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∫ 

6.055J/2.038J (Spring 2008) 

Homework 5 

Do the following warmups and problems. Due in class on Friday, 18 April 2008. 

Open universe: Collaboration, notes, and other sources of information are encouraged. However, avoid 
looking up answers until you solve the problem (or have tried hard). That policy helps you learn the most 
from the problems. 

Bring a photocopy to class on the due date, trade it for a solution set, and figure out or ask me about 
any confusing points. Your work will be graded lightly: P (made a reasonable effort), D (did not make a 
reasonable effort), or F (did not turn in). 

Warmups 
1. Counting dimensionless groups 

How many independent dimensionless groups are there in the following sets of variables: 

a.	 size of hydrogen including relativistic effects:


e2/4πε0, ~, c, a0 (Bohr radius), me (electron mass).


b.	 period of a spring–mass system in a gravitational field:


T (period), k (spring constant), m, x0 (amplitude), g.


c.	 speed at which a free-falling object hits the ground:


v, g, h (initial drop height).


d.	 [tricky!] weight W of an object:


W, g, m.


2. Integrals by dimensions 
You can use dimensions to do integrals. As an example, try this integral: 

I(β) =	
∞ 

e−βx
2 

dx. 
−∞ 

Which choice has correct dimensions: 

(a.) 
√
πβ−1 (b.) 

√
πβ−1/2 (c.) 

√
πβ1/2 (d.) 

√
πβ1 

Hints: 



︸ ︷︷ ︸ 
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1.	 The dimensions of dx are the same as the dimensions of x. 

2.	 Pick interesting dimensions for x, such as length. (If x is dimensionless then you cannot 
use dimensional analysis on the integral.) 

Problems 
3.	 How to avoid remembering lots of constants 

Many atomic problems, such as the size or binding energy of hydrogen, end up in expressions 
with ~, the electron mass me, and e2/4πε0, which is a nicer way to express the squared electron 
charge. You can avoid having to remember those constants if instead you remember these 
values instead: 

~c ≈ 200 eV nm = 2000 eV Å 

mec2 
∼ 0.5 106 eV· 

e2/4πε0 1 
(fine-structure constant). 

~c 
≡ α ≈ 

137 

Use those values to evaluate the Bohr radius in angstroms (1 Å = 0.1 nm): 

~2


a0 = .

me(e2/4πε0)

As an example calculation using the ~c value, here is the energy of a photon: 

c
E = h f = 2π~ f = 2π~ ,

λ

where f is its frequency and λ is its wavelength. For green light, λ ∼ 600 nm, so 

2π ~c ︷︸︸︷ ︷ ︸︸ ︷ 

E ∼ 
6 × 200 eV nm 

∼ 2 eV.

600 nm


λ 

4.	 Heavy nuclei 
In lecture we analyzed hydrogen, which is one electron bound to one proton. In this problem 
you study the innermost electron in an atom such as uranium that has many protons, and 
analyze one physical consequence of its binding energy. 

So, imagine a nucleus with Z protons around which orbits one electron. Let E(Z) be the binding 
energy (the hydrogen energy is the case Z = 1). 

a.	 Show that the ratio E(Z)/E(1) is Z2. 

b.	 In lecture, we derived that E(1) is the kinetic energy of an electron moving with speed αc 
where α is the fine-structure constant (roughly 10−2). How fast does the innermost electron 
move around a heavy nucleus with charge Z? 
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c.	 When that speed is comparable to the speed of light, the electron has a kinetic energy 
comparable to its (relativistic) rest energy. One consequence of such a high kinetic energy 
is that the electron has enough kinetic energy to produce a positron (an anti-electron) out of 
nowhere (‘pair creation’). That positron leaves the nucleus, turning a proton into a neutron 
as it exits. So the atomic number Z drops by one: The nucleus is unstable! Relativity sets 
an upper limit for Z. 

Estimate that maximum Z and compare it with the Z for the heaviest stable nucleus (ura­
nium). 

5.	 Power radiated by an accelerating charge 
Electromagnetism, where the usual derivations are so cumbersome, is an excellent area to ap­
ply dimensional analysis. In this problem you work out the power radiated by an accelerating 
charge, which is how radio stations work. 

So, consider a particle with charge q, with position x, velocity v, and acceleration a. What 
variables are relevant to the radiated power P? The position cannot matter because it depends 
on the origin of the coordinate system, whereas the power radiated cannot depend on the 
origin. The velocity cannot matter because of relativity: You can transform to a reference frame 
where v = 0, but that change will not affect the radiation (otherwise you could distinguish 
a moving frame from a non-moving frame, in violation of the principle of relativity). So the 
acceleration a is all that’s left to determine the radiated power. [This line of argument is slightly 
dodgy, but it works for low speeds.] 

a.	 Using P, q2/4πε0, and a, how many dimensionless quantities can you form? 

b.	 Fix the problem in the previous part by adding one quantity to the list of variables, and 
give a physical reason for including the quantity. 

c.	 With the new list, use dimensionless groups to find the power radiated by an accelerating 
point charge. In case you are curious, the exact result contains a dimensionless factor of 
2/3; dimensional analysis triumphs again! 

6.	 Yield from an atomic bomb 
Geoffrey Taylor, a famous Cambridge fluid mechanic, annoyed the US government by doing 
the following analysis. The question he answered: ‘What was the yield (in kilotons of TNT) of 
the first atomic blast (in the New Mexico desert in 1945)?’ Declassified pictures, which even 
had a scale bar, gave the following data on the radius of the explosion at various times: 

t (ms) R (m) 
3.26 59.0 
4.61 67.3 

15.0 106.5 
62.0 185.0 
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a.	 Use dimensional analysis to work out the relation between radius R, time t, blast energy E, 
and air density ρ. 

b.	 Use the data in the table to estimate the blast energy E (in Joules). 

c.	 Convert that energy to kilotons of TNT. One gram of TNT releases 1 kcal or roughly 4 kJ. 

The actual value was 20 kilotons, a classified number when Taylor published his result [‘The 
Formation of a Blast Wave by a Very Intense Explosion. II. The Atomic Explosion of 1945.’, 
Proceedings of the Royal Society of London. Series A, Mathematical and Physical 201(1065): 175–186 
(22 March 1950)] 

7.	 Your turn to create 
Invent – but you do not need to solve! – an estimation question for which dimensional analysis 
would help solve it. 

Optional 
8.	 Atomic blast: A physical interpretation 

Use energy densities and sound speeds to make a rough physical explanation of the result in 
the ‘yield from an atomic bomb’ problem. 


