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6.079/6.975, Fall 2009-10 S. Boyd & P. Parrilo


Homework 7 additional problems 

1. Identifying a sparse linear dynamical system. A linear dynamical system has the form 

x(t + 1) = Ax(t) + Bu(t) + w(t), t = 1, . . . , T − 1, 

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the input signal, and w(t) ∈ Rn is the 
process noise, at time t. We assume the process noises are IID N (0, W ), where W � 0 
is the covariance matrix. The matrix A ∈ Rn×n is called the dynamics matrix or the 
state transition matrix, and the matrix B ∈ Rn×m is called the input matrix. 

You are given accurate measurements of the state and input signal, i.e., x(1), . . . , x(T ), 
u(1), . . . , u(T − 1), and W is known. Your job is to find a state transition matrix Â
and input matrix B̂ from these data, that are plausible, and in addition are sparse, 
i.e., have many zero entries. (The sparser the better.) 

By doing this, you are effectively estimating the structure of the dynamical system, 
i.e., you are determining which components of x(t) and u(t) affect which components 
of x(t + 1). In some applications, this structure might be more interesting than the 
actual values of the (nonzero) coefficients in Â and B̂. 

By plausible, we mean that 

T −1� 

=1t

2 
W −1/2 x(t + 1) − ˆ Bu(t)Ax(t) − ˆ

2 
∈ n(T − 1) ± 2 2n(T − 1), 

where a ± b means the interval [a − b, a + b]. (You can just take this as our definition

of plausible. But to explain this choice, we note that when Â = A and B̂ = B, the

left-hand side is χ2, with n(T − 1) degrees of freedom, and so has mean n(T − 1) and 

standard deviation 2n(T − 1).) 

(a) Describe a method for finding Â and B̂, based on convex optimization. 
We are looking for a very simple method, that involves solving one convex opti­
mization problem. (There are many extensions of this basic method, that would 
improve the simple method, i.e., yield sparser Â and B̂ that are still plausible. 
We’re not asking you to describe or implement any of these.) 

(b) Carry out your method on the data found in sparse_lds_data.m. Give the values 
of Â and B̂ that you find, and verify that they are plausible. 
In the data file, we give you the true values of A and B, so you can evaluate 
the performance of your method. (Needless to say, you are not allowed to use 
these values when forming Â and B̂.) Using these true values, give the number 
of false positives and false negatives in both Â and B̂. A false positive in Â, for 
example, is an entry that is nonzero, while the corresponding entry in A is zero. 
A false negative is an entry of Â that is zero, while the corresponding entry of A 
is nonzero. To judge whether an entry of Â (or B̂) is nonzero, you can use the 
test |Âij | ≥ 0.01 (or |B̂ij | ≥ 0.01). 
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2.	 Maximum likelihood prediction of team ability. A set of n teams compete in a tourna­
ment. We model each team’s ability by a number aj ∈ [0, 1], j = 1, . . . , n. When teams 
j and k play each other, the probability that team j wins is equal to prob(aj −ak +v > 
0), where v ∼ N (0, σ2). 

You are given the outcome of m past games. These are organized as 

(j(i), k(i), y(i)), i = 1, . . . ,m, 

meaning that game i was played between teams j(i) and k(i); y(i) = 1 means that team 
j(i) won, while y(i) = −1 means that team k(i) won. (We assume there are no ties.) 

(a) Formulate the problem of finding the maximum likelihood estimate of team abil­
ities, â ∈ Rn, given the outcomes, as a convex optimization problem. You will 
find the game incidence matrix A ∈ Rm×n, defined as 

Ail =


⎧ ⎪⎨ ⎪⎩ 

y(i) l = j(i) 

(i) l = k(i)−y

0 otherwise,


useful.


The prior constraints âi ∈ [0, 1] should be included in the problem formulation.

Also, we note that if a constant is added to all team abilities, there is no change in

the probabilities of game outcomes. This means that â is determined only up to

a constant, like a potential. But this doesn’t affect the ML estimation problem,

or any subsequent predictions made using the estimated parameters.


(b) Find â for the team data given in team_data.m, in the matrix train. (This 
matrix gives the outcomes for a tournament in which each team plays each other 
team once.) You may find the cvx function log_normcdf helpful for this problem. 

You can form A using the commands 

A =	 sparse(1:m,train(:,1),train(:,3),m,n) + ...

sparse(1:m,train(:,2),-train(:,3),m,n);


(c) Use the maximum	 likelihood estimate â found in part (b) to predict the out­
comes of next year’s tournament games, given in the matrix test, using ŷ(i) = 
sign(âj(i) − âk(i) ). Compare these predictions with the actual outcomes, given in 
the third column of test. Given the fraction of correctly predicted outcomes. 

The games played in train and test are the same, so another, simpler method 
for predicting the outcomes in test it to just assume the team that won last year’s 
match will also win this year’s match. Give the percentage of correctly predicted 
outcomes using this simple method. 

2




3. Three-way linear classification. We are given data 

(1) (N) (1) (M) (1) (P )x , . . . , x , y , . . . , y , z , . . . , z , 

three nonempty sets of vectors in Rn . We wish to find three affine functions on Rn , 

fi(z) = a Ti z − bi, i = 1, 2, 3, 

that satisfy the following properties: 

f1(x
(j)) > max{f2(x

(j)), f3(x
(j))}, j = 1, . . . , N, 

f2(y
(j)) > max{f1(y

(j)), f3(y
(j))}, j = 1, . . . ,M, 

f3(z
(j)) > max{f1(z

(j)), f2(z
(j))}, j = 1, . . . , P. 

In words: f1 is the largest of the three functions on the x data points, f2 is the largest 
of the three functions on the y data points, f3 is the largest of the three functions on 
the z data points. We can give a simple geometric interpretation: The functions f1, 
f2, and f3 partition Rn into three regions, 

R1 = {z | f1(z) > max{f2(z), f3(z)}}, 
R2 = {z | f2(z) > max{f1(z), f3(z)}}, 
R3 = {z | f3(z) > max{f1(z), f2(z)}}, 

defined by where each function is the largest of the three. Our goal is to find functions 
with x(j) ∈ R1, y(j) ∈ R2, and z(j) ∈ R3. 

Pose this as a convex optimization problem. You may not use strict inequalities in 
your formulation. 

Solve the specific instance of the 3-way separation problem given in sep3way_data.m, 
with the columns of the matrices X, Y and Z giving the x(j), j = 1, . . . , N , y(j), j = 
1, . . . ,M and z(j), j = 1, . . . , P . To save you the trouble of plotting data points and 
separation boundaries, we have included the plotting code in sep3way_data.m. (Note 
that a1, a2, a3, b1 and b2 contain arbitrary numbers; you should compute the correct 
values using CVX.) 
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