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6.055J/2.038J (Spring 2008) 

Solution set 3 

Do the following warmups and problems. Due in class on Friday, 14 Mar 2008. 

Open universe: Collaboration, notes, and other sources of information are encouraged. However, avoid 
looking up answers until you solve the problem (or have tried hard). That policy helps you learn the most 
from the problems. 

Bring a photocopy to class on the due date, trade it for a solution set, and figure out or ask me about 
any confusing points. Your work will be graded lightly: P (made a reasonable effort), D (did not make a 
reasonable effort), or F (did not turn in). 

Warmups 
1. Explain a Unix pipeline 

What does this pipeline do? 

ls -t | head | tac 

[Hint: If you are not familiar with Unix commands, use the man command on Athena or on 
any nearby Unix or GNU/Linux system.] 

The ls -t lists the files and subdirectories in a directory ordered by modification time with the 
most recently modified files at the beginning. The head selects the first ten lines, which means 
the first ten names. The tac reverses the order of the lines, so the 10th-most-recently-modified file 
(or subdirectory) comes first, then the 9th-most-recently-modified file, etc. with the most-recently­
modified file at the end of the list. 

2. Symmetry for algebra 
Use symmetry to find (a − b)3. 

The original expression is antisymmetric in a and b: The result changes sign if you swap a and b. 

The expansion has third-degree terms such as a3 or a2b. One category of third-degree terms is 
like a3 and includes a3 and b3. The antisymmetric combination is a3 

− b3. The other category of 
third-degree terms is like a2b and includes a2b and ab2. The antisymmetric combination is a2b− ab2. 

The expansion therefore has the antisymmetric form 

(a − b)3 = A(a3 
− b3) + B(a2b − ab2) 

where A and B are constants to be determined. 

Setting b = 0 shows that A = 1, because (a − 0)3 = A(a3 
− 0) + B(0 − 0) or a3 = Aa3. 

To find B, think about the naive expansion of (a − b)3. The basic expression a − b has two terms, so 
(a − b)3 has eight terms (before collecting like terms). So the absolute values of the coefficients of 
each term in the form 
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A(a3 
− b3) + B(a2b − ab2) 

have to add to eight. With A = 1, this requirement shows that B = ±3. The choice B = −3 gives the 
correct sign for the a2b term (which has one negative factor from the −b). 

So 

(a − b)3 = (a3 
− b3) − 3(a2b − ab2). 

Problems 
3.	 Highway vs city driving 

In lecture we derived a measure of how important drag is for a car moving at speed v for a 
distance d: 

Edrag	 ρv2Ad 
.

Ekinetic 
∼ 

mcarv2

a.	 Show that the ratio is equivalent to the ratio


mass of the air displaced

mass of the car


and to the ratio


ρair d 
ρcar 
× 

lcar 
, 

where ρcar is the density of the car (i.e. its mass divided by its volume) and lcar is the length 
of the car. 

In the ratio ρv2Ad/mcarv2, the v2 divide out leaving ρAd/mcar, where ρ is the air density. Since 
A is the cross-sectional area of the car, Ad is the volume of air that the car displaces, and ρAd is 
the mass of that air. So 

Edrag ρv2Ad ρAd mass of the air displaced 
= =	 .

Ekinetic 
∼ 

mcarv2 mcar mass of the car 

An alternative equivalence comes from writing the mass of the car as ρcar Alcar. Making that 
substitution and dividing out the v2 gives 

ρv2Ad	 ρairAd ρair d 
mcarv2 = 

ρcarAlcar 
= 
ρcar lcar 

. 

b.	 Make estimates for a typical car and find the distance d at which the ratio becomes signif­
icant (say, roughly 1). How does the distance compare with the distance between exits on 
the highway and between stop signs or stoplights on city streets? 
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A typical car has mass mcar ∼ 103 kg, cross-sectional area A ∼ 2 m × 1.5 m = 3 m2, and length 
lcar ∼ 4 m. So 

mcar 103 kg

ρcar 

× 4 m 
∼ 102 kg m−3 .
∼ 

Alcar 
∼ 

3 m2


Since ρcar/ρair ∼ 100, the ratio 

ρair d 
ρcar lcar 

becomes 1 when d/lcar ∼ 100, so d ∼ 400 m. 

This distance d is significantly farther than the distance between stop signs or stoplights on 
city streets. In Manhattan, for example, 20 east–west blocks are one mile, giving a spacing of 
approximately 80 m. So air resistance is not a significant loss in city driving. Instead the loss 
comes from engine friction, rolling resistance, and braking. 

However, the distance d is comparable to the exit spacing on urban highways. So when you 
drive on the highway for even a few exit distances, air resistance is a significant loss. 

Interestingly, highway fuel efficiencies are higher than city fuel efficiencies, even though drag 
gets worse at the higher, highway speeds, and presumably engine friction and rolling resis­
tance also get worse at higher speeds. Only one loss mechanism, braking, is less prevalent in 
highway than in city driving. So braking must cause a significant loss in city driving. Regen­
erative braking, for hybrid or electric cars, should significantly improve fuel efficiency in city 
driving. 

4. Symmetry for second-order systems 
This problem analyzes the frequency of maximum gain for an LRC circuit or, equivalently, for 
a damped spring–mass system. The gain of such a system is the ratio of the input amplitude 
to the output amplitude as a function of frequency. 

If the output voltage is measured across the resistor, and you drive the circuit with a voltage 
oscillating at frequency ω, the gain is (in a suitable system of units): 

jω 
G(ω) = 

1 + jω/Q − ω2 , 

where j = 
√
−1 and Q is quality factor, a dimensionless measure of the damping. 

Do not worry if you do not know where that gain formula comes from. The purpose of this 
problem is not its origin, but rather using symmetry to maximize its magnitude. 

a. Show that the magnitude of the gain is 

ω 
|G(ω)| = √( 

1 − ω2 
)2 
+ ω2/Q2 

. 

The magnitude of the numerator is ω (assuming positive frequency). The magnitude of the 

denominator is 
√ 
|real part|2 + |imaginary part|2 so it is 

√( 
1 − ω2 

)2 
+ ω2/Q2. 

The ratio of magnitudes is |G(ω)|: 



4 Solution set 3 / 6.055J/2.038J: Art of approximation in science and engineering (Spring 2008) 

|G(ω)| = 
ω √( 

1 − ω2 
)2 
+ ω2/Q2 

. 

b.	 Find a variable substitution (a symmetry operation) ωnew = f (ω) that turns |G(ω)| into 
|H(ωnew)| such that G and H are the same function (i.e. they have the same structure but 
with ω in G replaced by ωnew in H). 

When maximizing a parabolic function such as y = x(6 − x), the symmetry is reflection about 
the line x = 3. In symbols, the transformation is xnew = 6 − x. 

Let’s transfer a few lessons from the parabola example to the problem of maximizing the gain. 
In the parabola example, the symmetry is a reflection about an interesting point (there, the 
point halfway between the two roots x = 0 and x = 6). Analogously, an interesting frequency 
is ω = 1 because it makes the real part of the denominator in G(ω) go to zero, and making the 
real part go to zero helps minimize the denominator. 

Therefore reflecting about ω = 1 is worth trying, perhaps ωnew = 1 − ω. For frequencies, 
however, differences are not as important as ratios. For example, a musical octave is a factor 
of 2 in frequency, rather than a difference. So reflect in a multiplicative way: ωnew = w−1. 

This transformation works either in G(ω) or in the magnitude |G(ω)|. It’s slightly easier in G(ω): 

jω j/ωnew
G(ω) = 
1 + jω/Q − ω2 7→ H(ωnew) = 

1 + j/Qωnew − 1/ω2 .

new


Multiply numerator and denominator by ω2 :new

H(ωnew) = 
ω2 

jωnew 
,


new + jωnew/Q − 1


which is the same function as G(ω), except for negating the real part in the denominator. 
Negating the real part in the denominator doesn’t affect the magnitude of the denominator, 
so |H(ωnew)| has the same form as |G(ω)|. 

c.	 Use the form of that symmetry operation to maximize |G(ω)| without using calculus. 

Since ωnew = 1/ω, the maximum value of ωnew will be ω−1 . That’s one equation. max

Since the two magnitudes |G(ω)| and |H(ωnew)| are the same function, the maximum value of 
ωnew is also the maximum value of ω. That’s the second equation. 

Together they produce ω = ωnew = 1 (ignoring the negative-frequency solution ω = −1). At 
that frequency, |G(ω)| is Q. For the electrical and mechanical engineers: The quality factor Q is 
also the gain at resonance. 



√ 

( 
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d.	 [Optional, for masochists!] Maximize |(Gω)| using calculus. 

A direct differentiation of |G(ω)| is too awful for words, and I cannot make myself do it. Instead 
I’ll massage the expression until differentiating is not horrible or maybe not even needed. 

First, put the ω from the numerator into the denominator by multiplying numerator and de­
nominator by 1/ω: 

ω	 1 
|G(ω)| = √( )2 

= √( )2 
. 

1 − ω2 + ω2/Q2 ω−1 − ω + 1/Q2 

Second, find the extremum of an equivalent, simpler expression. Maximizing 1/ f (ω) is equiv­
alent to maximizing 1/ f (ω). And maximizing 1/ f (ω) is equivalent to minimizing f (ω). So I’ll 
find the extremum of ( )2


ω−1 
− ω + 1/Q2 .


Furthermore, the 1/Q2 doesn’t affect the location of the extremum, so instead I minimize ω−1
−)2 

ω . Even better, the squaring does not affect the location of the extremum, so I minimize the 
absolute value of ω−1

− ω. Its absolute value can never fall below zero, and it equals zero when 
ω = 1. So ω = 1 is the location of the maximum of |G(ω)|. No need for differentiation! 

5.	 Gravity on the moon 
In this problem you use a scaling argument to estimate the strength of gravity on the surface 
of the moon. 

a.	 Assume that a planet is a uniform sphere. What is the proportionality between the gravi­
tational acceleration g at the surface of a planet and the planet’s radius R and density ρ? 

The force of gravity on an object of mass m is F = mg. By Newton’s law of gravitation, it is also 
F = GMm/R2, where M is the mass of the planet and G is Newton’s constant of gravitation. 
Therefore the gravitational acceleration is g = GM/R2. Since M = ρ(4π/3)R3, the gravitational 
acceleration is 

Gρ(4π/3)R3 

g = 
R2 ∝ ρR. 

In the last step, G vanished and the equals sign got replaced by a proportionality, which is okay 
since G is the same for all planets in the universe. 

b.	 Write the ratio gmoon /gearth as a product of dimensionless factors as in the analysis of the 
fuel efficiency of planes. 

Using the proportionality, the ratio of gravities is 

gmoon ρmoon Rmoon 
= .


gearth ρearth Rearth


The factors are ratios of densities or radii, so they are dimensionless. 
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c.	 Estimate those factors and estimate the ratio gmoon /gearth, then estimate gmoon. [Hint: To 
estimate the radius of the moon, whose angular size you can estimate by looking at it, you 
might find it useful to know that the moon is 4 108 m distant from the earth.] · 

I’ll first assume that earth and moon rock are the same. So ρmoon /ρearth ∼ 1. 

The earth’s radius is worth memorizing once you’ve derived it. Here’s one way to derive it. 
The distance from Boston to San Francisco is about 3000 miles, and the cities are separated by 
three time zones. So the sun ‘travels’ about 1000 miles per time zone (per hour). Since one day 
has 24 time zones, the sun’s travel around the earth is about 24,000 miles. That value is the 
circumference 2πRearth, so Rearth ∼ 4 103 mi (since π ∼ 3) or 6.4 103 km. This estimate neglects ·	 · 
a trigonometric factor due Boston not being on the equator, but it makes other errors, and they 
cancel (surprise!): The true value of the mean radius is 6373 km. 

The moon’s radius needs a different analysis. I can just cover the moon with my index finger 
at arm’s length. So the moon subtends an angle 

width of my finger 1 cm

θ ∼ 

my arm length 
∼ 

1 m 
∼ 0.01.


So the diameter of the moon is roughly θd, where d ∼ 4 108 m is the distance to the moon, and · 
the radius is therefore Rmoon ∼ 2 106 m. If the moon is hidden, you can (carefully!) use the sun · 
instead because it has the same angular size as the moon – which is the explanation for total 
solar eclipses. 

The density and radii factors produce 

gmoon 1 1 
gearth 

= 1 × 
3
= 

3
. 

densities 
radii 

So gmoon ∼ 3 m s−2. 

d.	 Look up gmoon and compare the value to your estimate, venturing an explanation for any 
discrepancy. 

The true value is gmoon ∼ 1.6 m s−2. So the estimate is too high by a factor of 2. The radii 
estimates are fairly accurate, so the equal-density assumption must be significantly wrong. So 
the moon’s density is much less than the earth’s. The actual values are ρmoon ∼ 3.4 g cm−3 and 
ρearth ∼ 5.5 g cm−3. However, ρmoon is comparable to the density of rock in the earth’s crust. 
Perhaps the moon was once part of the earth’s crust, which is still a viable theory of the moon’s 
origin. 

6.	 Checking plane fuel-efficiency calculation 
This problem offers two more methods to estimate the fuel efficiency of a plane. 
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a.	 Use the cost of a plane ticket to estimate the fuel efficiency of a 747, in passenger–miles per 
gallon. 

A roundtrip ticket from New York to San Francisco costs roughly $400. The journey is about 
2500 miles each way, so a 5000-mile journey costs about $500 (rounding up the $400 to make 
the math easier). That’s about 10 cents/mile. Perhaps one-half of that cost is fuel. [Although 
the service – in the air, on the phone, and at the counter – is so lousy due to understaffing that 
perhaps two-thirds of the cost being fuel would be a better estimate!] At 5 cents/mile for fuel, 
and at $3/gallon for fuel, the fuel efficiency is 60 passenger–miles per gallon. 

b. According to Wikipedia, a 747-400 can hold up to 2 105` of fuel for a maximum range of · 
1.3 104 km. Use that information to estimate the fuel efficiency of the 747, in passenger– · 
miles per gallon. 

The 747 can hold about 400 people, so the fuel efficiency is 

400 passengers × 1.3 104 km 1 mile 4` 
2 105` 

·
× 

1.6 km 
× 

1 gallon 
∼ 65 passenger–miles per gallon. 

· 

This estimate is amazingly close to the estimate from using the ticket price! 

How do these values compare with the rough result from lecture, that the fuel efficiency is 
comparable to the fuel efficiency of a car? 

The fuel efficiency of a medium-sized car (holding one person, which is typical for California) is 
roughly 30 passenger–miles per gallon. So both fuel-efficiency estimates in this problem give a 
fuel efficiency that is a factor of 2 higher than the result from lecture – not too bad considering 
how much we neglected (drag coefficient and lift being the main ones) when we estimated the 
efficiency. 

7.	 Invent your own problem 
Invent your own problem whose solution might use symmetry, proportional reasoning, or a 
Unix pipeline. 

Optional 
8.	 Design a Unix pipeline 

Make a pipeline that prints the ten most common words in the input stream, along with how 
many times each word occurs. They should be printed in order from the the most frequent 
to the less frequent words. [Hint: First translate any non-alphabetic character into a newline. 
Useful utilities include tr and uniq.] 
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Divide and conquer! The first step is to get rid of all the non-alphabetic characters and turn them 
into newlines. Then get rid of the empty lines, which occur either from empty lines in the original 
text or when consecutive non-alphabetic characters get turned into newlines. Then we’ll have the 
words from the file, one word per line. This piece of the pipeline is 

tr -cs ’a-zA-Z’ ’\n’ 

The -c option says that the list of characters is to be inverted (complemented). So tr will trans­
late all characters except for the upper- and lowercase alphabetic characters a-z and A-Z. The 
backslash-n is the Unix syntax for the newline character. The -s option tells tr to squeeze repeated 
translated characters into one copy of that character; therefore repeated newlines get turned into 
one newline, which gets rid of the empty lines. 

To count the words, sort them and run uniq. uniq looks only at adjacent lines, which is why the 
word list needs to be sorted. In the simplest invocation, uniq print the first line from a series of 
duplicate lines. For example, feeding this input to uniq 

the 
the 
the 
how 
the 
how 
how 

produces 

the 
how 
the 
how 

Giving uniq the -c switch tells it instead to count the duplicates. The same input to uniq -c 
produces 

3 the 
1 how 
1 the 
2 how 

The pipeline so far is 

tr -cs ’a-zA-Z’ ’\n’ | sort | uniq -c 

I want the top ten words, so I reverse sort the list numerically (so that the largest count is at the 
top) with sort -nr, then select the top ten lines with head. 

The full pipeline is 

tr -cs ’a-zA-Z’ ’\n’ | sort | uniq -c | sort -nr | head 

As a test, here is the result of applying that pipeline to an old email message about misconceptions 
about gravity on the moon. The full command is: 

tr -cs ’a-zA-Z’ ’\n’ < email.txt | sort | uniq -c | sort -nr | head 

It produces this word-frequency list: 
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149 the 
87 it 
65 is 
53 to 
52 Moon 
50 of 
44 will 
43 float 
33 on 
33 away 


