
6.079/6.975, Fall 2009-10	 S. Boyd & P. Parrilo 

(Part of) Homework 10: Standard form LP barrier method 

In the following three exercises, you will implement a barrier method for solving the standard 
form LP 

minimize cT x

subject to Ax = b, x � 0,


with variable x ∈ Rn, where A ∈ Rm×n, with m < n. Throughout this exercise we will 
assume that A is full rank, and the sublevel sets {x | Ax = b, x � 0, cT x ≤ γ} are all 
bounded. (If this is not the case, the centering problem is unbounded below.) 

1.	 Centering step. Implement Newton’s method for solving the centering problem 

minimize cT x −
�

i

n 
=1 log xi 

subject to Ax = b, 

with variable x, given a strictly feasible starting point x0. 

Your code should accept A, b, c, and x0, and return x ⋆, the primal optimal point, ν⋆ , 
a dual optimal point, and the number of Newton steps executed. 

Use the block elimination method to compute the Newton step. (You can also compute 
the Newton step via the KKT system, and compare the result to the Newton step 
computed via block elimination. The two steps should be close, but if any xi is very 
small, you might get a warning about the condition number of the KKT matrix.) 

Plot λ2/2 versus iteration k, for various problem data and initial points, to verify that 
your implementation gives asymptotic quadratic convergence. As stopping criterion, 
you can use λ2/2 ≤ 10−6 . Experiment with varying the algorithm parameters α and β, 
observing the effect on the total number of Newton steps required, for a fixed problem 
instance. Check that your computed x ⋆ and ν⋆ (nearly) satisfy the KKT conditions. 

To generate some random problem data (i.e., A, b, c, x0), we recommend the following 
approach. First, generate A randomly. (You might want to check that it has full rank.) 
Then generate a random positive vector x0, and take b = Ax0. (This ensures that x0 

is strictly feasible.) The parameter c can be chosen randomly. To be sure the sublevel 
sets are bounded, you can add a row to A with all positive elements. If you want to 
be able to repeat a run with the same problem data, be sure to set the state for the 
uniform and normal random number generators. 

Here are some hints that may be useful. 

•	 We recommend computing λ2 using the formula λ2 = −Δx
nt

T ∇f(x). You don’t 
really need λ for anything; you can work with λ2 instead. (This is important for 
reasons described below.) 

1 



•	 There can be small numerical errors in the Newton step Δxnt that you compute. 
When x is nearly optimal, the computed value of λ2 , i.e., λ2 = −Δx

nt

T ∇f(x), can 
actually be (slightly) negative. If you take the squareroot to get λ, you’ll get a 
complex number, and you’ll never recover. Moreover, your line search will never 
exit. However, this only happens when x is nearly optimal. So if you exit on the 
condition λ2/2 ≤ 10−6, everything will be fine, even when the computed value of 
λ2 is negative. 

•	 For the line search, you must first multiply the step size t by β until x + tΔxnt is 
feasible (i.e., strictly positive). If you don’t, when you evaluate f you’ll be taking 
the logarithm of negative numbers, and you’ll never recover. 

2. LP solver with strictly feasible starting point. Using the centering code from part (1), 
implement a barrier method to solve the standard form LP 

minimize cT x

subject to Ax = b, x � 0,


with variable x ∈ Rn, given a strictly feasible starting point x0. Your LP solver should 
take as argument A, b, c, and x0, and return x ⋆ . 

You can terminate your barrier method when the duality gap, as measured by n/t, 
is smaller than 10−3 . (If you make the tolerance much smaller, you might run into 
some numerical trouble.) Check your LP solver against the solution found by cvx, for 
several problem instances. 

The comments in part (1) on how to generate random data hold here too. 

Experiment with the parameter µ to see the effect on the number of Newton steps per 
centering step, and the total number of Newton steps required to solve the problem. 

Plot the progress of the algorithm, for a problem instance with n = 500 and m = 100, 
showing duality gap (on a log scale) on the vertical axis, versus the cumulative total 
number of Newton steps (on a linear scale) on the horizontal axis. 

Your algorithm should return a 2 × k matrix history, (where k is the total number 
of centering steps), whose first row contains the number of Newton steps required 
for each centering step, and whose second row shows the duality gap at the end of 
each centering step. In order to get a plot that looks like the ones in the book (e.g., 
figure 11.4, page 572), you should use the following code: 

[xx, yy] = stairs(cumsum(history(1,:)),history(2,:));

semilogy(xx,yy);


3. LP solver. Using the code from part (2), implement a general standard form LP 
solver, that takes arguments A, b, c, determines (strict) feasibility, and returns an 
optimal point if the problem is (strictly) feasible. 

2 



You will need to implement a phase I method, that determines whether the problem 
is strictly feasible, and if so, finds a strictly feasible point, which can then be fed to 
the code from part (2). In fact, you can use the code from part (2) to implement the 
phase I method. 

To find a strictly feasible initial point x0, we solve the phase I problem 

minimize t 
subject to Ax = b 

x � (1 − t)1, t ≥ 0, 

with variables x and t. If we can find a feasible (x, t), with t < 1, then x is strictly 
feasible for the original problem. The converse is also true, so the original LP is strictly 
feasible if and only if t ⋆ < 1, where t ⋆ is the optimal value of the phase I problem. 

We can initialize x and t for the phase I problem with any x0 satisfying Ax0 = b, and 
t0 = 2−mini xi 

0 . (Here we can assume that min x
i 
0 ≤ 0; otherwise x0 is already a strictly 

feasible point, and we are done.) You can use a change of variable z = x + (t− 1)1 to 
transform the phase I problem into the form in part (2). 

Check your LP solver against cvx on several numerical examples, including both fea­
sible and infeasible instances. 

3




MIT OpenCourseWare 
http://ocw.mit.edu 

6.079 / 6.975 Introduction to Convex Optimization 
Fall 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



