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1 Introduction 

Virtually all electric machines, and all practical electric machines employ some form of rotating 
or alternating field/current system to produce torque. While it is possible to produce a “true 
DC” machine (e.g. the “Faraday Disk”), for practical reasons such machines have not reached 
application and are not likely to. In the machines we have examined so far the machine is operated 
from an alternating voltage source. Indeed, this is one of the principal reasons for employing AC 
in power systems. 

The first electric machines employed a mechanical switch, in the form of a carbon brush/commutator 
system, to produce this rotating field. While the widespread use of power electronics is making 
“brushless” motors (which are really just synchronous machines) more popular and common, com­
mutator machines are still economically very important. They are relatively cheap, particularly in 
small sizes, they tend to be rugged and simple. 

You will find commutator machines in a very wide range of applications. The starting motor 
on all automobiles is a series-connected commutator machine. Many of the other electric motors in 
automobiles, from the little motors that drive the outside rear-view mirrors to the motors that drive 
the windshield wipers are permanent magnet commutator machines. The large traction motors 
that drive subway trains and diesel/electric locomotives are DC commutator machines (although 
induction machines are making some inroads here). And many common appliances use “universal” 
motors: series connected commutator motors adapted to AC. 

1.1 Geometry: 

A schematic picture (“cartoon”) of a commutator type machine is shown in 1. The armature of 
this machine is on the rotor (this is the part that handles the electric power), and current is fed to 
the armature through the brush/commutator system. The interaction magnetic field is provided 
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Figure 1: Wound-Field DC Machine Geometry 

(in this picture) by a field winding. A permanent magnet field is applicable here, and we will have 
quite a lot more to say about such arrangements below. 

Now, if we assume that the interaction magnetic flux density averages Br, and if there are Ca 

conductors underneath the poles at any one time, and if there are m parallel paths, then we may 
estimate torque produced by the machine by: 

Ca 
R�BrIaTe = 

m 

where R and � are rotor radius and length, respectively and Ia is terminal current. Note that Ca 

is not necessarily the total number of conductors, but rather the total number of active conductors 
(that is, conductors underneath the pole and therefore subject to the interaction field). Now, if we 
note Nf as the number of field turns per pole, the interaction field is just: 

NfIf
Br = 

g 

leading to a simple expression for torque in terms of the two currents: 

Te = GIaIf 

where G is now the motor coefficient (units of N-m/ampere squared): 

Ca Nf
G = µ0 R� 

m g 

Now, let’s go back and look at this from the point of view of voltage. Start with Faraday’s Law: 

∂B�
�× E� = − 

∂t 

Integrating both sides and noting that the area integral of a curl is the edge integral of the 
quantity, we find: 

� �� 

∂B�
E� · d� = − 

∂t 
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Now, that is a bit awkward to use, particularly in the case we have here in which the edge of 
the contour is moving (note we will be using this expression to find voltage). We can make this a 
bit more convenient to use if we note: 

where v' is the velocity of the contour. This gives us a convenient way of noting the apparent electric 
field within a moving object (as in the conductors in a DC machine): 

Figure 2: Motion of a contour through a magnetic field produces flux change and electric field in 
the moving contour 

Now, note that the armature conductors are moving through the magnetic field produced by 
the stator (field) poles, and we can ascribe to them an axially directed electric field: 

If the armature conductors are arranged as described above, with Ca conductors in m parallel 
paths underneath the poles and with a mean active radial magnetic field of B,, we can compute a 
voltage induced in the stator conductors: 

Note that this is only the voltage induced by motion of the armature conductors through the 
field and does not include brush or conductor resistance. If we include the expression for effective 
magnetic field, we find that the back voltage is: 

which leads us to the conclusion that newton-meters per ampere squared equals volt seconds per 
ampere. This stands to reason if we examine electric power into the interaction and mechanical 
power out: 

Pe, = EbIa=TeR 



Now, a more complete model of this machine would include the effects of armature, brush and 
lead resistance, so that in steady state operation: 

Va = RaIa + GΩIf 

Now, consider this machine with its armatucre connected to a voltage source and its field 
operating at steady current, so that: 

Va −GΩIf
Ia = 

Ra 

G I fΩ
 +

 Va

 -

Ra 

+ 

-

Figure 3: DC Machine Equivalent Circuit 

Then torque, electric power in and mechanical power out are: 

Te = GIf 

Va −GΩIf 

Ra 

Pe = Va 

Va −GΩIf 

Ra 

Pm = GΩIf 

Va −GΩIf 

Ra 

Now, note that these expressions define three regimes defined by rotational speed. The two 
“break points” are at zero speed and at the “zero torque” speed: 

Va
Ω0 = 

GIf 

For 0 < Ω < Ω0, the machine is a motor: electric power in and mechanical power out are both 
positive. For higher speeds: Ω0 < Ω , the machine is a generator, with electrical power in and 
mechanical power out being both negative. For speeds less than zero, electrical power in is positive 
and mechanical power out is negative. There are few needs to operate machines in this regime, 
short of some types of ”plugging” or emergency braking in tractions systems. 

1.2 Hookups: 

We have just described a mode of operation of a commutator machine usually called “separately 
excited”, in which field and armature circuits are controlled separately. This mode of operation is 
used in some types of traction applications in which the flexibility it affords is useful. For example, 
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Figure 4: DC Machine Operating Regimes
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Figure 5: Two-Chopper, separately excited machine hookup 

some traction applications apply voltage control in the form of “choppers” to separately excited 
machines. 

Note that the “zero torque speed” is dependend on armature voltage and on field current. 
For high torque at low speed one would operate the machine with high field current and enough 
armature voltage to produce the requisite current. As speed increases so does back voltage, and 
field current may need to be reduced. At any steady operating speed there will be some optimum 
mix of field and armature currents to produced the required torque. For braking one could (and this 
is often done) re-connect the armature of the machine to a braking resistor and turn the machine 
into a generator. Braking torque is controlled by field current. 

A subset of the separately excited machine is the shunt connection in which armature and field 
are supplied by the same source, in parallel. This connection is not widely used any more: it does 
not yield any meaningful ability to control speed and the simple applications to which is used to 
be used are mostly being handled by induction machines. 
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Figure 6: Series Connection 

Another connection which is still widely used in the series connection, in which the field winding 
is sized so that its normal operating current level is the same as normal armature current and the 
two windings are connected in series. Then: 

V 
Ia = If = 

Ra + Rf + GΩ 

And then torque is: 
GV 2 

Te = 
(Ra + Rf + GΩ)2 

It is important to note that this machine has no “zero-torque” speed, leading to the possibility 
that an unloaded machine might accelerate to dangerous speeds. This is particularly true because 
the commutator, made of pieces of relatively heavy material tied together with non- conductors, is 
not very strong. 

Speed control of series connected machines can be achieved with voltage control and many 
appliances using this type of machine use choppers or phase control. An older form of control 
used in traction applications was the series dropping resistor: obviously not a very efficient way of 
controlling the machine and not widely used (except in old equipment, of course). 

A variation on this class of machine is the very widely used “universal motor”, in which the stator 
and rotor (field and armature) of the machine are both constructed to operate with alternating 
current. This means that both the field and armature are made of laminated steel. Note that such 
a machine will operate just as it would have with direct current, with the only addition being the 
reactive impedance of the two windings. Working with RMS quantities: 

V 
I = 

Ra + Rf + GΩ + jω (La + Lf ) 

|V |2 

Te = 
(Ra + Rf + GΩ)2 + (ωLa + ωLf )2 

where ω is the electrical supply frequency. Note that, unlike other AC machines, the universal 
motor is not limited in speed to the supply frequency. Appliance motors typically turn substantially 
faster than the 3,600 RPM limit of AC motors, and this is one reason why they are so widely used: 
with the high rotational speeds it is possible to produce more power per unit mass (and more power 
per dollar). 
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1.3 Commutator: 

The commutator is what makes this machine work. The brush and commutator system of this 
class of motor involves quite a lot of “black art”, and there are still aspects of how they work 
which are poorly understood. However, we can make some attempt to show a bit of what the 
brush/commutator system does. 

To start, take a look at the picture shown in Figure 7. Represented are a pair of poles (shaded) 
and a pair of brushes. Conductors make a group of closed paths. Current from one of the brushes 
takes two parallel paths. You can follow one of those paths around a closed loop, under each of 
the two poles (remember that the poles are of opposite polarity) to the opposite brush. Open 
commutator segments (most of them) do not carry current into or out of the machine. 

Figure 7: Commutator and Current Paths 

A commutation interval occurs when the current in one coil must be reversed. (See Figure 8 
In the simplest form this involves a brush bridging between two commutator segments, shorting 
out that coil. The resistance of the brush causes the current to decay. When the brush leaves the 
leading segment the current in the leading coil must reverse. 

Figure 8: Commutator at Commutation


We will not attempt to fully understand the commutation process in this type of machine, but 
we can note a few things. Resistive commutation is the process relied upon in small machines. 
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When the current in one coil must be reversed (because it has left one pole and is approaching the 
other), that coil is shorted by one of the brushes. The brush resistance causes the current in the 
coil to decay. Then the leading commutator segment leaves the brush the current MUST reverse 
(the trailing coil has current in it), and there is often sparking. 

1.4 Commutation 

Commutation 

Stator Yoke 
Field Poles 

Field Winding 

Armature Winding 

Rotor Ω 

Interpoles 

Figure 9: Commutation Interpoles 

In larger machines the commutation process would involve too much sparking, which causes 
brush wear, noxious gases (ozone) that promote corrosion, etc. In these cases it is common to use 
separate commutation interpoles. These are separate, usually narrow or seemingly vestigal pole 
pieces which carry armature current. They are arranged in such a way that the flux from the 
interpole drives current in the commutated coil in the proper direction. Remember that the coil 
being commutated is located physically between the active poles and the interpole is therefore in the 
right spot to influence commutation. The interpole is wound with armature current (it is in series 
with the main brushes). It is easy to see that the interpole must have a flux density proportional 
to the current to be commutated. Since the speed with which the coil must be commutated is 
proportional to rotational velocity and so is the voltage induced by the interpole, if the right 
number of turns are put around the interpole, commutation can be made to be quite accurate. 

1.5 Compensation: 

The analysis of commutator machines often ignores armature reaction flux. Obviously these ma­
chines DO produce armature reaction flux, in quadrature with the main field. Normally, commuta­
tor machines are highly salient and the quadrature inductance is lower than direct-axis inductance, 
but there is still flux produced. This adds to the flux density on one side of the main poles (pos­
sibly leading to saturation). To make the flux distribution more uniform and therefore to avoid 
this saturation effect of quadrature axis flux, it is common in very highly rated machines to wind 
compensation coils: essentially mirror-images of the armature coils, but this time wound in slots 
in the surface of the field poles. Such coils will have the same number of ampere-turns as the 
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Figure 10: Pole Face Compensation Winding 

armature. Normally they have the same number of turns and are connected directly in series with 
the armature brushes. What they do is to almost exactly cancel the flux produced by the armature 
coils, leaving only the main flux produced by the field winding. One might think of these coils as 
providing a reaction torque, produced in exactly the same way as main torque is produced by the 
armature. A cartoon view of this is shown in Figure 10. 

Permanent Magnets in Electric Machines 

Of all changes in materials technology over the last several years, advances in permanent magnets 
have had the largest impact on electric machines. Permanent magnets are often suitable as replace­
ments for the field windings in machines: that is they can produce the fundamental interaction 
field. This does three things. First, since the permanent magnet is lossless it eliminates the energy 
required for excitation, usually improving the efficiency of the machine. Second, since eliminating 
the excitation loss reduces the heat load it is often possible to make PM machines more compact. 
Finally, and less appreciated, is the fact that modern permanent magnets have very large coercive 
force densities which permit vastly larger air gaps than conventional field windings, and this in turn 
permits design flexibility which can result in even better electric machines. 

These advantages come not without cost. Permanent magnet materials have special character­
istics which must be taken into account in machine design. The highest performance permanent 
magnets are brittle ceramics, some have chemical sensitivities, all are sensitive to high temperatures, 
most have sensitivity to demagnetizing fields, and proper machine design requires understanding 
the materials well. These notes will not make you into seasoned permanent magnet machine de­
signers. They are, however, an attempt to get started, to develop some of the mathematical skills 

9 



required and to point to some of the important issues involved. 

2.1 Permanent Magnets: 

Hysteresis Loop: Perm anent Magn et 
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Figure 11: Hysteresis Loop Of Ceramic Permanent Magnet 

Permanent magnet materials are, at core, just materials with very wide hysteresis loops. Fig­
ure 11 is an example of something close to one of the more popular ceramic magnet materials.Note 
that this hysteresis loop is so wide that you can see the effect of the permeability of free space. 

Figure 12: Demagnetization Curve


It is usual to display only part of the magnetic characteristic of permanent magnet materials 
(see Figure 12), the third quadrant of this picture, because that is where the material is normally 
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operated. Note a few important characteristics of what is called the “demagnetization curve”. The 
remanent flux density Br, is the value of flux density in the material with zero magnetic field H. 
The coercive field Hc is the magnetic field at which the flux density falls to zero. Shown also on 
the curve are loci of constant energy product. This quantity is unfortunately named, for although 
it has the same units as energy it represents real energy in only a fairly general sense. It is the 
product of flux density and field intensity. As you already know, there are three commonly used 
systems of units for magnetic field quantities, and these systems are often mixed up to form very 
confusing units. We will try to stay away from the English system of units in which field intensity 
H is measured in amperes per inch and flux density B in lines (actually, usually kilolines) per 
square inch. In CGS units flux density is measured in Gauss (or kilogauss) and magnetic field 
intensity in Oersteds. And in SI the unit of flux density is the Tesla, which is one Weber per square 
meter, and the unit of field intensity is the Ampere per meter. Of these, only the last one, A/m is 
obvious. A Weber is a volt-second. A Gauss is 10−4 Tesla. And, finally, an Oersted is that field 
intensity required to produce one Gauss in the permeability of free space. Since the permeability 
of free space µ0 = 4π × 10−7Hy/m, this means that one Oe is about 79.58 A/m. Commonly, the 
energy product is cited in MgOe (Mega-Gauss-Oersted)s. One MgOe is equal to 7.958kJ/m3 . A 
commonly used measure for the performance of a permanent magnet material is the maximum 
energy product, the largest value of this product along the demagnetization curve. 

To start to understand how these materials might be useful, consider the situation shown in 
Figure 13: A piece of permanent magnet material is wrapped in a magnetic circuit with effectively 
infinite permeability. Assume the thing has some (finite) depth in the direction you can’t see. Now, 
if we take Ampere’s law around the path described by the dotted line, 

H� · d�� = 0 

since there is no current anywhere in the problem. If magnetization is upwards, as indicated by 
the arrow, this would indicate that the flux density in the permanent magnet material is equal to 
the remanent flux density (also upward). 

Magnetic Circuit, µ→∞ 

Permanent Magnet 

Figure 13: Permanent Magnet in Magnetic Circuit


A second problem is illustrated in Figure 14, in which the same magnet is embedded in a
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magnetic circuit with an air gap. Assume that the gap has width g and area Ag. The magnet has 
height hm and area Am. For convenience, we will take the positive reference direction to be up (as 
we see it here) in the magnet and down in the air-gap. 

Magnetic Circuit, µ→∞ 

Permanent Magnet 

g 

hm 

Figure 14: Permanent Magnet Driving an Air-Gap 

Thus we are following the same reference direction as we go around the Ampere’s Law loop. 
That becomes: 

� 

H� · d �� = Hmhm + Hgg 

Now, Gauss’ law could be written for either the upper or lower piece of the magnetic circuit. 
Assuming that the only substantive flux leaving or entering the magnetic circuit is either in the 
magnet or the gap: 

� B� · dA� = BmAm − µ0HgAg 

Solving this pair we have: 

Ag hm
Bm = −µ0 Hm = µ0PuHm

Am g 

This defines the unit permeance, essentially the ratio of the permeance facing the permanent 
magnet to the internal permeance of the magnet. The problem can be, if necessary, solved graph­
ically, since the relationship between Bm and Hm is inherently nonlinear, as shown in Figure 15 
“load line” analysis of a nonlinear electronic circuit. 

Now, one more ‘cut’ at this problem. Note that, at least for fairly large unit permeances the 
slope of the magnet characteristic is fairly constant. In fact, for most of the permanent magnets 
used in machines (the one important exception is the now rarely used ALNICO alloy magnet), it 
is generally acceptable to approximate the demagnitization curve with: 

B�m = µm H�m + M� 0 

Here, the magnetization M0 is fixed. Further, for almost all of the practical magnet materials 
the magnet permeability is nearly the same as that of free space (µm ≈ µ0). With that in mind, 
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Figure 15: Load Line, Unit Permeance Analysis 

consider the problem shown in Figure 16, in which the magnet fills only part of a gap in a magnetic 
circuit. But here the magnet and gap areas are essentially the same. We could regard the magnet 
as simply a magnetization. 

Permanent Magnet 

Magnetic Circuit, µ→∞ 

Figure 16: Surface Magnet Primitive Problem 

In the region of the magnet and the air-gap, Ampere’s Law and Gauss’ law can be written: 

�× H� = 0 

� · µ0 H�m + M� 0 = 0 

� · µ0H� g = 0 

Now, if in the magnet the magnetization is constant, the divergence of H in the magnet is zero. 
Because there is no current here, H is curl free, so that everywhere: 

H� = −�ψ 

�2ψ = 0 

That is, magnetic field can be expressed as the gradient of a scalar potential which satisfies 
Laplace’s equation. It is also pretty clear that, if we can assign the scalar potential to have a value 
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of zero anywhere on the surface of the magnetic circuit it will be zero over all of the magnetic 
circuit (i.e. at both the top of the gap and the bottom of the magnet). Finally, note that we can’t 
actually assume that the scalar potential satisfies Laplace’s equation everywhere in the problem. 
In fact the divergence of M is zero everywhere except at the top surface of the magnet where it is 
singular! In fact, we can note that there is a (some would say fictitious) magnetic charge density: 

ρm = −� · M�

At the top of the magnet there is a discontinuous change in M and so the equivalent of a 
magnetic surface charge. Using Hg to note the magnetic field above the magnet and Hm to note 
the magnetic field in the magnet, 

µ0Hg = µ0 (Hm + M0) 

σm = M0 = Hg −Hm 

and then to satisfy the potential condition, if hm is the height of the magnet and g is the gap: 

gHg = hmHm 

Solving, 
hm

Hg = M0 
hm + g 

Now, one more observation could be made. We would produce the same air-gap flux density 
if we regard the permanent magnet as having a surface current around the periphery equal to the 
magnetization intensity. That is, if the surface current runs around the magnet: 

Kφ = M0 

This would produce an MMF in the gap of: 

F = Kφhm 

and then since the magnetic field is just the MMF divided by the total gap: 

F hm
Hg = = M0

hm + g hm + g 

The real utility of permanent magnets comes about from the relatively large magnetizations: 
numbers of a few to several thousand amperes per meter are common, and these would translate 
into enormous current densities in magnets of ordinary size. 

Simple Permanent Magnet Machine Structures: Commutator 
Machines 

Figure 17 is a cartoon picture of a cross section of the geometry of a two-pole commutator machine 
using permanent magnets. This is actually the most common geometry that is used. The rotor 
(armature) of the machine is a conventional, windings-in-slots type, just as we have already seen 
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Figure 17: PM Commutator Machine 

for commutator machines. The field magnets are fastened (often just bonded) to the inside of a 
steel tube that serves as the magnetic flux return path. 

Assume for the purpose of first-order analysis of this thing that the magnet is describable by its 
remanent flux density Br and had permeability of µ0. First, we will estimate the useful magnetic 
flux density and then will deal with voltage generated in the armature. Interaction Flux Density 
Using the basics of the analysis presented above, we may estimate the radial magnetic flux density 
at the air-gap as being: 

Br
Bd = 

1 + 1 
Pc 

where the effective unit permeance is: 

fl hm Ag
Pc = 

ff g Am 

A book on this topic by James Ireland suggests values for the two “fudge factors”: 

1. The “leakage factor” fl is cited as being about 1.1. 

2. The “reluctance factor” ff is cites as being about 1.2. 

We may further estimate the ratio of areas of the gap and magnet by: 

Ag R + g 
2= 

Am R + g + h
2 
m 

Now, there are a bunch of approximations and hand wavings in this expression, but it seems to 
work, at least for the kind of machines contemplated. 

A second correction is required to correct the effective length for electrical interaction. The 
reason for this is that the magnets produce fringing fields, as if they were longer than the actual 
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”stack length” of the rotor (sometimes they actually are). This is purely empirical, and Ireland 
gives a value for effective length for voltage generation of: 

�∗ 
�eff = 

f� 

where �∗ = � + 2NR , and the empirical coefficient 

A hm
N ≈ log 1 +B 

B R 

where 

hm
B = 7.4 − 9.0 

R 
A = 0.9 

3.0.1 Voltage: 

It is, in this case, simplest to consider voltage generated in a single wire first. If the machine is 
running at angular velocity Ω, speed voltage is, while the wire is under a magnet, 

vs = ΩR�Br 

Now, if the magnets have angular extent θm the voltage induced in a wire will have a waveform 
as shown in Figure 18: It is pulse-like and has the same shape as the magnetic field of the magnets. 

θm 

π
vs 

Ωt 

Figure 18: Voltage Induced in One Conductor 

The voltage produced by a coil is actually made up of two waveforms of exactly this form, but 
separated in time by the ”coil throw” angle. Then the total voltage waveform produced will be 
the sum of the two waveforms. If the coil thrown angle is larger than the magnet angle, the two 
voltage waveforms add to look like this: There are actually two coil-side waveforms that add with 
a slight phase shift. 

If, on the other hand, the coil thrown is smaller than the magnet angle, the picture is the same, 
only the width of the pulses is that of the coil rather than the magnet. In either case the average 
voltage generated by a coil is: 

θ∗ 
v = ΩR�Ns Bd

π 
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Figure 19: Voltage Induced in a Coil 

where θ∗ is the lesser of the coil throw or magnet angles and Ns is the number of series turns in 
the coil. This gives us the opportunity to develop the number of “active” turns: 

Ca 
= Ns 

θ∗ Ctot θ
∗ 

= 
m π m π 

Here, Ca is the number of active conductors, Ctot is the total number of conductors and m is the 
number of parallel paths. The motor coefficient is then: 

R�effCtotBd θ∗ 
K = 

m π 

3.1 Armature Resistance 

The last element we need for first-order prediction of performance of the motor is the value of 
armature resistance. The armature resistance is simply determined by the length and area of the 
wire and by the number of parallel paths (generally equal to 2 for small commutator motors). If 
we note Nc as the number of coils and Na as the number of turns per coil, 

NcNa
Ns = 

m 

Total armature resistance is given by: 

Ns
Ra = 2ρw�t 

m 

where ρw is the resistivity (per unit length) of the wire: 

1 
ρw = πd2 σw4 w

(dw is wire diameter, σw is wire conductivity and �t is length of one half-turn). This length depends 
on how the machine is wound, but a good first-order guess might be something like this: 

�t ≈ � + πR 
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