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Problem 1: Chapter 9, Problem 5 The phasor diagram is shown in Figure 1. 
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Figure 1: Voltage Vector Diagram of part a 

To start, the power factor angle is ψ = cos−1(0.8) ≈ 36.87◦ . We can use the law of cosines to 
find required internal voltage: 

eaf 
2 = v 2 + (xi)2 + 2vxi sinψ 

or, equivalently, we could use the pythagorean theorem: 

e 2 = (v + xi sinψ)2 + (xi cosψ)2 
af 

which are transparently identical. 

Torque angle is, pretty directly: 
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xi cosψ 
δ = tan−1 

v + xi sinψ 

These evaluate to: 

eaf0 = 1 + 22 + 2 × 2 × 0.6 ≈ 2.721 

δ = tan−1 .6 
≈ 36.03◦ 

1 + 1.2 

If Ifnl = 1000A, then required field current for that operating point would be 2721 A. 

Part b: 

Since p = 
veaf sin δ, if we vary field current at constant load: 
xd 

δ = sin−1	 pxd 

veaf 

Note that we are using the symbol p to indicate per-unit real power. The stability limit is 
reached when pxd = veaf , or eaf = 1.6 per-unit. That makes If = 1, 600A. Angle vs. field 
current is shown in Figure 2 
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Figure 2: Problem 9.5, Part b 

Parts c-e The rest of this problem is carried out in the script that is appended. First, the 
vee curve from the point we just computed to the overexcited field limit is shown in Figure 3. 

The zero-power vee curve has zero real power, so all that is interesting is reactive power: 
q = 

veaf −v 
, and for zero real power the absolute value of this is also per-unit armature 

xd 

current (if v = 1). 
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Figure 3: Problem 9.5, part c 

Finding the rest of the curves is straightforward: the beginning of the curve is at an angle 
determined by the real power and by the maximum excitation. The end of the curve is at the 
stability limit, which for a round rotor machine is at an angle of 90 degrees. 

δmin = sin−1 pxd 

veaf0 
π 

δmax = 
2 

Then we set up a vector of closely spaced points in angle, find required value of internal 
voltage to make the right amount of real power and then compute reactive power: 

pxd 
eaf = 

v sin δ 
veaf 

p = sin δ 
xd 

2veaf v
q = − 

xd cos δ xd 

ia = p2 + q2 

This calculation can be vectorized in MATLAB, and the set of vee curves that result is shown 
in figure 4. 

Finally, the capability curve can simply be sketched. The vector shown is drawn to the ’rating 
point’, or p = .8, q = .6. The other limits are just sections of circles. This is shown in Figure 5 

Here is the script: 
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Figure 4: Vee Curves: Part d and e of Problem 9.5 

% Problem Set 9, Problem 1: Round Rotor Machine


xd = 2; % synchronous reactance

Pb = 1e9; % rated power

Vb = 24000; % rated terminal voltage, line-line, RMS

Ifnl = 1000; % field current for unity internal voltage

Ib = Pb/(sqrt(3)*Vb); % base current

pf = .8; % can reach this power factor at rated VA


% Part a:

psi = acos(pf); % this is the rated power factor angle

eaf = sqrt(1+xd^2+2*xd*sin(psi)); % law of cosines calculation

vr = xd*sin(psi);

vi = xd*cos(psi);


fprintf(’eaf = %g vr = %g vi = %g\n’, eaf, vr, vi)

eang = (180/pi)*atan(vi/(1+vr));

vang = (180/pi)*atan(vi/vr);

fprintf(’angles: eaf = %g vx = %g\n’, eang, vang)
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Figure 5: Capability Curve for Problem 9.5 

% part b:

eafmin = pf*xd; % this will be the stability limit

Eaf = eafmin:.01:eaf; % to generate a plot

Delta = asin(xd*pf./ Eaf);

Deltad = (180/pi) .* Delta;


figure(1)

plot(Eaf, Deltad)

title(’Problem 9.5, part b’)

ylabel(’Degrees’)

xlabel(’Per-Unit E_af’)

grid on


% part c:

ppu = Eaf .* sin(Delta) ./ xd;

qpu = Eaf .* cos(Delta) ./ xd -1/xd;

I_a = Ib .* sqrt(ppu .^2 + qpu .^2);


figure(2)

plot(Eaf, I_a)
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title(’Problem 9.5, part b’)

ylabel(’|I_a|’)

xlabel(’Per-Unit E_{af}’)

grid on


% pard d and e: generate vee curve

% first, get zero power curve: need only corners

iamax = (eaf-1)/xd;

iamin = 1/xd;

I_az = Ib .* [iamin 0 iamax];

E_az = Ifnl .* [0 1 eaf];


figure(3)

clf

hold on


plot(E_az, I_az)


P_pu = [.2 .4 .6 .8];


for	 k = 1:length(P_pu)

p = P_pu(k);

deltm = asin(xd*p/eaf); % delta for the top of each curve

Delt = deltm:.01:pi/2; % from there to stability limit

E = p*xd ./sin(Delt); % required per-unit excitation

ppu = E .* sin(Delt) ./ xd;

qpu = E .* cos(Delt) ./ xd - 1/xd;

I_a = Ib .* sqrt(ppu .^2 + qpu .^2);

I_f = Ifnl .* E;

plot(I_f, I_a)


end

% now, just to be fancy, we generate the limits

ylim = Ib .* [1 1 0];

xlim = Ifnl*eaf .* [0 1 1];

plot(xlim, ylim, ’--’)


hold off

grid on

title(’Problem 9.5, part e’)

ylabel(’Armature Current Magnitude, A RMS’)

xlabel(’Field Current, A’)


Problem 2: Chapter 9, Problem 6 Revisited Here we find the capability curve for this salient 
pole machine. As with the round rotor machine, we have three basic limits to capability: 
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Limit 3 

p 

q 

Point B 

Point A 

Limit 1 

Limit 2 

1. Field Current Limit (heating) 

2. Armature Current Limit (heating) 

3. Underexcited Stability Limit 

These are shown in Figure . The three limits are called out with their numbers as above. 
There are two interesting points that are the places where two limts meet: Point A is the point 
that field and armature current limits have in common. It is also the point that establishes 
machine rating. Point B is where armature current limit is also at the stability limit. This 
problem, too, is carried out using the script appended. 

To start, use the vector diagram for salient pole motor operation shown in Figure 6, which is 
also Figure 9.10 of the text. 

Point A 

Assuming this is operating at rated armature current (Per-unit i = 1), rated internal voltage 
and torque angle are: 

ψ = cos −1PF 

= i cosψ + ji sinψ 

e1 = v − jxqi 

δ = 6 e1 
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Figure 6: Vector Diagrem for Salient Pole Machine 

id = i sin (ψ − δ) 

eaf = |e1 + (xd − xq) id 

Actually, what is calculated is actually the negative of id, but that is just a little bit more 
convenient. 

Point B 

This is the intersection of the stability limit, where 

xd cos 2δ 
eaf = v 1 − 

xq cos δ 

and the armature current limit, where —p+jq— = 1; 

As it turns out, this can be found by searching over the angle δ and, calculating eaf for each 
value of δ, finding where armature current is rated. 

These two points give us the appropriate limits. Then for segment 1, we set up a vector of 
closely spaced points in angle from δA < δ < 0. (Note that δA is negative.) Internal voltage 
is constant, and real and reactive power are calculated.


For segment 2, between δB < δ < δA, it is straightforward to set up a vector of closely spaced

points in power factor angle ψ, and p = cosψ and q = sinψ.


The last segment is actually most interesting.As it turns out, the angle does go back to zero

and internal field voltage crosses zero and becomes negative. The stability limit is as we
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calculated it above, and that can be calculated for each of a closely spaced vector of points: 
δB < δ < 0. Real and reactive power are calculated at each point.


To generate the plot, the three segments are plotted separately, and the result is shown in

Figure 7.
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Figure 7: Capability Curve for Salient Pole Machine (per-unit) 

Script for Problem 2 

% Capability Curve for a Salient Generator


global xd xq v eq d

%per-unit

xd = 1.5;

xq = 1.0;

v=1;

Pb = 1e6;

Vb = 4200/sqrt(3);

Ib = Pb/(3*Vb);

Ifnl = 100;

pf0 = 1.0;

% step 1: find rated eaf and angle at rating point (Point A)

psi0 = acos(pf0);


Im = 1;

I = Im * (cos(psi0) + j*sin(psi0));


e1 = v - j*xq*I;
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delt0 = angle(e1);

I_d = Im * sin(psi0-delt0); % actually -I_d

eaf0 = abs(e1) + I_d * (xd - xq);

fprintf(’Point A: eaf = %g delta = %g\n’, eaf0, delt0)


% step 2 find point B Intersection of rated current and stability


delt1 = fzero(’ff’, [-pi/2 0]);

eaf1 = v*(1-xd/xq)*cos(2*delt1)/cos(delt1);

fprintf(’Point B: eaf = %g delta = %g\n’, eaf1, delt1)

p1 = -.5*v^2*(1/xq-1/xd)*sin(2*delt1)-v*eaf1*sin(delt1)/xd;

q1 = .5*v^2*(1/xq+1/xd) - .5*v^2*(1/xq-1/xd)*cos(2*delt1) - v*eaf1*cos(delt1)/xd;

psi1 = atan(q1/p1);


fprintf(’Point B: P = %g Q = %g psi = %g\n’, p1, q1, psi1)


% now run it out

% region 1 is constant eaf: field limit


Delt1 = delt0:.01:0;

eaf = eaf0;


P1 = -.5*v^2*(1/xq-1/xd) .* sin(2 .* Delt1)...

-(v*eaf/xd) .* sin(Delt1);


Q1 = .5*v^2*(1/xq+1/xd) -.5*v^2*(1/xq-1/xd) .* cos(2 .* Delt1) ...

-(v*eaf/xd) .* cos(Delt1);


% region 2 is constant armature current magnitude


psi2 = -psi0:.01:psi1;


P2 = cos(psi2);

Q2 = sqrt(1-P2 .^2);


% region 3 is the stability limit


Delt3 = delt1:.01:0;

eaf3 = v*(1-xd/xq)*cos(2 .* Delt3) ./ cos(Delt3);


P3 = -.5*v^2*(1/xq-1/xd) .* sin(2 .* Delt3)...

-(v .*eaf3 ./xd) .* sin(Delt3);


Q3 = .5*v^2*(1/xq+1/xd) -.5*v^2*(1/xq-1/xd) .* cos(2 .* Delt3) ...

-(v .*eaf3 ./xd) .* cos(Delt3);
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---------------

L1x = [0 0];

L1y = [-.5 1];

L2x = [0 1.2];

L2y = [0 0];

figure(1)

plot(P1, Q1, P2, Q2, P3, Q3, L1x, L1y, L2x, L2y)

axis square

axis equal

grid on

legend(’Field Limit’, ’Armature Limit’, ’Stability Limit’)


function deltb = ff(delt)


global xd xq v eq d


eaf = v*(1-xd/xq)*cos(2*delt)/cos(delt);


p = -.5*v^2*(1/xq-1/xd)*sin(2*delt)-v*eaf*sin(delt)/xd;

q = .5*v^2*(1/xq+1/xd) - .5*v^2*(1/xq-1/xd)*cos(2*delt) - v*eaf*cos(delt)/xd;


deltb = 1-abs(p+j*q);


Problem 3 With 48 slots and a four pole machine, the number of slots per pole per phase is: 

48 
m = = 4 

6 × 2 

360 And the electrical angle between slots is γ = 2 × 
48 = 15◦ . The breadth factor is: 

sin mγ sin 30◦ 
kb = 2 = ≈ .957 

m sin γ 4 × sin 7.5◦ 
2 

For the full pitch winding, of course, kp = 1. Short pitching the winding reduces the pitch 
angle by the number of slots times γ, so that, for one slot short the angle is α = 165◦ and for 
two short it is α = 150◦ . So: 

full kw = .957 × 1.0 ≈ .957 

1 short kw = .957 × .991 ≈ .948 

2 short kw = .957 × .966 ≈ .924 

In this context we refer to the one slot short pitched winding as ’11/12’ and the two slot short 
pitch as ’5/6’. 
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