
Massachusetts Institute of Technology 
Department of Electrical Engineering and Computer Science 

6.061/6.690 Introduction to Power Systems 

Problem Set 11 Solutions April 25, 2011 

Problem 1: Chapter 12, Problem 12 From the text, we have expressions for voltage: at the 
’rectifier’ end: 

3 3 
VDC = Vp cos α − XIDC 

π π 

where Vp is the peak of line-line voltage: Vp = 
√

6Vℓℓ, if Vℓℓ is line-line, RMS voltage. Voltage 
drop across the ’fictitious’ resistance is: 

3 3 
Vx = XIDC = 1.5 5, 000 ≈ 7162V 

π π 
× ×

This can be used to calculate the firing angle α and the overlap angle u. At the rectifier end: 

VDC + Vx 
cos α = 

3 Vpπ

2XIDC 
cos(α + u) = cos α − 

Vp 

This and the rest of the calculations are carried out by the script that is attached. Sending 
end numbers are: 

Sending (Rectifier) end

Firing Angle = 23.9891 deg

Firing Angle Plus Overlap Angle = 28.1784 deg

Overlap Angle = 4.18929 deg


At the ’inverter’ end of the line: 

cos(π − α) = 
VDC − VX 

3 Vpπ

2XIDC 
cos(α + u) = cos α − 

Vp 

Receiving (inverter) end

Firing Angle = 151.822 deg

Firing Angle Plus Overlap Angle = 156.011 deg

Overlap Angle = 4.18929 deg
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To do the Fourier analysis, note that the AC side has alternating pulses of current with 
amplitude of 5,000 A and width of θ = 120◦ . The Fourier series amplitude for harmonic of 
order n is: 

4 θ π 
In = IDC sin n sin n 

nπ 2 2 

These evaluate to: 

Time Harmonic Amplitudes for Six Pulse System

Harmonic Order 1 Current Amplitude = 5513.3

Harmonic Order 5 Current Amplitude = -1102.7

Harmonic Order 7 Current Amplitude = -787.6

Harmonic Order 11 Current Amplitude = 501.2

Harmonic Order 13 Current Amplitude = 424.1

Harmonic Order 17 Current Amplitude = -324.3

Harmonic Order 19 Current Amplitude = -290.2

Harmonic Order 23 Current Amplitude = 239.7

Harmonic Order 25 Current Amplitude = 220.5


Note the problem asks for only the first four of these, but I kept a few more to be consistent 
with the next part. A reconstructed time waveform is shown in Figure 1. 

Six Pulse AC Side 
6000 

Figure 1: Reconstruction of Six Pulse Waveform, harmonics to order 25 

For a twelve pulse system the amplitude of the harmonics of order 5, 7, 17 and 19 all cancel. 
The harmonics of the other orders remain the same. This needs a little explanation: we have 
not considered the use of transformers here, but to have the same AC and DC voltage levels, 
we would need transformers of 1/2 the ratio, so each of the two transformers would contribute 
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AC harmonics of 1/2 the amplitude as in the six pulse case, but these harmonics would add, 
restoring the amplitude to the same level. These would then be: 

Harmonic Amplitudes for Twelve Pulse System

Harmonic Order 1 Current Amplitude = 5513.3

Harmonic Order 11 Current Amplitude = 501.2

Harmonic Order 13 Current Amplitude = 424.1

Harmonic Order 23 Current Amplitude = 239.7

Harmonic Order 25 Current Amplitude = 220.5


The reconstructed AC waveform is shown in Figure 2. It does look a little bit more sine wave 
like. 

Twelve Pulse AC Side 
6000 

Figure 2: Reconstructed AC Waveform: Twelve Pulse 
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Script for Problem 12-12 

% Problem 12-12


% basic parameters

X = 1.5; % leakage at each end

Vl = 330e3; % line-line voltage (AC)

Vdc = 400e3; % DC voltage

I = 5e3; % DC current


% first, get that mysterious overlap voltage


Vx = (3/pi)*X*I;

Vp = sqrt(2)*Vl; % and this is the peak system voltage


alfs = acos((Vdc+Vx)/(3*Vp/pi));


upa = acos(cos(alfs)-2*X*I/Vp);


u = upa - alfs;


fprintf(’Problem 12-12: Basic Analysis\n’)

fprintf(’Vx = %g\n’, Vx)

fprintf(’Sending (Rectifier) end\n’)

fprintf(’Firing Angle = %g deg\n’, (180/pi)*alfs)

fprintf(’Firing Angle Plus Overlap Angle = %g deg\n’, (180/pi)*upa)

fprintf(’Overlap Angle = %g deg\n’, (180/pi)*u)


% other end

ppa = acos((Vdc- Vx)/((3/pi)*Vp));

alfr = pi - ppa;

apu = acos(cos(alfr) - 2*X*I/Vp);

ur = apu - alfr;


fprintf(’Receiving (inverter) end\n’)

fprintf(’Firing Angle = %g deg\n’, (180/pi)*alfr)

fprintf(’Firing Angle Plus Overlap Angle = %g deg\n’, (180/pi)*apu)

fprintf(’Overlap Angle = %g deg\n’, (180/pi)*ur)


% now do some Fourier Analysis


th = pi*2/3; % this is the angle of each pulse


N = [1 5 7 11 13 17 19 23 25];
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In = I * (4/pi) .* sin(N .* th/2) .* sin(N .* pi/2) ./ N;


fprintf(’Time Harmonic Amplitudes for Six Pulse System\n’)

for k = 1:length(N)


fprintf(’Harmonic Order %4.0f Current Amplitude = %6.1f\n’,N(k), In(k))

end


% now let’s construct a figure of this


omt = 0:.001:4*pi;


Iac = zeros(size(omt));


for k = 1:length(N)

Iac = Iac + In(k) .* sin (N(k) .* omt);


end


figure(1)

plot(omt, Iac)

title(’Six Pulse AC Side’)

ylabel(’Amps’)

xlabel(’omega *t’)


% now consider the 12-pulse situation

N = [1 11 13 23 25];


In = I * (4/pi) .* sin(N .* th/2) .* sin(N .* pi/2) ./ N;


fprintf(’Harmonic Amplitudes for Twelve Pulse System\n’)

for k = 1:length(N)


fprintf(’Harmonic Order %4.0f Current Amplitude = %6.1f\n’,N(k), In(k))

end


% now let’s construct a figure of this


Iac = zeros(size(omt));


for k = 1:length(N)

Iac = Iac + In(k) .* sin (N(k) .* omt);


end


figure(2)

plot(omt, Iac)

title(’Twelve Pulse AC Side’)

ylabel(’Amps’)
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xlabel(’omega *t’)
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Problem 2, part a: 14-2 With terminal voltage of 100 volts and 10 amperes flowing through 1
2 Ω 

internal voltage is: 
GΩIf = 95V 

which means that 
95 

G =
1 
≈ 0.528H 

180 ×

And peak torque is

T = 10 × 0.528 ≈ 5.28N-m


Problem 2, Part b: 14-5 This is not as nasty a problem as it sounds. Note that we can easily 
calculate the motor constant: since GΩI + RI = V , 

V − RI 
G = 

ΩI 

And, since power is P = GΩI2, we can find I for a given value of real power if we also know 
speed (which we do): 

P 
I2 = 

GΩ 

So then to find speed vs. voltage, we do a cross plot: for the range of speed, we find power: 

� �3Ω 
P = P0 

Ω0 

then calculate current according to the expression above, and then 

V = (GΩ + R)I 

The result is plotted in Figure 3. Note a mistake in captioning (the figure identifies the wrong 
problem). 
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Figure 3: Speed vs. Voltage for Series Motor 
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Script for Problem 12-5


% Problem 12.5


Nz = 1000;

omz = (pi/30)*Nz;

Vz = 600;

Iz = 800;

Pz = 400e3;


R = 1/8;

G = (Vz-R*Iz)/(Iz*omz);


om = omz .* (0:.001:1);


P = Pz .* (om ./ omz) .^3;


I = sqrt(P ./ (G .* om));


V = (G .* om + R) .* I;

N = (30/pi) .* om;


figure(1)

plot(V, N);

title(’Problem 12.5’)

ylabel(’RPM’)

xlabel(’Terminal Voltage’)

grid on
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Problem 3: 14-7 This is a piecewise linear situation that can be solved in each of three regions 
with the solutions patched together. In each region we have internal voltage: 

Ea = 
N
N 

0 
R0IF 0 < IF < 1 

Ea = 
N
N 

0 
(E1 + R1 (IF − 1)) 1 < IF < 2 

Ea = 
N
N 

0 
(E2 + R2 (IF − 1)) 2 < IF 

We can get minimum self-excitation speed by matching internal voltage with required voltage 
to make field current: 

N = N0Ra + RF R0 ≈ 450RPM 

We could also write the second and third expressions as: 

N 
Ea = (V1 + R1IF )

N0


N

Ea = (V2 + R2IF )

N0 

Where, from the figure we have extracted the following data: 

R0 = 200Ω 

R1 = 50Ω 
50 

R2 = Ω 
3 

E1 = 200V 

E2 = 250V 

V2 = 150V 

650 
V2 = V 
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Note the equivalent circuit for the machine is shown in Figure 4.


Ra IL 

E a Rf 

Figure 4: Equivalent Circuit 

So that terminal voltage and field current are: 

V = Ea 
RF 

RF + Ra 

− IL 
RF Ra 

RF + Ra 

V 
If = 

RF 
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Problem 14−7: Dynamo
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Figure 5: Voltage vs. Load Current 

Now, we know the ranges of field current (1 A to 2 A and 2 A to the maximum, which is 
when: 

N V2
IFmax = = 5A 

N0 Ra + RF − N
N 

0 
R2 

I is straightforward to get IL in terms of IF : 

Ra+RF − N R1 
IL = 

N
N 

0 
V1Ra − IF Ra

N0 1 < IF < 2 

Ra+RF − N R2 
IL = 

N
N 

0 
V2Ra − IF Ra

N0 2 < IF < IFmax 

Then, for each of the two segments, first internal and then terminal voltage can be found: 

N 
Ea1 = (V1 + R1IF1)

N0 

N 
Ea2 = (V2 + R2IF2)

N0 

The plot of voltage with load current is shown in Figure 5. 

To’flat compound’, note that, with the addition of a series field: 

RF RaRF
V = Ea − IL

RF + Ra Ra + RF 

N N 
Ea = (V2 + R2IF ) + RSIL

N0 N0 
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where RS would be the characteristic of the series field. This suggests that terminal voltage 
V can be written out as: 

RF N N RaRF
V = 

RF + Ra N0 
(V2 + R2IF ) + 

N0 
RsIL −

Ra + RF 

IL 

If the machine is indeed flat compounded so that V is constant, variations in IF will not be 
of interest, so that what we need is for: 

RF N RaRF
Rs = 

RF + Ra N0 Ra + RF 

We can accomplish this for only one speed, for which 

N0
Rs = Ra

N 

Now, the effective constant of a field winding is proportional to the number of turns, so if Nts 

is the number of turns of the series field and Ntf is the number of turns of the shunt field, so 
that: 

Nts 
RS = R2

Ntf 

Then required number of turns of the series field will be: 

RS N0 Ra 500 2 
Nts = Ntf = Ntf = 

50 = 48turns 
R2 N R2 1.25 

3 
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Script for Problem 14-7 

% Problem 14-7


Ra = 2;

Rf = 73;

E1 = 200;

E2 = 250;

R0 = 200;

R1 = 50;

R2 = 50/3;

V1 = E1 - R1;

V2 = E2 - 2*R2;

N0 = 1200;

N =1500;


% first break point is in speed

Ne = N0*(Ra+Rf)/R0;


fprintf(’Excitation Speed = %g RPM\n’, Ne)


I_f1 = 1:.01:2;

I_fmax = (N/N0)*V2 / (Ra+Rf-(N/N0)*R2);

V_oc = (N/N0)*(V2 + R2 * I_fmax);

fprintf(’Open Circuit Voltage at %g RPM = %g\n’, N, V_oc)


I_f2 = 2:.01:I_fmax;


I_L1 = (N/N0)*(V1/Ra) - I_f1 .* (Ra+Rf-(N/N0)*R1)/Ra;

I_L2 = (N/N0)*(V2/Ra) - I_f2 .* (Ra+Rf-(N/N0)*R2)/Ra;


figure(1)

plot(I_f1, I_L1, I_f2, I_L2)


Ea1 = (N/N0) .*(V1 + R1 .* I_f1);

Ea2 = (N/N0) .*(V2 + R2 .* I_f2);


Vt1 = Ea1 .* Rf/(Ra+Rf) - (Ra*Rf/(Ra+Rf)) .* I_L1;

Vt2 = Ea2 .* Rf/(Ra+Rf) - (Ra*Rf/(Ra+Rf)) .* I_L2;


figure(2)

plot(I_L1, Vt1, I_L2, Vt2)
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Short circuit current is: 
λ0 0.4 

isc = = 
.05 

≈ 8A 
L0 

so 
V 

= .05 × (8 − 4) = .2 
ω 

or 
V 

ω =
0.2 

≈ 1, 873.5 

Or, 
ω 

ωm = ≈ 936.75 radians/second ≈ 8945 RPM 
p 

Problem 4: Chapter 15, Problem 12 Peak torque is achieved when terminal current is exactly 
in quadrature with internal flux, in which case: 

3 3 
T = 

2
pλ0I0 =

2 
× 2 × 0.4 × 4 = 4.8 N-m 

With that torque, and noting that 4000 RPM = 418.9Radians/second, 

P = ωT = 418.9 × 4.8 ≈ 2011 Watts 

and with that condition, reactive voltage is in quadrature to internal voltage and terminal 
voltage is: 

Eint = 2 × 418.9 × .4 ≈ 335.1V (peak) 

Vx = 2 × 418.9 × .05 × 4 ≈ 167.6V (peak) 
2 2Vph = E2 + Vxint 

Vℓℓ = 
√

3 × Vph ≈ 459V (peak) 

The machine can produce no torque when all terminal voltage is used to drive negative current 
in the d- axis to keep total current within rated: 

V 
= L0(isc − imax)

ω 
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Problem 5: PWM The whole story is told by the script (which was the point of this problem: 
to write the script). the developed waveform is shown in Figure 6. 

PWM Waveform of a Sine Wave: Amplitude = 1 
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Figure 6: PWM Waveform 

The fourier analysis of this is, for an amplitude of the fundamental of one (same as the triangle 
wave) is: 

Fourier Analysis: fundemantal amplitude is 1

Harmonic 1 Amplitude = 0.999913

Harmonic 3 Amplitude = 0.000567261

Harmonic 5 Amplitude = 0.000557752

Harmonic 7 Amplitude = 0.000237784

Harmonic 9 Amplitude = 0.000238947

Harmonic 11 Amplitude = 9.1488e-05

Harmonic 13 Amplitude = -0.000103999

Harmonic 15 Amplitude = -0.000511369

Harmonic 17 Amplitude = -0.000412687

Harmonic 19 Amplitude = -0.000199636

Harmonic 21 Amplitude = -0.000310145

Harmonic 23 Amplitude = -0.000395562

Harmonic 25 Amplitude = -0.000803646

Harmonic 27 Amplitude = -0.000726942

Harmonic 29 Amplitude = -0.0013009

Harmonic 31 Amplitude = -0.00202079

Harmonic 33 Amplitude = -0.00553536

Harmonic 35 Amplitude = -0.0346489


For reduced amplitude, the harmonic content is: 
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Fourier Analysis: fundemantal amplitude is 0.25

Harmonic 1 Amplitude = 0.252131 
Harmonic 3 Amplitude = 0.00103508 
Harmonic 5 Amplitude = 0.00061986 
Harmonic 7 Amplitude = 0.00038121 
Harmonic 9 Amplitude = 0.000156627 
Harmonic 11 Amplitude = 0.000260912 
Harmonic 13 Amplitude = 3.41741e-06 
Harmonic 15 Amplitude = 7.81786e-05 
Harmonic 17 Amplitude = -0.000184951 
Harmonic 19 Amplitude = 0.000229312 
Harmonic 21 Amplitude = -0.000290529 
Harmonic 23 Amplitude = 0.000140973 
Harmonic 25 Amplitude = -0.000277316 
Harmonic 27 Amplitude = -0.000161898 
Harmonic 29 Amplitude = -0.00070203 
Harmonic 31 Amplitude = -0.000270523 
Harmonic 33 Amplitude = -0.00114894 
Harmonic 35 Amplitude = -0.00167895 
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Script for Problem 5 

f = 60; % basic electrical frequency

fp = 2400; % PWM frequency

T = 1/30; % do it for two cycles

d = 1e-6; % 1 microsecond increments


[t, wp] = triangle(fp, T, d); %Here is your basic triangle waveform

wm = -wp; % positive and negative halves


s =	 sin(2*pi*f .* t); % sine wave of fundamental frequency


pp = s > wp; % positive half test

pm = s < wm; % negative half test


pwm	 = pp - pm; % this should be the whole thing


figure(2)

clf

plot(t, pwm)

title(’PWM Waveform of a Sine Wave: Amplitude = 1’)

ylabel(’On vs. Off’)

xlabel(’Time, Sec’)


% ok: now do a little fourier analysis

Nh = 1:2:35;


fprintf(’Fourier Analysis: fundemantal amplitude is 1\n’)


for	 k = 1:length(Nh)

sn = sin(2*pi*Nh(k)*f .*t);

fn = 2*sum(sn .* pwm) / length(t);

fprintf(’Harmonic %3.0f Amplitude = %g\n’, Nh(k), fn);


end


s =	 .25*sin(2*pi*f .* t); % sine wave of fundamental frequency


pp = s > wp; % positive half test

pm = s < wm; % negative half test


pwm	 = pp - pm; % this should be the whole thing


fprintf(’Fourier Analysis: fundemantal amplitude is 0.25\n’)
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----------------

for	 k = 1:length(Nh)

sn = sin(2*pi*Nh(k)*f .*t);

fn = 2*sum(sn .* pwm) / length(t);

fprintf(’Harmonic %3.0f Amplitude = %g\n’, Nh(k), fn);


end

figure(3)

clf

plot(t, pwm)


figure(4)

clf

plot(t, s, t, wm)


function [t, w] = triangle(f, T, d)

% generates a triangle wave of amplitude 1

% frequency f

% length T

% increment d


T_c = 1/f; % length of one cycle

Ni = floor(.5*T_c/d); % number of increments per half cycle

Nc = floor(T*f); % number of cycles

%pause


% build first cycle


ws = (0:Ni-1) ./ (Ni-1); % first half cycle

wt = (Ni-1:-1:0) ./ (Ni-1); % second half cycle

wc = [ws wt]; % first full cycle


w =	 wc; % start concatenating


for k = 1:Nc-1,

w = [w wc];


end % all done


t =	 0:d:d*(length(w)-1); % so t is the same length as w
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