Convex Optimization — Boyd & Vandenberghe

3. Convex functions

basic properties and examples
operations that preserve convexity
the conjugate function

quasiconvex functions

log-concave and log-convex functions

convexity with respect to generalized inequalities



Definition
f:R"™ — R is convex if dom f is a convex set and

fllz+ (1 —0)y) <0f(z)+(1-0)f(y)

forall z,y edom f, 0 <0 <1

(y, f(y))
(z, f(x))

e f is concave if —f is convex

e f is strictly convex if dom f is convex and

flO0z +(1=0)y) <O0f(x)+(1-0)f(y)

forxz,ycdomf, x#y, 0<6<1

Convex functions
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Examples on R

convex:
e affine: ax +bon R, forany a,b € R

e exponential: e**, for any a € R

e powers: z¥on Ry, fora>1ora <0

e powers of absolute value: |z|P on R, for p > 1

e negative entropy: zlogx on R,

concave:
e affine: ax + b on R, for any a,b € R
e powers: x*on R, for0 < a <1

o logarithm: logx on R,

Convex functions



Examples on R" and R™*"

affine functions are convex and concave; all norms are convex

examples on R"

e affine function f(z) = alx + b

o norms: ||z, = (7, |2?) /7 for p > 1;

T||oo = maxy |Tg]

examples on R"™" (m x n matrices)

e affine function

i=1 j=1

e spectral (maximum singular value) norm

f(X) — HXHQ = O‘maX(X) — ()\maX(XTX))l/Q
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Restriction of a convex function to a line

f:R™ — R is convex if and only if the function ¢ : R — R,
g(t) = f(z + tv), domg = {t|x+tv € dom f}

is convex (in t) for any x € dom f, v € R"

can check convexity of f by checking convexity of functions of one variable

example. f:S" — R with f(X) =logdet X, dom f = S" |

g(t) = logdet(X +tV) log det X + logdet (I + tX—1/2VX—1/2)

— logdet X + Z log(1 4 tA;)
i=1

where ); are the eigenvalues of X ~1/2V X ~1/2

g is concave in t (for any choice of X = 0, V'); hence f is concave
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Extended-value extension

extended-value extension f of f is

~

f(x)=f(z), z€domf,  f(z)=o00, x¢domf

often simplifies notation; for example, the condition

~

0<0<1 = [fllz+(1-0)y) <0f(x)+(1-0)f(y)
(as an inequality in RU {c0}), means the same as the two conditions

e dom f is convex

e for x,y € dom f,
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First-order condition

f is differentiable if dom f is open and the gradient

_(05@) 0f(x) S
Vi) = ( Or;  Oxy '~ Ox, )

exists at each x € dom f

1st-order condition: differentiable f with convex domain is convex iff

fly) > f(x) +Vflx)'(y—x) forall z,y € dom f

f(y)
fl@)+ V) (y— =)

(z, f(z))

first-order approximation of f is global underestimator
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Second-order conditions

f is twice differentiable if dom f is open and the Hessian V2f(z) € S”,

_ 9P f(x)

2 L=
v f(x)w &zzi&zzj’

1,7=1,...,n,

exists at each x € dom f

2nd-order conditions: for twice differentiable f with convex domain

e f is convex if and only if

V2f(z) =0 forall z € dom f

o if V2f(z) = 0 for all z € dom f, then f is strictly convex
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Examples

z) = (1/2)x? Pz + ¢z +r (with P € S")

(

f(z)

quadratic function: f

V3 f(z)

= Pz +q,

V

convex if P >0

| Az — b||3

least-squares objective: f(x)

convex (for any A)

quadratic-over-linear: f(z,y) = 22/y

convex for y > 0

3-9
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log-sum-exp: f(z) =1log> ,_,expxy is convex

1 1

VQf('CC) — —diag(z) o (].TZ)2

17 2 (21 = exp z)

to show V2f(z) = 0, we must verify that v/ VZf(x)v > 0 for all v:

(Zk Zk”/%)(z:k Zk) — (Zk Uk:zk)Z
(5 2)° ="

vV f(x)v =

since (3, vizk)* < (02, 2z1v3) (D2, k) (from Cauchy-Schwarz inequality)

geometric mean: f(z) = ([[,_; zx)"/™ on R’ is concave

(similar proof as for log-sum-exp)
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Epigraph and sublevel set
a-sublevel set of f : R" — R:
Co={z €domf | f(z) < a}

sublevel sets of convex functions are convex (converse is false)

epigraph of f : R" — R:
epi f = {(z,t) e "™ |z € dom f, f(z) <t}

epi f

f is convex if and only if epi f is a convex set

Convex functions
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Jensen’s inequality

basic inequality: if f is convex, then for 0 < 6 <1,

flz+ (1 —0)y) <0f(z)+(1—-0)f(y)

extension: if f is convex, then

f(Ez) < Ef(2)
for any random variable z

basic inequality is special case with discrete distribution

prob(z =z) =0, prob(z=y)=1-10
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Operations that preserve convexity

practical methods for establishing convexity of a function

1. verify definition (often simplified by restricting to a line)
2. for twice differentiable functions, show VZf(x) = 0

3. show that f is obtained from simple convex functions by operations
that preserve convexity

nonnegative weighted sum
composition with affine function
pointwise maximum and supremum
composition

minimization

perspective

Convex functions
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Positive weighted sum & composition with affine function

nonnegative multiple: af is convex if f is convex, a > 0
sum: f1 + fo convex if fi, fo convex (extends to infinite sums, integrals)

composition with affine function: f(Ax + b) is convex if f is convex

examples

e log barrier for linear inequalities

flx) = —Zlog(bi —a; ), domf={z|alz<b,i=1,...,m}
i=1
e (any) norm of affine function: f(x) = ||Ax + b||
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Pointwise maximum

if f1, ..., fm are convex, then f(x) = max{fi(x),..., fm(x)} is convex

examples

e piecewise-linear function: f(r) = max;—1._ .(alx + b;) is convex

e sum of r largest components of x € R":
f(@) = 2zpy+ 2 + -+ 2

is convex (xy; is ith largest component of x)
proof:

flx) =max{z; +zi,+ - +x;, |1 <i1 <ia < - <ip <n}
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Pointwise supremum

if f(z,y) is convex in x for each y € A, then

g(x) = sup f(z,y)
yeA

IS convex

examples

e support function of a set C: S¢(z) = sup,ccy’ x is convex

e distance to farthest point in a set C"

f(z) = sup ||z -y
yel

e maximum eigenvalue of symmetric matrix: for X € S”,

Amax(X) = sup yTXy
ly|l2=1

Convex functions
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Composition with scalar functions

composition of g : R — R and h: R — R:

. .. g convex, h convex, h nondecreasing
f is convex if ~ _ _
g concave, h convex, h nonincreasing

e proof (for n = 1, differentiable g, h)
f(x) = h"(g(x))g'(x)* + 1'(g(x))g" (x)
e note: monotonicity must hold for extended-value extension h

examples

e expg(x) is convex if g is convex

e 1/g(x) is convex if g is concave and positive
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Vector composition

composition of g : R® — R* and h : R* — R:

f(CC) — h(g(x)) — h(Ql(x)ag2(x)7 T 7gk(x))

. .. g; convex, h convex, h nondecreasing in each argument
f is convex if ~

g; concave, h convex, h nonincreasing in each argument

proof (for n = 1, differentiable g, h)

(@) = g'(2)" V*h(g(2))g'(x) + Vh(g(x))" g" (2)

examples
e > " loggi(x) is concave if g; are concave and positive

e log> "  expg;(x) is convex if g; are convex
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Minimization
if f(x,y) is convex in (x,y) and C'is a convex set, then

g(z) = yiggf(:v, Y)

IS convex

examples

o f(z,y) =2l Ax + 22T By + y! Cy with

[AB

BT C]zo, C >0

minimizing over y gives g(z) = inf, f(x,y) = 21 (A — BC~'B )z
g is convex, hence Schur complement A — BC~1B* =0

e distance to a set: dist(x,S) = inf,cs ||z — y|| is convex if S is convex
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Perspective

the perspective of a function f : R®™ — R is the function ¢ : R” x R — R,
g(a,t) = tf(xft),  domg={(z,t)| 2/t € dom, t >0}

g is convex if f is convex

examples
o f(z)=x'xis convex; hence g(z,t) = 21z /t is convex for t > 0

e negative logarithm f(z) = —log x is convex; hence relative entropy
g(x,t) =tlogt — tlogx is convex on R?Hr

e if f is convex, then
g(x) = (chz+ d)f (Az +b)/(c z + d))

is convex on {x | ¢’z +d >0, (Az+b)/(c!'z + d) € dom f}
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The conjugate function

the conjugate of a function f is

fy)= sup (y'z— f(z))

rxedom f

f(x)

v ,//'(0, —f*(v))
e f*is convex (even if f is not)

e will be useful in chapter 5
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examples

e negative logarithm f(z) = —logx
f*(y) = sup(zy+logw)
x>0
_ —1—log(~y) y <0
- 00 otherwise

e strictly convex quadratic f(z) = (1/2)z' Qz with Q € ST},

() Slip(nyc — (1/2)2" Qx)

1T—1
= 2yQ Y
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Quasiconvex functions

f: R™ — R is quasiconvex if dom f is convex and the sublevel sets
Soe={x €domf | f(x) < a}

are convex for all «

e f is quasiconcave if —f is quasiconvex

e f is quasilinear if it is quasiconvex and quasiconcave
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Examples

o \/|97| Is quasiconvex on R

o ceil(x) =inf{z € Z| 2z > x} is quasilinear
e logx is quasilinear on R4

e f(x1,x2) = x5 IS quasiconcave on R?H

e linear-fractional function

T b
f@):%, dom f = {z | Tz +d > 0}
is quasilinear
e distance ratio
|z — a2
f) =g domP={a|llw—al> < b}
x — b2

IS quasiconvex

Convex functions 3-24



internal rate of return

e cash flow z = (zq,...,z,); x; is payment in period i (to us if z; > 0)
e we assume zg < Oand xg+z1+---+2, >0
e present value of cash flow x, for interest rate r:

PV(z,r) =Y (1+7)"z
i=0
e internal rate of return is smallest interest rate for which PV (x,r) = 0:
IRR(z) = inf{r >0 | PV(z,r) =0}

IRR is quasiconcave: superlevel set is intersection of halfspaces

IRR(z) > R <= Z(l —|—T)_i$i >0for0<r<R
i=0
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Properties

modified Jensen inequality: for quasiconvex f

0<0<1 = f(Oz+(1-0)y) <max{f(z), f(y)}

first-order condition: differentiable f with cvx domain is quasiconvex iff

fy) < flz) = Vi)' (y—2z)<0

sums of quasiconvex functions are not necessarily quasiconvex
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Log-concave and log-convex functions
a positive function f is log-concave if log f is concave:
f0x+(1=0)y) > f(x)’f(y)'™" for0<o<1

f is log-convex if log f is convex

e powers: % on R, . is log-convex for a < 0, log-concave for a > 0

e many common probability densities are log-concave, e.g., normal:

() = 1 o3 a—2)T2 2 7)

vV (2m)rdet

e cumulative Gaussian distribution function ® is log-concave

1 T
P(z) = E/ e /2 dy

Convex functions
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Properties of log-concave functions

e twice differentiable f with convex domain is log-concave if and only if
f(2)V?f(x) 2 Vf(2)Vf(z)"
for all x € dom f
e product of log-concave functions is log-concave
e sum of log-concave functions is not always log-concave

e integration: if f: R" x R" — R is log-concave, then

g(x) = / F(x,y) dy

is log-concave (not easy to show)
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consequences of integration property

e convolution f x g of log-concave functions f, g is log-concave
(F+9)(@) = [ Flo = vaw)iy

e if C' C R" convex and y is a random variable with log-concave pdf then
f(x) = prob(z +y € C)

is log-concave

proof: write f(x) as integral of product of log-concave functions

/() Z/g(w+y)p(y)dy» g(u) :{ (1) Z;g

p is pdf of y
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example: yield function
Y(x) = prob(z +w € 5)
e 2 € R": nominal parameter values for product

e w € R": random variations of parameters in manufactured product

e S: set of acceptable values

if S is convex and w has a log-concave pdf, then

e Y is log-concave

e yield regions {x | Y(z) > «} are convex
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Convexity with respect to generalized inequalities

f:R" — R"™is K-convex if dom f is convex and

flOzx+(1=0)y) 2k 0f(z) +(1-0)f(y)

forr,yecdomf,0<60<1

example f:S™ — S§™, f(X) = X?is S"'-convex

proof: for fixed z € R™, 21 X%z = || X2||3 is convex in X, i.e.,
dOX +(1-0)Y)2<0" X2+ (1-60)2'Y?2

for X, Y €eS™ 0<6<1

therefore (0X + (1 —0)Y)? 2 0X?+ (1 - 0)Y?

Convex functions
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