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1 Introduction 

The objective here is to develop a simple but physically meaningful model of the synchronous 
machine, one of the major classes of electric machine. We can look at this model from several 
different directions. This will help develop an understanding of analysis of machines, particularly 
in cases where one or another analytical picture is more appropriate than others. Both operation 
and sizing will be of interest here. 

Along the way we will approach machine windings from two points of view. On the one hand, 
we will approximate windings as sinusoidal distributions of current and flux linkage. Then we will 
take a concentrated coil point of view and generalize that into a more realistic and useful winding 
model. 

2 Physical Picture: Current Sheet Description 

Consider this simple picture. The ‘machine’ consists of a cylindrical rotor and a cylindrical stator 
which are coaxial and which have sinusoidal current distributions on their surfaces: the outer 
surface of the rotor and the inner surface of the stator. 

The ‘rotor’ and ‘stator’ bodies are made of highly permeable material (we approximate this as 
being infinite for the time being, but this is something that needs to be looked at carefully later). 
We also assume that the rotor and stator have current distributions that are axially (z) directed 
and sinusoidal: 

Kz
S = KS cos pθ


Kz
R = KR cos p (θ − φ)


Here, the angle φ is the physical angle of the rotor. The current distribution on the rotor goes 
along. Now: assume that the air-gap dimension g is much less than the radius: g << R. It is not 
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Figure 1: Elementary Machine Model: Axial View 

difficult to show that with this assumption the radial flux density Br is nearly uniform across the 
gap (i.e. not a function of radius) and obeys: 

Then the radial magnetic flux density for this case is simply: 

Now it is possible to compute the traction on rotor and stator surfaces by recognizing that 
the surface current distributions are the azimuthal magnetic fields: at  the surface of the stator, 
HQ= -K:, and at the surface of the rotor, HQ= K;. So at the surface of the rotor, traction is: 

TO= Tro= --P o R  (Ks sinp0 + KR sinp (0 - 4)) KR cosp (0 - 4)
Pg 

The average of that is simply: 

The same exercise done at the surface of the stator yields the same results (with opposite sign). 
To find torque, use: 

We can pause here to make a few observations: 

1. For a given value of surface currents Ks and Kr, torque goes as the fourth power of linear 
dimension. The volume of the machine goes as the third power, so this implies that torque 
capability goes as the 413 power of machine volume. Actually, this understates the situation 
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since the assumed surface current densities are the products of volume current densities and 
winding depth, which one would expect to increase with machine size. Thus machine torque 
(and power) densities tend to increase somewhat faster with size. 

2. The current distributions want to align with each other. In actual practice what is done is to 
generate a stator current distribution which is not static as implied here but which rotates in 
space: 

KS = KS cos (pθ − ωt)z 

and this pulls the rotor along. 

3. For a given pair of current distributions there is a maximum torque that can be sustained, 
but as long as the torque that is applied to the rotor is less than that value the rotor will 
adjust to the correct angle. 

Continuous Approximation to Winding Patterns: 

Now let’s try to produce those surface current distributions with physical windings. In fact we 
can’t do exactly that yet, but we can approximate a physical winding with a turns distribution 
that would look like: 

nS = 
NS 

2R 
cos pθ 

nR = 
NR 

2R 
cos p (θ − φ) 

Note that this implies that NS and NR are the total number of turns on the rotor and stator. 
i.e.: 

� π 
2 

p nSRdθ = NS 
π

−
2 

Then the surface current densities are as we assumed above, with: 

NSIS NRIR
KS = KR = 

2R 2R 

So far nothing is different, but with an assumed number of turns we can proceed to computing 
inductances. It is important to remember what these assumed winding distributions mean: they 
are the density of wires along the surface of the rotor and stator. A positive value implies a wire 
with sense in the +z direction, a negative value implies a wire with sense in the -z direction. That 
is, if terminal current for a winding is positive, current is in the +z direction if n is positive, in 
the -z direction if n is negative. In fact, such a winding would be made of elementary coils with 
one half (the negatively going half) separated from the other half (the positively going half) by a 
physical angle of π/p. So the flux linked by that elemental coil would be: 

� θ 

Φi(θ) = µ0Hr(θ
�)�Rdθ� 

θ−π/p 

So, if only the stator winding is excited, radial magnetic field is: 

NSIS
Hr = − 

2gp 
sin pθ 
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and thus the elementary coil flux is: 

µ0NSIS�R 
Φi(θ) = cos pθ 

p2g 

Now, this is flux linked by an elementary coil. To get flux linked by a whole winding we must 
‘add up’ the flux linkages of all of the elementary coils. In our continuous approximation to the 
real coil this is the same as integrating over the coil distribution: 

� π 
2p 

λS = p Φi(θ)nS(θ)Rdθ 
π

− 
2p 

This evaluates fairly easily to: 
π �RNS 

2 

IsλS = µ0 
4 gp2 

which implies a self-inductance for the stator winding of: 

π �RNS 
2 

LS = µ0 
4 gp2 

The same process can be used to find self-inductance of the rotor winding (with appropriate 
changes of spatial variables), and the answer is: 

π �RNR 
2 

LR = µ0 24 gp

To find the mutual inductance between the two windings, excite one and compute flux linked 
by the other. All of the expressions here can be used, and the answer is: 

π �RNSNR
M(φ) = µ0 

4 gp2 
cos pφ 

Now it is fairly easy to compute torque using conventional methods. Assuming both windings 
are excited, magnetic coenergy is: 

1 1 
W � LRIR 

2 + M(φ)ISIR= m LSIS 
2 + 

2 2


and then torque is:

∂W � π �RNSNR

ISIR sin pφ T = 
∂φ 

m = −µ0 
4 gp


and then substituting for NSIS and NRIR:


NSIS = 2RKS


NRIR = 2RKR


we get the same answer for torque as with the field approach: 

T = 2πR2� < τθ >= 
µ0πR

3�
KSKR sin pφ 

pg 
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Classical, Lumped-Parameter Synchronous Machine: 

Now we are in a position to examine the simplest model of a polyphase synchronous machine. 
Suppose we have a machine in which the rotor is the same as the one we were considering, but the 
stator has three separate windings, identical but with spatial orientation separated by an electrical 
angle of 120◦ = 2π/3. The three stator windings will have the same self- inductance (La). 

With a little bit of examination it can be seen that the three stator windings will have mutual 
inductance, and that inductance will be characterized by the cosine of 120◦ . Since the physical 
angle between any pair of stator windings is the same, 

1 
Lab = Lac = Lbc = −

2 
La 

There will also be a mutual inductance between the rotor and each phase of the stator. Using 
M to denote the magnitude of that inductance: 

π �RNaNf
M = µ0 

4 gp2 

Maf = M cos (pφ) 
� 

2π 
� 

Mbf = M cos pφ − 
3 

� 
2π 
� 

Mcf = M cos pφ + 
3 

We show in Chapter 1 of these notes that torque for this system is: 

2π 2π 
T = −pMiaif sin (pφ) − pMibif sin pφ − − pMicif sin pφ + 

3 3 

Balanced Operation: 

Now, suppose the machine is operated in this fashion: the rotor turns at a constant velocity, the 
field current is held constant, and the three stator currents are sinusoids in time, with the same 
amplitude and with phases that differ by 120 degrees. 

pφ = ωt + δi 

if = If 

ia = I cos (ωt) 

2π 
ib = I cos ωt − 

3 
2π 

ic = I cos ωt + 
3 

Straightforward (but tedious) manipulation yields an expression for torque: 

3 
T = −

2
pMIIf sin δi 
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Operated in this way, with balanced currents and with the mechanical speed consistent with 
the electrical frequency (pΩ = ω), the machine exhibits a constant torque. The phase angle δi is 
called the torque angle, but it is important to use some caution, as there is more than one torque 
angle. 

Now, look at the machine from the electrical terminals. Flux linked by Phase A will be: 

λa = Laia + Labib + Lacic + MIf cos pφ 

Noting that the sum of phase currents is, under balanced conditions, zero and that the mutual 
phase-phase inductances are equal, this simplifies to: 

λa = (La − Lab) ia + MIf cos pφ = Ldia + MIf cos pφ 

where we use the notation Ld to denote synchronous inductance. 
Now, if the machine is turning at a speed consistent with the electrical frequency we say it is 

operating synchronously, and it is possible to employ complex notation in the sinusoidal steady 
state. Then, note: 

ia = I cos (ωt + θi) = Re Iejωt+θi 

If , we can write an expression for the complex amplitude of flux as: 

λa = Re Λae
jωt 

where we have used this complex notation: 

I = Iejθi 

If = Ife
jθm 

Now, if we look for terminal voltage of this system, it is: 

dλa 
= Re jωΛ ejωt va = 

dt a

This system is described by the equivalent circuit shown in Figure 2. 

j Xd 

V 

+ 

− 

Eaf 

+ 

− 

Figure 2: Round Rotor Synchronous Machine Equivalent Circuit 

where the internal voltage is: 
Eaf = jωMIfe

jθm 
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Now, if that is connected to a voltage source (i.e. if is fixed), terminal current is: 

V − Eaf e
jδ 

I = 
jXd 

where Xd = ωLd is the synchronous reactance. 
Then real and reactive power (in phase A) are: 

1 
V I∗P + jQ = 

2 
� �

∗ 

1 V −Eaf e
jδ 

= V 
2 jXd 

1 V 2 1 V Eafe
jδ 

= 
2 −

|
jX

|
d 
−

2 −jXd


This makes real and reactive power:


1 V Eaf

Pa = −

2 Xd 
sin δ 

1 V 2 1 V Eaf Xd
Qa = 

2Xd 
−

2 cos 
δ


If we consider all three phases, real power is


3 V Eaf

P = −

2 Xd 
sin δ 

Now, at last we need to look at actual operation of these machines, which can serve either as 
motors or as generators. 

Vector diagrams that describe operation as a motor and as a generator are shown in Figures 3 
and 4, respectively. 

Ia V V 

δ 

j X Id a 

Iaδ 

j X Id a 

Eaf 
Eaf 

Over−Excited Under−Excited 

Figure 3: Motor Operation, Under- and Over- Excited 

Operation as a generator is not much different from operation as a motor, but it is common to 
make notations with the terminal current given the opposite (“generator”) sign. 
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δ 

Eaf 

Ia 

δ 

Eaf 

j X Id a j X Id a 

V VIa 

Over−Excited Under−Excited 

Figure 4: Generator Operation, Under- and Over- Excited 

Reconciliation of Models 

We have determined that we can predict its power and/or torque characteristics from two points 
of view : first, by knowing currents in the rotor and stator we could derive an expression for torque 
vs. a power angle: 

3 
T = −

2
pMIIf sin δi


From a circuit point of view, it is possible to derive an expression for power:


3 V Eaf 
P = −

2 Xd 
sin δ 

and of course since power is torque times speed, this implies that:


3 V Eaf 3 pV Eaf 
T = −

2 ΩXd 
sin δ = −

2 ωXd 
sin δ 

In this section of the notes we will, first of all, reconcile these notions, look a bit more at what 
they mean, and then generalize our simple theory to salient pole machines as an introduction to 
two-axis theory of electric machines. 

6.1 Torque Angles: 

Figure 5 shows a vector diagram that shows operation of a synchronous motor. It represents the 
MMF’s and fluxes from the rotor and stator in their respective positions in space during normal 
operation. Terminal flux is chosen to be ‘real’, or occupy the horizontal position. In motor operation 
the rotor lags by angle δ, so the rotor flux MIf is shown in that position. Stator current is also 
shown, and the torque angle between it and the rotor, δi is also shown. Now, note that the dotted 
line OA, drawn perpendicular to a line drawn between the stator flux LdI and terminal flux Λt, 
has length: 

|OA| = LdI sin δi = Λt sin δ 
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M I f 

Figure 5: Synchronous Machine Phasor Addition 

Then, noting that terminal voltage V = ωΛt, Ea = ωMIf and Xd = ωLd , straightforward 
substitution yields: 

3 pV Eaf 3 
sin δ = pMIIf sin δi

2 ωXd 2

So the current- and voltage- based pictures do give the same result for torque. 

Per-Unit Systems: 

Before going on, we should take a short detour to look into per-unit systems, a notational device 
that, in addition to being convenient, will sometimes be conceptually helpful. The basic notion is 
quite simple: for most variables we will note a base quantity and then, by dividing the variable by 
the base we have a per-unit version of that variable. Generally we will want to tie the base quantity 
to some aspect of normal operation. So, for example, we might make the base voltage and current 
correspond with machine rating. If that is the case, then power base becomes: 

PB = 3VBIB 

and we can define, in similar fashion, an impedance base: 

VB
ZB = 

IB 

Now, a little caution is required here. We have defined voltage base as line-neutral and current 
base as line current (both RMS). That is not necessary. In a three phase system we could very well 
have defined base voltage to have been line-line and base current to be current in a delta connected 
element: 

IB
VBΔ = 

√
3VB IBΔ = √

3 

In that case the base power would be unchanged but base impedance would differ by a factor of 
three: 

PB = VBΔIBΔ ZBΔ = 3ZB 

9 
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However, if we were consistent with actual impedances (note that a delta connection of elements of 
impedance 3Z is equivalent to a wye connection of Z), the per-unit impedances of a given system 
are not dependent on the particular connection. In fact one of the major advantages of using a 
per-unit system is that per-unit values are uniquely determined, while ordinary variables can be 
line-line, line-neutral, RMS, peak, etc., for a large number of variations. 

Perhaps unfortunate is the fact that base quantities are usually given as line-line voltage and 
base power. So that: 

PB VB 1 VBΔ VB
2
ΔIB = √

3VBΔ 

ZB = 
IB 3 IBΔ PB 

= = 

Now, we will usually write per-unit variables as lower-case versions of the ordinary variables: 

V P 
v = 

VB 
p = 

PB 
etc. 

Thus, written in per-unit notation, real and reactive power for a synchronous machine operating 
in steady state are: 

2veaf v veaf 
p = sin δ q =− 

xd xd 
− 

xd 
sin δ 

These are, of course, in motor reference coordinates, and represent real and reactive power into 
the terminals of the machine. 

Normal Operation: 

The synchronous machine is used, essentially interchangeably, as a motor and as a generator. Note 
that, as a motor, this type of machine produces torque only when it is running at synchronous 
speed. This is not, of course, a problem for a turbogenerator which is started by its prime mover 
(e.g. a steam turbine). Many synchronous motors are started as induction machines on their 
damper cages (sometimes called starting cages). And of course with power electronic drives the 
machine can often be considered to be “in synchronism” even down to zero speed. 

As either a motor or as a generator, the synchronous machine can either produce or consume 
reactive power. In normal operation real power is dictated by the load (if a motor) or the prime 
mover (if a generator), and reactive power is determined by the real power and by field current. 

Figure 6 shows one way of representing the capability of a synchronous machine. This picture 
represents operation as a generator, so the signs of p and q are reversed, but all of the other elements 
of operation are as we ordinarily would expect. If we plot p and q (calculated in the normal way) 
against each other, we see the construction at the right. If we start at a location q = −v2/xd, (and 
remember that normally v = 1 per-unit , then the locus of p and q is what would be obtained by 
swinging a vector of length veaf/xd over an angle δ. This is called a capability chart because it is 
an easy way of visualizing what the synchronous machine (in this case generator) can do. There 
are three easily noted limits to capability. The upper limit is a circle (the one traced out by that 
vector) which is referred to as field capability. The second limit is a circle that describes constant 
|p + jq|. This is, of course, related to the magnitude of armature current and so this limit is called 
armature capability. The final limit is related to machine stability, since the torque angle cannot 
go beyond 90 degrees. In actuality there are often other limits that can be represented on this type 
of a chart. For example, large synchronous generators typically have a problem with heating of the 
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Figure 6: Synchronous Generator Capability Diagram 

stator iron when they attempt to operate in highly underexcited conditions (q strongly negative), 
so that one will often see another limit that prevents the operation of the machine near its stability 
limit. In very large machines with more than one cooling state (e.g. different values of cooling 
hydrogen pressure) there may be multiple curves for some or all of the limits. 

Another way of describing the limitations of a synchronous machine is embodied in the Vee 

Curve. An example is shown in Figure 7 . This is a cross-plot of magnitude of armature current 
with field current. Note that the field and armature current limits are straightforward (and are the 
right-hand and upper boundaries, respectively, of the chart). The machine stability limit is what 
terminates each of the curves at the upper left-hand edge. Note that each curve has a minimum at 
unity power factor. In fact, there is yet another cross-plot possible, called a compounding curve, in 
which field current is plotted against real power for fixed power factor. 

Salient Pole Machines: Two-Reaction Theory 

So far, we have been describing what are referred to as “round rotor” machines, in which stator 
reactance is not dependent on rotor position. This is a pretty good approximation for large turbine 
generators and many smaller two-pole machines, but it is not a good approximation for many 
synchronous motors nor for slower speed generators. For many such applications it is more cost 
effective to wind the field conductors around steel bodies (called poles) which are then fastened 
onto the rotor body, with bolts or dovetail joints. These produce magnetic anisotropies into the 
machine which affect its operation. The theory which follows is an introduction to two-reaction 
theory and consequently for the rotating field transformations that form the basis for most modern 
dynamic analyses. 

Figure 8 shows a very schematic picture of the salient pole machine, intended primarily to show 
how to frame this analysis. As with the round rotor machine the stator winding is located in slots 
in the surface of a highly permeable stator core annulus. The field winding is wound around steel 
pole pieces. We separate the stator current sheet into two components: one aligned with and one 
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Figure 7: Synchronous Machine Vee Curve 

in quadrature to the field. Remember that these two current components are themselves (linear) 
combinations of the stator phase currents. The transformation between phase currents and the d-
and q- axis components is straightforward and will appear in Chapter 4 of these notes. 

The key here is to separate MMF and flux into two orthogonal components and to pretend that 
each can be treated as sinusoidal. The two components are aligned with the direct axis and with 
the quadrature axis of the machine. The direct axis is aligned with the field winding, while the 
quadrature axis leads the direct by 90 degrees. Then, if φ is the angle between the direct axis and 
the axis of phase a, we can write for flux linking phase a: 

λa = λd cosφ − λq sinφ 

Then, in steady state operation, if Va = dλa and φ = ωt + delta ,dt 

Va = −ωλd sinφ − ωλq cosφ 

which allows us to define: 

Vd = −ωλq 

Vq = ωλd 

one might think of the ‘voltage’ vector as leading the ‘flux’ vector by 90 degrees.

Now, if the machine is linear, those fluxes are given by:


λd = LdId + MIf 

λq = LqIq 
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Figure 8: Cartoon of a Salient Pole Synchronous Machine 

Vq 
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V 

Figure 9: Resolution of Terminal Voltage 

Note that, in general, Ld = Lq. In wound-field synchronous machines, usually Ld > Lq. The 
reverse is true for most salient (buried magnet) permanent magnet machines. 

Referring to Figure 9, one can resolve terminal voltage into these components: 

Vd = V sin δ 

Vq = V cos δ 

or: 

Vd = −ωλq = −ωLqIq = V sin δ 

Vq = ωλd = ωLdId + ωMIf = V cos δ 

which is easily inverted to produce: 

Id = 
V cos δ −Eaf 

Xd 
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V sin δ 
Iq = − 

Xq 

where 
Xd = ωLd Xq = ωLq Eaf = ωMIf 

Now, we are working in ordinary variables (this discussion should help motivate the use of per­
unit!), and each of these variables is peak amplitude. Then, if we take up a complex frame of 
reference: 

V = Vd + jVq 

I = Id + jIq 

complex power is: 

3 3 
P + jQ = V I∗ =

2 
{(VdId + VqIq) + j (VqId − VdIq)}

2 

or: 
� � � � 

P = − 3 

2 

V Eaf 

Xd 
sin δ + 

V 2 

2 

1 

Xd 
− 1 

Xq 
sin 2δ 

� � � � � � 

Q = 
3 

2 

V 2 

2 

1 

Xd 
+ 

1 

Xq 
− V 2 

2 

1 

Xd 
− 1 

Xq 
cos 2δ − V Eaf 

Xd 
cos δ 

Id 
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j X I 

j X Iq

q q 

d d I 

I 
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E
af 

Figure 10: Phasor Diagram: Salient Pole Machine 

A phasor diagram for a salient pole machine is shown in Figure 10. This is a little different 
from the equivalent picture for a round-rotor machine, in that stator current has been separated 
into its d- and q- axis components, and the voltage drops associated with those components have 
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been drawn separately. It is interesting and helpful to recognize that the internal voltage Eaf can 
be expressed as: 

Eaf = E1 + (Xd −Xq) Id 

where the voltage E1 is on the quadrature axis. In fact, E1 would be the internal voltage of a 
round rotor machine with reactance Xq and the same stator current and terminal voltage. Then 
the operating point is found fairly easily: 

δ = − tan−1 XqI sinψ 
V + XqI cosψ 

E1 = (V + XqI sinψ)2 + (XqI cosψ)2 

Power-Angle Curves 
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Figure 11: Torque-Angle Curves: Round Rotor and Salient Pole Machines 

A comparison of torque-angle curves for a pair of machines, one with a round, one with a salient 
rotor is shown in Figure 11 . It is not too difficult to see why power systems analysts often neglect 
saliency in doing things like transient stability calculations. 

10 Relating Rating to Size 

It is possible, even with the simple model we have developed so far, to establish a quantitative 
relationship between machine size and rating, depending (of course) on elements such as useful flux 
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and surface current density. To start, note that the rating of a machine (motor or generator) is: 

|P + jQ| = qV I 

where q is the number of phases, V is the RMS voltage in each phase and I is the RMS current. 
To establish machine rating we must establish voltage and current, and we do these separately. 

10.1 Voltage 

Assume that our sinusoidal approximation for turns density is valid: 

Na 
na(θ) = cos pθ 

2R 

And suppose that working flux density is: 

Br(θ) = B0 sin p(θ − φ) 

Now, to compute flux linked by the winding (and consequently to compute voltage), we first 
compute flux linked by an incremental coil: 

� θ 

λi(θ) = �Br(θ
�)Rdθ� 

θ−

Then flux linked by the whole coil is: 

π
p 

π 
2p π 2�RNa

λa = p
 λi(θ)na(θ)Rdθ = B0 cos pφ 
−

π 
2p 

4 p


This is instantaneous flux linked when the rotor is at angle φ. If the machine is operating at some 
electrical frequency ω with a phase angle so that pφ = ωt + δ, the RMS magnitude of terminal 
voltage is: 

ω π B0
Va = 

p 4
2�RNa √

2 

Finally, note that the useful peak current density that can be used is limited by the fraction of 
machine periphery used for slots: 

B0 = Bs (1 − λs) 

where Bs is the flux density in the teeth, limited by saturation of the magnetic material. 

10.2 Current 

The (RMS) magnitude of the current sheet produced by a current of (RMS) magnitude I is: 

q NaI 
Kz = 

2 2R 

And then the current is, in terms of the current sheet magnitude:


2 
I = 2RKz 

qNa 
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Note that the surface current density is, in terms of area current density Js, slot space factor λs 

and slot depth hs: 
Kz = λsJshs 

This gives terminal current in terms of dimensions and useful current density: 

4R 
I = λshsJs

qNa 

10.3 Rating 

Assembling these expressions, machine rating becomes: 

ω Bs |P + jQ| = qV I = 
p 

2πR2�√
2 
λs (1 − λs)hsJs 

This expression is actually fairly easily interpreted. The product of slot factor times one minus 
slot factor optimizes rather quickly to 1/4 (when λs = 1). We could interpret this as: 

∗ |P = jQ| = Asusτ

where the interaction area is: 
As = 2πR� 

The surface velocity of interaction is: 

ω 
R = ΩRus = 

p 

and the fragment of expression which “looks like” traction is: 

∗ 
Bs

τ = hsJs √
2 
λs (1 − λs) 

Note that this is not quite traction since the current and magnetic flux may not be ideally aligned, 
and this is why the expression incorporates reactive as well as real power. 

This is not quite yet the whole story. The limit on Bs is easily understood to be caused by 
saturation of magnetic material. The other important element on shear stress density, hsJs is a 
little more involved. 

We will do a more complete derivation of winding reactances shortly. Here, start by noting that 
the per-unit, or normalized synchronous reactance is: 

I 
= 
µ0R λs √

2 
hsJs 

xd = Xd
V pg 1 − λs Bs 

While this may be somewhat interesting by itself, it becomes useful if we solve it for hsJa: 

p(1 − λs)Bs
hsJa = xdg

µ0Rλs

√
2 

That is, if xd is fixed, hsJa (and so power) are directly related to air- gap g.Now, to get a limit on 
g, we must answer the question of how far the field winding can “throw” effective air- gap flux? To 
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understand this question, we must calculate the field current to produce rated voltage, no- load, 
and then the excess of field current required to accommodate load current. 

Under rated operation, per- unit field voltage is: 

eaf 
2 = v 2 + (xdi)

2 + 2xdi sinψ 

Or, if at rated conditions v and i are both unity (one per- unit), then 

eaf = 1 + x2 
d + 2xd sinψ 

Thus, given a value for xd and ψ, per- unit internal voltage eaf is also fixed. Then field current 
required can be calculated by first estimating field winding current for “no-load operation”. 

µ0NfIfnl 
Br = 

2gp 

and rated field current is: 
If = Ifnleaf 

or, required rated field current is: 

NfIf =
2gp(1 − λp)Bs 

eaf 
µ0 

Next, If can be related to a field current density: 

NRS 
NfIf = ARSJf

2 

where NRS is the number of rotor slots and the rotor slot area ARS is 

ARS = wRhR 

where hR is rotor slot height and wR is rotor slot width: 

2πR 
wR = λR

NRS 

Then: 
NfIf = πRλRhRJf 

Now we have a value for air- gap g: 

2µ0kfRλRhRJf 
g = 

p(1 − λs)Bseaf 

This then gives us useful armature surface current density: 

hsJs = 
√

2 
xd λR

hRJf 
eaf λs 

We will not have a lot more to say about this. Note that the ratio of xd/eaf can be quite small 
(if the per-unit reactance is small), will never be a very large number for any practical machine, 
and is generally less than one. As a practical matter it is unusual for the per-unit synchronous 
reatance of a machine to be larger than about 2 or 2.25 per-unit. What this tells us should be 
obvious: either the rotor or the stator of a machine can produce the dominant limitation on shear 
stress density (and so on rating). The best designs are “balanced”, with both limits being reached 
at the same time. 
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11 Winding Inductance Calculation 

The purpose of this section is to show how the inductances of windings in round- rotor machines 
with narrow air gaps may be calculated. We deal only with the idealized air- gap magnetic fields, 
and do not consider slot, end winding, peripheral or skew reactances. We do, however, consider 
the space harmonics of winding magneto-motive force (MMF). 

To start, consider the MMF of a full- pitch, concentrated winding. Assuming that the winding 
has a total of N turns over p pole- pairs, the MMF is: 

∞ 
� 4 NI 

F = sinnpφ 
nπ 2p 

n = 1 
nodd 

This leads directly to magnetic flux density in the air- gap: 

∞ 
� µ0 4 NI 

sinnpφ Br = 
g nπ 2p 

n = 1 
nodd 

Note that a real winding, which will most likely not be full- pitched and concentrated, will have a 
winding factor which is the product of pitch and breadth factors, to be discussed later. 

Now, suppose that there is a polyphase winding, consisting of more than one phase (we will use 
three phases), driven with one of two types of current. The first of these is balanced, current: 

Ia = I cos(ωt) 

2π 
Ib = I cos(ωt − )

3 
2π 

Ic = I cos(ωt + ) (1) 
3 

Conversely, we might consider Zero Sequence currents: 

Ia = Ib = Ic = I cosωt 

Then it is possible to express magnetic flux density for the two distinct cases. For the balanced 

case: 
∞ 

Br = Brn sin(npφ � ωt) 
n=1 

where 

• The upper sign holds for n = 1, 7, ... 

• The lower sign holds for n = 5, 11, ... 

all other terms are zero • 
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and 
3 µ0 4 NI 

Brn = 
2 g nπ 2p 

The zero- sequence case is simpler: it is nonzero only for the triplen harmonics: 

∞ 
� µ0 4 NI 3 

g nπ 2p 2
(sin(npφ − ωt) + sin(npφ + ωt)) Br = 

n=3,9,... 

Next, consider the flux from a winding on the rotor: that will have the same form as the flux 
produced by a single armature winding, but will be referred to the rotor position: 

∞ 
� µ0 4 NI 

Brf = sinnpφ� 
g nπ 2p 

n = 1 
nodd 

ωt which is, substituting φ� = φ − p , 

∞ 
� µ0 4 NI 

Brf = 
g nπ 2p 

sinn(pφ − ωt) 

n = 1 
nodd 

The next step here is to find the flux linked if we have some air- gap flux density of the form: 

∞ 

Br = Brn sin(npφ ± ωt) 
n=1 

Now, it is possible to calculate flux linked by a single- turn, full- pitched winding by: 

� π 
p

φ = BrRldφ 
0 

and this is: 
∞ 
� Brn 

φ = 2Rl cos(ωt) 
np 

n=1 

This allows us to compute self- and mutual- inductances, since winding flux is: 

λ = Nφ 

The end of this is a set of expressions for various inductances. It should be noted that, in the 
real world, most windings are not full- pitched nor concentrated. Fortunately, these shortcomings 
can be accommodated by the use of winding factors. 

The simplest and perhaps best definition of a winding factor is the ratio of flux linked by an 
actual winding to flux that would have been linked by a full- pitch, concentrated winding with the 
same number of turns. That is: 

λactual 
kw = 

λfull−pitch 
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It is relatively easy to show, using reciprocity arguments, that the winding factors are also 
the ratio of effective MMF produced by an actual winding to the MMF that would have been 
produced by the same winding were it to be full- pitched and concentrated. The argument goes 
as follows: mutual inductance between any pair of windings is reciprocal. That is, if the windings 
are designated one and two, the mutual inductance is flux induced in winding one by current in 
winding two, and it is also flux induced in winding two by current in winding one. Since each 
winding has a winding factor that influences its linking flux, and since the mutual inductance must 
be reciprocal, the same winding factor must influence the MMF produced by the winding. 

The winding factors are often expressed for each space harmonic, although sometimes when a 
winding factor is referred to without reference to a harmonic number, what is meant is the space 
factor for the space fundamental. 

Two winding factors are commonly specified for ordinary, regular windings. These are usually 
called pitch and breadth factors, reflecting the fact that often windings are not full pitched, which 
means that individual turns do not span a full π electrical radians and that the windings occupy a 
range or breadth of slots within a phase belt. The breadth factors are ratios of flux linked by a given 
winding to the flux that would be linked by that winding were it full- pitched and concentrated. 
These two winding factors are discussed in a little more detail below. What is interesting to note, 
although we do not prove it here, is that the winding factor of any given winding is the product of 
the pitch and breadth factors: 

kw = kpkb 

With winding factors as defined here and in the sections below, it is possible to define winding 
inductances. For example, the synchronous inductance of a winding will be the apparent induc­
tance of one phase when the polyphase winding is driven by a balanced set of currents. This is, 
approximately: 

∞ 3 4 µ0N
2Rlk2 

wn Ld = 
2 π p2gn2 

n=1,5,7,... 

This expression is approximate because it ignores the asynchronous interactions between higher 
order harmonics and the rotor of the machine. These are beyond the scope of this note. 

Zero- sequence inductance is the ratio of flux to current if a winding is excited by zero sequence 
currents: 

∞ 4 µ0N
2Rlk2 

L0 = 3 wn 

π p2gn2 
n=3,9,... 

And then mutual inductance, as between a field winding (f) and an armature winding (a), is:


∞ 
� 4 µ0NfNakfnkanRl 

M(θ) = 
π p2gn2 

cos(npθ) 

n = 1 
nodd 

Now we turn out attention to computing the winding factors for simple, regular winding patterns. 
We do not prove but only state that the winding factor can, for regular winding patterns, be 
expressed as the product of a pitch factor and a breadth factor, each of which can be estimated 
separately. 
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Pitch factor is found by considering the flux linked by a less- than- full pitched winding. Consider 
the situation in which radial magnetic flux density is: 

Br = Bn sin(npφ − ωt) 

A winding with pitch α will link flux: 

π + α 
2p 2p

λ = Nl Bn sin(npφ − ωt)Rdφ

π
−

α 
2p 2p 

Pitch α refers to the angular displacement between sides of the coil, expressed in electrical 
radians. For a full- pitch coil α = π. 

The flux linked is: 
2NlRBn nπ nα 

λ = sin( ) sin( ) 
np 2 2 

The pitch factor is seen to be: 
nα 

kpn = sin 
2 

Now for breadth factor. This describes the fact that a winding may consist of a number of coils, 
each linking flux slightly out of phase with the others. A regular winding will have a number (say 
m) coil elements, separated by electrical angle γ. 

A full- pitch coil with one side at angle ξ will, in the presence of sinusoidal magnetic flux density, 
link flux: 

λ = Nl

π
p 

ξ

p 

− 
ξ

p

Bn sin(npφ − ωt)Rdφ 

This is readily evaluated to be: 

2NlRBn j(ωt−nξ)λ = Re e
np 

where complex number notation has been used for convenience in carrying out the rest of this 
derivation. 

Now: if the winding is distributed into m sets of slots and the slots are evenly spaced, the 
angular position of each slot will be: 

ξi = iγ − m − 1 
γ 

2 

and the number of turns in each slot will be N , so that actual flux linked will be: mp

2NlRBn 1 m−1 
� 

j(ωt−nξi) 
� 

λ = Re e
np m 

i=0 

The breadth factor is then simply: 

m−11 � m−1
−jn(iγ−

2 γ)kb = e 
m 

i=0 
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Note that this can be written as: 

jnγ m−1 m e 2 � 
kb = e −jniγ 

m 
i=0 

Now, focus on that sum. We know that any coverging geometric sum has a simple sum: 

∞ 
� 1i x = 

x 
i=0 

1 −

and that a truncated sum is: 
m−1 ∞ ∞ 

= −
i=0 i=0 i=m 

Then the useful sum can be written as: 

m−1 
� � ∞ jnmγ 

� � e
e −jniγ = 1 − ejnmγ e −jniγ =

1 −
e−jnγ 

i=0 i=0 
1 −

Now, the breadth factor is found: 
sin nmγ 

kbn = 
m sin 

2 
nγ 
2 
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