convex if f is convex 

examples 

f(x) = xTx is convex; hence g(x, t) = xTx/t is convex for t > 0• 
•	 negative logarithm f(x) = − log x is convex; hence relative entropy 

g(x, t) = t log t − t log x is convex on R2 
++ 

•	 if f is convex, then 

g(x) = (c T x + d)f 
� 

(Ax + b)/(c T x + d) 
�


is convex on {x | cTx + d > 0, (Ax + b)/(cTx + d) ∈ dom f}
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The conjugate function 

the conjugate of a function f is 

f ∗ (y) = sup (y T x − f(x)) 
x∈dom f 

f(x) 

(0, −f ∗ (y)) 

xy 

x 

f∗ is convex (even if f is not) • 
• will be useful in chapter 5 
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examples 

•	 negative logarithm f(x) = − log x 

f ∗ (y) = sup (xy + log x) 
x>0 

−1 − log(−y)	 y < 0 
= ∞	 otherwise 

strictly convex quadratic f(x) = (1/2)xTQx with Q ∈ Sn •	 ++ 

f ∗ (y) = sup (y T x − (1/2)x TQx) 
x 

1 
= y TQ−1 y

2
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Quasiconvex functions


f : Rn R is quasiconvex if dom f is convex and the sublevel sets →

Sα = {x ∈ dom f | f(x) ≤ α} 

are convex for all α 

α 

β 

a b c


• f is quasiconcave if −f is quasiconvex 

• f is quasilinear if it is quasiconvex and quasiconcave 
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Examples


• |x| is quasiconvex on R 

•	 ceil(x) = inf{z ∈ Z | z ≥ x} is quasilinear 

•	 log x is quasilinear on R++ 

f(x1, x2) = x1x2 is quasiconcave on R2 •	 ++ 

linear-fractional function • 

aTx + b 
f(x) = 

cTx + d
, dom f = {x | c T x + d > 0} 

is quasilinear 

distance ratio • 

f(x) = 
�
�
x

x 

−
−

a

b�
�
2

2 
, dom f = {x | �x − a�2 ≤ �x − b�2} 

is quasiconvex 
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internal rate of return


• cash flow x = (x0, . . . , xn); xi is payment in period i (to us if xi > 0) 

• we assume x0 < 0 and x0 + x1 + · · · + xn > 0 

• present value of cash flow x, for interest rate r: 

n 

PV(x, r) = (1 + r)−i xi 

i=0 

• internal rate of return is smallest interest rate for which PV(x, r) = 0: 

IRR(x) = inf{r ≥ 0 | PV(x, r) = 0} 

IRR is quasiconcave: superlevel set is intersection of halfspaces 

n 

IRR(x) ≥ R (1 + r)−i xi ≥ 0 for 0 ≤ r ≤ R⇐⇒ 
i=0 
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Properties 

modified Jensen inequality: for quasiconvex f 

0 ≤ θ ≤ 1 = ⇒ f(θx + (1 − θ)y) ≤ max{f(x), f(y)} 

first-order condition: differentiable f with cvx domain is quasiconvex iff 

=f(y) ≤ f(x) ⇒ ∇f(x)T (y − x) ≤ 0 

x 
∇f(x) 

sums of quasiconvex functions are not necessarily quasiconvex 
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Log-concave and log-convex functions


a positive function f is log-concave if log f is concave: 

f(θx + (1 − θ)y) ≥ f(x)θf(y)1−θ for 0 ≤ θ ≤ 1 

f is log-convex if log f is convex 

• powers: xa on R++ is log-convex for a ≤ 0, log-concave for a ≥ 0 

• many common probability densities are log-concave, e.g., normal: 

1 −1(x−x̄)TΣ−1(x−x̄)f(x) = � e 2

(2π)n det Σ 

• cumulative Gaussian distribution function Φ is log-concave 

Φ(x) =
1 x 

e −u 2/2 du√
2π −∞ 
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Properties of log-concave functions


• twice differentiable f with convex domain is log-concave if and only if 

f(x)∇ 2f(x) � ∇f(x)∇f(x)T


for all x ∈ dom f


• product of log-concave functions is log-concave 

• sum of log-concave functions is not always log-concave 

• integration: if f : Rn × Rm → R is log-concave, then 

g(x) = f(x, y) dy 

is log-concave (not easy to show) 
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consequences of integration property 

• convolution f ∗ g of log-concave functions f , g is log-concave 

(f ∗ g)(x) = f(x − y)g(y)dy 

• if C ⊆ Rn convex and y is a random variable with log-concave pdf then 

f(x) = prob(x + y ∈ C) 

is log-concave


proof: write f(x) as integral of product of log-concave functions


f(x) = g(x + y)p(y) dy, g(u) = 
1 u ∈ C 
0 u �∈ C, 

p is pdf of y 
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example: yield function


Y (x) = prob(x + w ∈ S) 

• x ∈ Rn: nominal parameter values for product 

• w ∈ Rn: random variations of parameters in manufactured product 

• S: set of acceptable values 

if S is convex and w has a log-concave pdf, then 

• Y is log-concave 

• yield regions {x | Y (x) ≥ α} are convex 
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Convexity with respect to generalized inequalities


f : Rn Rm is K-convex if dom f is convex and →


f(θx + (1 − θ)y) �K θf(x) + (1 − θ)f(y)


for x, y ∈ dom f , 0 ≤ θ ≤ 1 

example f : Sm Sm , f(X) = X2 is Sm -convex → +

proof: for fixed z ∈ Rm , zTX2z = �Xz�2
2 is convex in X, i.e., 

z T (θX + (1 − θ)Y )2 z ≤ θzTX2 z + (1 − θ)z TY 2 z 

for X, Y ∈ Sm , 0 ≤ θ ≤ 1 

therefore (θX + (1 − θ)Y )2 � θX2 + (1 − θ)Y 2 
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