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6.079/6.975, Fall 2009–10	 S. Boyd & P. Parrilo


Homework 5 additional problems 

1. Heuristic suboptimal solution for Boolean LP. This exercise builds on exercises 4.15 
and 5.13 in Convex Optimization, which involve the Boolean LP 

minimize	 cT x 
subject to	 Ax � b 

xi ∈ {0, 1}, i = 1, . . . , n, 

with optimal value p ⋆ . Let xrlx be a solution of the LP relaxation 

minimize	 cT x 
subject to	 Ax � b 

0 � x � 1, 

so L = cT xrlx is a lower bound on p ⋆ . The relaxed solution xrlx can also be used to 
guess a Boolean point x̂, by rounding its entries, based on a threshold t ∈ [0, 1]: 

rlx 1 xi ≥ t 
x̂i = 

0 otherwise, 

for i = 1, . . . , n. Evidently x̂ is Boolean (i.e., has entries in {0, 1}). If it is feasible for 
the Boolean LP, i.e., if Ax̂ � b, then it can be considered a guess at a good, if not 
optimal, point for the Boolean LP. Its objective value, U = cT x̂, is an upper bound on 
p ⋆ . If U and L are close, then x̂ is nearly optimal; specifically, x̂ cannot be more than 
(U − L)-suboptimal for the Boolean LP. 

This rounding need not work; indeed, it can happen that for all threshold values, x̂ is 
infeasible. But for some problem instances, it can work well. 

Of course, there are many variations on this simple scheme for (possibly) constructing 
a feasible, good point from xrlx . 

Finally, we get to the problem. Generate problem data using 

rand(’state’,0);

n=100;

m=300;

A=rand(m,n);

b=A*ones(n,1)/2;

c=-rand(n,1);


You can think of xi as a job we either accept or decline, and −ci as the (positive) 
revenue we generate if we accept job i. We can think of Ax � b as a set of limits on 
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m resources. Aij , which is positive, is the amount of resource i consumed if we accept 
job j; bi, which is positive, is the amount of resource i available. 

Find a solution of the relaxed LP and examine its entries. Note the associated lower 
bound L. Carry out threshold rounding for (say) 100 values of t, uniformly spaced over 
[0, 1]. For each value of t, note the objective value cT x̂ and the maximum constraint 
violation maxi(Ax̂ − b)i. Plot the objective value and the maximum violation versus 
t. Be sure to indicate on the plot the values of t for which x̂ is feasible, and those for

which it is not.


Find a value of t for which x̂ is feasible, and gives minimum objective value, and note

the associated upper bound U . Give the gap U − L between the upper bound on p ⋆


⋆and the lower bound on p . If you define vectors obj and maxviol, you can find the 
upper bound as U=min(obj(find(maxviol<=0))). 

2. Three measures of the spread of a group of numbers. For x ∈ Rn, we define three 
functions that measure the spread or width of the set of its elements (or coefficients). 
The first function is the spread, defined as 

φsprd(x) = max xi − min xi. 
i=1,...,n i=1,...,n 

This is the width of the smallest interval that contains all the elements of x.


The second function is the standard deviation, defined as


 
( )2 

1/2 
n n1 ∑ 1 ∑ 

φstdev(x) =  xi 
2 − xi  . 

n ni=1 i=1 

This is the statistical standard deviation of a random variable that takes the values 
x1, . . . , xn, each with probability 1/n. 

The third function is the average absolute deviation from the median of the values: 

n 

φaamd(x) = (1/n) |xi − med(x)|, 
i=1 

where med(x) denotes the median of the components of x, defined as follows. If 
n = 2k − 1 is odd, then the median is defined as the value of middle entry when 
the components are sorted, i.e., med(x) = x[k], the kth largest element among the 
values x1, . . . , xn. If n = 2k is even, we define the median as the average of the two 
middle values, i.e., med(x) = (x[k] + x[k+1])/2. 

Each of these functions measures the spread of the values of the entries of x; for 
example, each function is zero if and only if all components of x are equal, and each 
function is unaffected if a constant is added to each component of x. 

Which of these three functions is convex? For each one, either show that it is convex, 
or give a counterexample showing it is not convex. By a counterexample, we mean a 
specific x and y such that Jensen’s inequality fails, i.e., φ((x+y)/2) > (φ(x)+φ(y))/2. 
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3. Minimax rational fit to the exponential. (See exercise 6.9 of Convex Optimization.) We 
consider the specific problem instance with data 

ti = −3 + 6(i − 1)/(k − 1), yi = e ti , i = 1, . . . , k, 

where k = 201. (In other words, the data are obtained by uniformly sampling the 
exponential function over the interval [−3, 3].) Find a function of the form 

a0 + a1t + a2t
2 

f(t) = 
1 + b1t + b2t2 

that minimizes maxi=1,...,k |f(ti) − yi|. (We require that 1 + b1ti + b2ti 
2 > 0 for i = 

1, . . . , k.) 

Find optimal values of a0, a1, a2, b1, b2, and give the optimal objective value, com­
puted to an accuracy of 0.001. Plot the data and the optimal rational function fit on 
the same plot. On a different plot, give the fitting error, i.e., f(ti) − yi. 

Hint. You can use strcmp(cvx_status,’Solved’), after cvx_end, to check if a feasi­
bility problem is feasible. 

4. Complex least-norm problem. We consider the complex least ℓp-norm problem 

minimize ‖x‖p 

subject to Ax = b, 

where A ∈ Cm×n , b ∈ Cm, and the variable is x ∈ Cn . Here ‖ · ‖p denotes the ℓp-norm 
on Cn, defined as


( 
n 

)1/p


‖x‖p = |xi|
p 

i=1 

for p ≥ 1, and ‖x‖∞ = maxi=1,...,n |xi|. We assume A is full rank, and m < n. 

(a) Formulate the complex least ℓ2-norm problem as a least ℓ2-norm problem with 
real problem data and variable. Hint. Use z = (ℜx,ℑx) ∈ R2n as the variable. 

(b) Formulate the complex least ℓ∞-norm problem as an SOCP. 

(c) Solve a random instance of both problems with m = 30 and n = 100. To generate 
the matrix A, you can use the Matlab command A = randn(m,n) + i*randn(m,n). 
Similarly, use b = randn(m,1) + i*randn(m,1) to generate the vector b. Use 
the Matlab command scatter to plot the optimal solutions of the two problems 
on the complex plane, and comment (briefly) on what you observe. You can solve 
the problems using the CVX functions norm(x,2) and norm(x,inf), which are 
overloaded to handle complex arguments. To utilize this feature, you will need to 
declare variables to be complex in the variable statement. (In particular, you 
do not have to manually form or solve the SOCP from part (b).) 
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