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Lecture 20
Personal genomics, disease epigenomics,
systems approaches to disease

Predictive Medicine
Molecular Epidemiology
Mendelian Randomization

Polygenic Risk Prediction Models



Personalugenomics today: 23 and We
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Genomics: Regions = mechanisms = drugs

Systems: genes = combinations =» pathways |
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Goal: Personalized and Predictive Medicine

1. Intro to Epidemiology: basis of human disease

2. Genetic Epidemiology:
— Genetic basis: GWAS and screening
— Interpreting GWAS with functional genomics
— Calculating functional enrichments for GWAS loci

3. Molecular epidemiology
— meQTLs: Genotype-Epigenome association (cis-/trans-)
— EWAS: Epigenome-Disease association
4. Resolving Causality
— Statistical: Mendelian Randomization
— Application to genotype + methylation in AD
5. Systems Genomics and Epigenomics of disease

— Beyond single loci: polygenic risk prediction models
— Sub-threshold loci and somatic heterogeneity in cancer
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Epidemiology
The study of the
patterns, causes, and effects

of health and disease conditions
In defined populations



Epidemiology: Definitions and terms

Morbidity level: how sick an individual is
Incidence: # of new cases / # people / time period
Prevalence: Total # of cases in population
Attributable risk: rate in exposed vs. not exposed

Population burden: yrs of potential life lost (YPLL),
quality-/disability-adjusted life year (QALY/DALY)

Syndrome: Co-occurring signs (observed), symptomes
(reported), and other phenomena; (often hard to
establish causality / risk factors)

Prevention challenge: Determine disease, cause,
understand whether, when, and how to intervene



Determining disease causes: study design

* Principles of experimental design
— Control: comparison to baseline, placebo effect
— Randomization: Difficult to achieve, ensure mixing
— Replication: control variability in initial sample
— Grouping: understand variation between subgroups
— Orthogonality: all combinations of factors/treatments
— Combinatorics: factorial design nxn xnx ... x n table

* Challenge of human subjects
— Legal and ethical constraints, Review boards

— Randomization by instrumental variables
— Clinical trials: blind (patient), double-blind (doctor too)



Goal: Personalized and Predictive Medicine

1. Intro to Epidemiology: basis of human disease

2. Genetic Epidemiology:
— Genetic basis: GWAS and screening
— Interpreting GWAS with functional genomics
— Calculating functional enrichments for GWAS loci

3. Molecular epidemiology
— meQTLs: Genotype-Epigenome association (cis-/trans-)
— EWAS: Epigenome-Disease association
4. Resolving Causality
— Statistical: Mendelian Randomization
— Application to genotype + methylation in AD
5. Systems Genomics and Epigenomics of disease

— Beyond single loci: polygenic risk prediction models
— Sub-threshold loci and somatic heterogeneity in cancer
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Genome-wide association studies (GWAS)
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* |dentify regions that co-vary with the disease
* Risk allele G more frequent in patients, A in controls
* But: large regions co-inherited =2 find causal variant
* Genetics does not specify cell type or process


http://www.nature.com/nrg/journal/v9/n5/full/nrg2344.html

All disease-asciated genotypes from GWAS

. Digestive system disorder
@ Cardiovascular disorder
() Metabolic disorder

£ Immune system disorder

%

{ | Newrological disorder

@ Liver enzyme measurement

e >) - .:_:"-}A d
£ GWAS_2012-7.pdF | &=
X% e 8|

{ ) Lipid or lipoprotein measurement
{ ) Inflammatory marker measurement
() Hematological measurement

() Body measurement

@ Cardiovascular measurement

" Other measurement

() Chemical compound

(1) Biological process

@ Cancer

@ Other disease

@ Other trait

2 o () Trait mapping in progress
“T (EBI), Hall PN (NHGRI), Hastings E (EBI), Hindorff LA (NHGRI), Junkins HA (NHGRI),
Klemm AK (NHGRI), MacArthur J (EBI), Manolio TA (NHGRI), Morales J (EBI), Parkinson H (EBI) and

Welter D (EBI).The NHGRI-EBI Catalog of published genome-wide association studies.
Available at: www.ebi.ac.uk/gwas. Used with Permission.

* 1000s of studies, each with 1000s of individuals

— Increasing power, meta-analyses reveal additional loci
— More loci expected, only fraction of heritability explained
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www.ebi.ac.uk/gwas

More loci on the way: GWAS growth continues

Total Number of Publications

2009 2010 2011 2012

Calendar Quarter
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When to design custom chip: continuously update

http://www.genome.gov/admin/gwascatalog.txt
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Decreasing cost of whole-genome sequencing

Cost per Genome
:

Moore's Law

“”iéi Il National Human

1 1 |
WW Genome Research

Institute

genome.gov/sequencingcosts
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Image by Wetterstrand KA. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing
Program (GSP) Available at: www.genome.gov/sequencingcosts. Image in the public domain.

* Simply genotype all known variants at >0.1% freq
e Or: sequence complete diploid genome of everyone
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www.genome.gov/sequencingcosts

Genetic epidemiology: What to test

Family risk alleles, inherited with common trait
— Specific genes, specific variants, family history
Monogenic, actionable, protein-coding mutations

— Most understood, highest impact, easiest to interpret

All coding SNPs with known disease association
— What if not druggable / treatable? Want/need know?

All coding/non-coding associations from GWAS
— Thousands of significant associations (1350 on 6/2012)

All common SNPs, regardless of association
— HapMap and 1000 Genomes capture common variants

Genome: all SNPs, CNVs, rare/private mutations



Predictive medicine: When to screen
Diagnostic testing: after symptoms, confirm a hypothesis,
distinguish between possibilities

Predictive risk: before symptoms even manifest
Newborn: heel pick, store, for early treatment

Pre-natal testing: ulstrasound, maternal serum vs.
needles, probes, chorionic villus sampling

Pre-conception testing: common/rare disorders
Carrier testing: specific mutation in family history

Genetics vs. biomarkers : cause vs. consequence?



Goal: Personalized and Predictive Medicine

1. Intro to Epidemiology: basis of human disease

2. Genetic Epidemiology:
— Genetic basis: GWAS and screening

— Interpreting GWAS with functional genomics
— Calculating functional enrichments for GWAS loci

3. Molecular epidemiology
— meQTLs: Genotype-Epigenome association (cis-/trans-)
— EWAS: Epigenome-Disease association
4. Resolving Causality
— Statistical: Mendelian Randomization
— Application to genotype + methylation in AD
5. Systems Genomics and Epigenomics of disease

— Beyond single loci: polygenic risk prediction models
— Sub-threshold loci and somatic heterogeneity in cancer



Interpreting disease associations

Functional genomics of GWAS



Interpreting disease-association signals

(1) Interpret variants using Epigenomics

- Chromatin states: Enhancers, promoters, motifs
- Enrichment in individual loci, across 1000s of SNPs in T1D

e O
CATGACTG
CATGCCTG GWAS >

Genotype Disease

n@f Epigenome @

(2) Epigenome changes In disease
- Intermediate molecular phenotypes associated with disease

- Variation in brain methylomes of Alzheimer’s patients

17



Complex disease: strong non-coding component

Monogenic / Polygenic / Complex
Mendelian Disease Disease

Coding

. Non-coding

Human Genetic Mutation Database Catalog of GWAS studies
April 2010 release Hindorff et al. PNAS 2009

Slide credit: Benjamin Raby 18



Genomic medicine: challenge and promises
. GWAS: simple x? statistical test|-
: 1. The promise of genetics

— Disease mechanism
— New target genes

— New therapeutics
— Personalized medicine

2. The challenge
—90+% disease hits non-coding
— Cell type of action not known

— Causal variant not known

Courtesy of Macmillan Publishers Limited. Used with permission
Source: Hillmer, A. M., Brockschmidt, F. F., Hanneken, S., Eigelshoven, S.,

Steffens, M., Flaquer, A., . .. No6éthen, M. M. (2008). "Susceptibility variants _ H
for male-pattern baldness on chromosome 20p11." Nature Genetics Nat Genet, M eCha n |Sm nOt kn Own
40(11), 1279-1281. d0i:10.1038/ng.228

Hillmer Nature Genetics 2008 19
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Genomic medicine: challenge and promises

3. The remedy

— Annotation of non-coding
genome (ENCODE/Roadmap)

— Linking of enhancers to
regulators and target genes
Consortium. Used with permisson. 2o — New methods for utilizing them

Roadmap Epigenomics, Nature 2015 4. The deliverables
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This talk: From locl to mechanisms

Building a reference map of the regulatory genome

Enhancers

Regions:

Cell types:
Target genes:
Nucleotides:
Regulators:

Promoters Transcribed Repressed

Enhancers, promoters transcribed, repressed

Predict tissues and cell types of epigenomic activity

Link variants to their target genes using eQTLs, activity, Hi-C
Regulatory consequence of mutation: Conservation, PWMs
Upstream regulators whose activity is disrupted by mutation

Application to GWAS, hidden heritability, and Cancer

GWAS cATGeeTG | * 93% top hits non-coding - Mechanism? Cell type?

hits CGTGTCTA | - Lie in haplotype blocks - Causal variant(s)?

‘Hidden’ cATGecTa | * Many variants, small effects - Pathway-level burden/load
heritability | CGTGTCTA | « Many false positives - Prioritize w/ regulatory annotations
Cancer CATGCCTG | * Loss of function - Protein-coding variants, convergence
mutations | CATCCCTG | « Gain of function - Regulatory variants, heterogeneity

21



Dissecting non-coding genetic associations

s

- TF
2. Target gene(s)
1. Tissue/cell type(s)

N

£ TF\ 4. Upstream regulator(s)

GWAS region:- - éNPS A
3. Causal nucleotide(s) 5. Cellular phenotypes 6. Organismal phenotypes

Establish relevant tissue/cell type

Establish downstream target gene(s)
Establishing causal nucleotide variant
Establish upstream regulator causality
Establish cellular phenotypic consequences

A A o

Establish organismal phenotypic consequences

22



Using epigenomic maps
to predict disease-relevant tissues



ldentifying disease-relevant cell types

K%)
O
O c
E gt [
Region of association . © 9
& Individual SNPs SELZ
W 3 - 3 o I [
Height i | i L bl W
Type 1 Diabetes e 11l i ] Ll | v
Blood Pressure | ST — i IR
Cholesterol JEEE HISE 4
Stem Cell Immune Heart Liver
Enhancers Enhancers Enhancers Enhancers

* For every trait in the GWAS catalog:
— ldentify all associated regions at P-value threshold
— Consider all SNPs in credible interval (R%>.8)
— Evaluate overlap with tissue-specific enhancers
— Keep tissues showing significant enrichment (P<0.001)

* Repeat for all traits (rows) and all cell types (columns)

24
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Linking traits to their relevant cell/tissue types
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LETTER

doi:10.1038/ nature14252

Conserved epigenomic signals in mice and humans
reveal immune basis of Alzheimer’s disease

Elizabeta Gjmmﬁ}{a]"z"t Andreas R. Pfenning™**, Hansruedi Mathys', Gerald Quon™*, Anshul Kundaje®**, Li- Huei Tsai’s
& Manolis Kellis™§
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Immune activation + neural repression in human + mouse
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Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Gjoneska, E., Pfenning, A. R., Mathys, H., Quon, G.,Kundaje, A., Tsai, L., & Kellis, M. (2015). "Conserved Epigenomic signals in
mice and humans reveal immune basis of Alzheimer’s disease." Nature, 518 (7539), 365-369. doi:10.1038/nature14252

Sample mouse brain
epigenomics during Two contrasting signatures of
neurodegeneration immune activation vs. neural repression
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Genetic evidence for immune vs. neuronal components

Increasing Decreasing 5
(immune) (neuronal) mreneeed 138 3 Other oall types/iissues
4 44 A2 = 0.05 Roadmap class [
R? =0.49 T Immune 5
; ¥ Sonz
Other
2 1 2

Enrichment in AD-associated SNPs

| : 1 _ = Fetal brain female
¥ 1
n = D_ . = -
0O 50 100 150 200 0 2 4 6 8
IEI
T 0

Enrichment in changing enhancers in AD mouse model (-log, ,(P value))

e TR et
’»7 ! Roadmap Epigenomics cell type or tissus

Courtesy of Macmillan Publishers Limited. Used with permission.

Source: Gjoneska, E., Pfenning, A. R., Mathys, H., Quon, G., Kundaje, A., Tsai, L., & Kellis, M. (2015). "Conserved
Epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease." Nature, 518(7539), 365-3609.
doi:10.1038/nature14252

Only increasing (immune) enhancers Neuronal cell types are depleted
enriched in AD-associated SNPs for AD-associated SNPs

Indicates immune cell dysregulation is causal component
Microglial cells: resident immune cells of adult brain
Macrophages: infiltrate brain in neurodegeneration
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Using epigenomic annotations
for fine-mapping disease regions
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Causal variant not known in most GWAS regions
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Courtesy of Macmillan Publishers Limited. Used with permission.

Source: Smemo, S., Tena, J. J., Kim, K., Gamazon, E. R., Sakabe, N. J.,Gomez-Marin, C., . . .
Nobrega, M. A. (2014). "Obesity-associated variants within FTO form long-range functional
connections with IRX3." Nature, 507(7492), 371-375. d0i:10.1038/nature13138

LD (Linkage disequilibrium): large regions co-inherited in blocks
Blessing for initial mapping (few tags), curse for fine-mapping

Use functional annotations to predict causal variant(s)
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Multiple lines of evidence for fine-mapping

a Dissect associated haplotype
using functional genomics

Strongly associated

variants

Log odds score

Genomic position | | ~50 kb

Tissue 1 ?
Tissue 2 : P
Tissue 3 W?L
Tissue 4 /f\
Tissue 5 EI/ ’_\

B N

Tissue 6 D

|:| Enhancer histone marks

i Promoter histone marks

iTranscribed region marks
/7y Enhancer-gene links

Chromatin state annotations

Courtesy of Macmillan Publishers Limited. Used with permission. Ward, L. D., & Kellis, M. (2012). Interpreting noncoding genetic variation in complex
traits and human disease. Nat Biotechnol Nature Biotechnology, 30(11), 1095-1106. doi:10.1038/nbt.2422. Used with permission.

Ward and Kellis, Nature Biotechnology 2012
e Epigenomic information: enhancers & linking (target genes)

* Motif information: causal variants & upstream regulators
* Evolutionary conservation: causal variants & conserved motifs .




Detect SNPs that disrupt conserved regulatory motifs
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Courtesy of Macmillan Publishers Limited. Used with permission.

Source: Lindblad-Toh, Kerstin, Manuel Garber, Or Zuk, Michael F. Lin, Brian J. Parker,

Stefan Washietl, Pouya Kheradpour, et al. “A High-Resolution Map of Human Evolutionary
Constraint Using 29 Mammals.” Nature 478, no. 7370 (2011): 476-82.d0i:10.1038/nature10530.

* Functionally-associated SNPs enriched in states, constraint.,



Allele-specific chromatin marks: cis-vs-trans effects

chri7: 45380000/ 45390000 46000000
5Pz - B - J—

Hak4me3
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—_— e, e e ] _— —_
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anscription

Zebl Binding Motif

QT [T e

Paternal site: CCACACCTGGGC
Maternal site; CCACATCTGGGC

All Reads

POLR2A

Zeb1

Heterozygous SNPs | | ||| [ | [ . [ [

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

* Maternal and paternal GM12878 genomes sequenced
 Map reads to phased genome, handle SNPs indels
 Correlate activity changes with sequence differences =
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Predict effect of common, rare, somatic mutat

ons
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Rare/somatic: Predict TF binding disruption

Avsaaco: Lararks 1 Saeatasne

Common: allelic activity in heterozygous lines

Richard Sallari
Xinchen Wang
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HaploReg: public resource for dissecting GWAS

Query SNP: rs4834247 and variants with £ == 0.8

LD LD . AFR AMR ASN EUR SiPhy Promoter Enhancer Proteins eQTL otifs Drivers GENCODE dbSNP
pos {hg13) pos (hg3d) [l 1] R R freq freq freq freg cons histone marks  histone marks DhiAse bound tissues changed disrupted genes func annot
chrd:12323783  chr3:12288284 035 097 17038180 C T 001 008 004 0.2 EEEE 7 cro=ns 4 organs 4 sltered matifs PRARG  intronic
chrd:12338507  chr3:12205008 095 097 11708077 G A 001 007 004 0.12 N o oro=ns 15 organs 4 sltered matifs PPARG  intronic
chr2:12344730  ch12303231 034 057 mMT2057  C G 001 008 004 012 & organs BLD AP-1.TCF11:MafG FFARG  intronic
chrid:12351521 312310022 095 097 135000407 T G 001 007 004 0.2 EE oo Smad FPARG intranic
chrd:12380884  chi2:12318385  0.95 097 miso7azaad TG T 001 007 004 0.2 |GG oo MUS VAS CFOS Hebx, Sox, TATA PPARG  intronic
chrd:12365308 312323809 095 097 1513083375 G T 001 007 004 0.2 EEE = o FAT Homez, Sox YY1 FRARG  intromic
chr2:12389401  ch312327302 095 097 ;13084760 C T 001 007 004 012 7 organs 9 altered matifs PPARG  intronic
chr3:12375956  ow312334457 095 057 ;2012484 € T 001 007 004 012 SKIN, FAT, BLD 7 altered motifs FFARG  intronic
chr2:12383265  chr312241766 096 099 ;13085211 G A 0.3 010 004 012 FAT, SKIN NRSF PPARG  intronic
chr3:12383714  ow312343215 096 099 ;7838302 G A 0.1% 0.10 004 012 © organs CRVX FRARG intronic
chr2:12385828  chr3i12244329 095 1 1128803 A G 0413 0410 004 012 CRVX RXRA PPARG  intronic
chr3:12386337  chw312344838 1 1 88¢BeT € T 001 007 004 0.12 & organs FFARG intronic
chr3:12388409  chr312346910 099 1 ;7810055 G A 0.7 0.05 004 0.12 BLD 4 altered motifs FPARG  intonic
chr2:12388313  cw12347314 039 1 17036326 A G 0.7 005 0.04 012 FAT. BL| Adipose_Derived_Mesenchymal_Stem_Cell_Cultured_Cells, CD4+_CD25-_IL17+_PMA- FFARG  intronic
chr2:12390484  chr2:12248885 099 1 317038328 T C 017 009 004 0.2 FAT, €| Tonomcyin_stimulated_Th17_Primary_Cells, Muscle_Satelite_Cultured_Cells, PPARG intronic
32381207 chi2:12349708  0.95 1 8802888 G T 081 045 0.04 0.2 AT, BL| Penis_Foreskin_Fibroblast_Primary_Cells_skin01, PPARG  intronic
312391583 cw12350084 039 1 2187473 G A 0.17 008 0.04 0.42 B¢ oic=n| s Foreskin_Fibroblast Primary_Cells_skin02, FRARG  intonic
chi3 12391813 312350314 098 1 7847481 G A 0417 008 004 0.2 o Penis_Foreskin_Keratinocyte_Primary_Cells_skin02, FFARG  intronic
chr3:12392272  chr312350773 099 1 7848870 2 C T 0417 009 004 0.2 EEEEE - cro=n| z‘;:i:—:;;sh;é;ratﬁEDCVt‘Z—P”_ma”‘—C;llsL—S_E;DS' o PPARG intranic

N CT_Lun arcanoma, neLa ervical_Laranoma, =
312283125 cizastezs 1 1 piaoizer ¢ ¢ o0t 007 004 oqz [T oo e de;maI_Kera_ﬁnDE;tes - - PRARG e
chrd:12393682  c3:12362183 099 1 517038342 A G 0417 009 004 0.2 [0 EERE FRARG  intromic
chrd:12394840 312353341 099 1 151899951 G T 061 015 0.04 0.12 [0 EERES Mef2 PFARG  intronic
chid:12395845  chr312354148 039 1 14884848 G A 061 015 004 042 RS ¢ o= ADRL.GLCRVX 5 bound proteins PRARG  intronic
chra: 12386845 053 1 4135350 A G 017 0.09 004 0.3 4 organs PLCNT FPARG intronic
chr3: 12396313 058 1 71304101 G A 001 0.07 0.0¢ 0.2 4 organs PLCNT CroNF-E2 FFARG  intronic
chr3:12396955  ch3i12355456 096 1 ;2881654 G A 0681 0.15 0.04 0.12 4 organs 7 altered motifs FPARG intronic

Courtesy of the authors. License: CC BY-NC.
Source: Ward, Lucas D. and Manolis Kellis. "HaploReg: a resource for exploring chromatin states, conservation, and regulatory
motif alterations within sets of genetically linked variants." Nucleic Acids Research 40, no. D1 (2012): D930-D934.

« Start with any list of SNPs or select a GWA study
— Mine ENCODE and Roadmap epigenomics data for hits
— Hundreds of assays, dozens of cells, conservation, motifs
— Report significant overlaps and link to info/browser

« Try it out: http://compbio.mit.edu/HaploReg

Ward, Kellis NAR 2011


http://compbio.mit.edu/HaploReg
http://dx.doi.org/10.1093/nar/gkr917
http://dx.doi.org/10.1093/nar/gkr917

Predicting target genes



Three lines of linking evidence
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© source unknown. All rights reserved. This content
is excluded from our Creative Commons license.

For more information, see http://ocw.mit.edu/help/

fag-fair-use/.

Hi-C: Physical
proximity in 3D

Courtesy of Macmillan Publishers Limited. Used with permission. Ward, L. D., & Kellis, M. (2012).
Interpreting noncoding genetic variation in complex traits and human disease. Nat Biotechnol

Nature Biotechnology, 30(11), 1095-1106. doi:10.1038/nbt.2422. Used with permission.

Enhancer-gene eQTL evidence: SNP
activity correlation effect on expression

39
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Targets: 3D folding and expr. genetics indicate IRX3+IRX5
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© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/fag-fair-use/.

Dixon, Nature 2012

Topological domains span 2.5Mb

Implicate 8 candidate genes

Relative mRNA level

Cohort of 20 homozygous risk and

18 homozygous non-risk individuals:
Genotype-dependent expression?

Genotype
L INon-risk
34 |EJRisk

p=0.023

:

all

p<0.001

E
:

gl

] 0 CHD9 RBL2 RPGRIPIL FTO
TSS dist from _ggpyn -331kb -167kb -63kb
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516kb
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IRX6
1,559kb

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/fag-fair-use/.

eQTL targets: IRX3 and IRX5

Risk allele: increased expression
(gain-of-function)
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Goal: Personalized and Predictive Medicine

1. Intro to Epidemiology: basis of human disease

2. Genetic Epidemiology:
— Genetic basis: GWAS and screening
— Interpreting GWAS with functional genomics
— Calculating functional enrichments for GWAS loci

3. Molecular epidemiology
— meQTLs: Genotype-Epigenome association (cis-/trans-)
— EWAS: Epigenome-Disease association

4. Resolving Causality
— Statistical: Mendelian Randomization
— Application to genotype + methylation in AD
5. Systems Genomics and Epigenomics of disease
— Beyond single loci: polygenic risk prediction models
— Sub-threshold loci and somatic heterogeneity in cancer

41



Interpreting disease-association signals

(1) Interpret variants using Epigenomics

- Chromatin states: Enhancers, promoters, motifs
- Enrichment in individual loci, across 1000s of SNPs in T1D

CATGACTG
CATGCCTG GWAS >

Genotype Disease

n@f Epigenome @

(2) Epigenome changes In disease
- Intermediate molecular phenotypes associated with disease

- Variation in brain methylomes of Alzheimer’s patients

42




Goal: Personalized and Predictive Medicine

1. Intro to Epidemiology: basis of human disease

2. Genetic Epidemiology:
— Genetic basis: GWAS and screening
— Interpreting GWAS with functional genomics
— Calculating functional enrichments for GWAS loci

3. Molecular epidemiology

— meQTLs: Genotype-Epigenome association (cis-/trans-)

— EWAS: Epigenome-Disease association

4. Resolving Causality
— Statistical: Mendelian Randomization
— Application to genotype + methylation in AD
5. Systems Genomics and Epigenomics of disease
— Beyond single loci: polygenic risk prediction models
— Sub-threshold loci and somatic heterogeneity in cancer

43
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Molecular Epidemiology

Molecular Biomarkers of disease state:

Gene expression, DNA methylation,
chromatin in specific cell types



Genetic and epigenetic data in 750 Alzheimer’s patients/controls
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+ ROS Religious Order Study
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(Bernste|n) © source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/,

750 subijects. initially cognitively normal. Alzheimer’s diagnosed by patholoqgy. (Bennett) 4
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Data Matrices — An example scenario

n=750 individuals n=750 individuals

12,000,000

g:

Genotype

Methylation

m=450,000

environment

/

/I'I'I

G _» M cause D

genotype

Alzheimer
methylation effects disease

W

N
i
1
(]

M

n=750 individuals n=750 individuals

o
i
: e

- llumina Methylation 450k array,
450,000 probes targeting CpGs
genome-wide.

G - Affy SNP arrays, imputed against

E

CEU thousand genomes reference
panel, yielding 12m SNPs.

- Clinical covariates that might mask

the variation due to our
phenotype, e.g. gender, smoking,
age or sample batch.

P - Phenotype of interest, sometimes

measured with multiple markers
(clinical Alz. diagnosis vs. pathology
Alz. diagnosis vs. count of neuritic
plaques).

n -> number of individuals in cohort.



EWAS: Capturing variability in the Epigenome
attributable to disease

C E

Experimental, Technical Environment

Cell type mixtures, Age, Education
Gender, etc.

Batch effects, Other
Unknown Confounders

Known & ICA K bl
inferred variable nown varla €
: correction
correction
Genotype Epigenome. D
5M Common DNA methylation Phenotype
Variants | EWAS Alzheimer’s Disease

Hundreds of AD
associated loci,
enriched in enhancers
and relevant
pathways
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Excluding discovered and known covariates

0.20 — 0.4

Infer covariates using ICA, e S [
compare to known,
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. Cell mixture SV (53 ||
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Variance explained: ARt [
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¢ Together: 40% Age (Age)
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© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/. 4g
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Genotype—->Methylation

Discovering mQTLs
Methylation Quantitative Trait Loci



cis-meQTLs

n=750 n=750 Use linear models to identify cis-meQTLs w/in some genomic window.

For methyl mark m; and SNP g;:
m; = B0 + Bl(gj) t €

* Given several predictors: is additional predictor increasing
accuracy more than complexity introduced?

* Likelihood ratio testing paradigm: predict methylation with
and without genotype (only works for nested models)

450,000

12,000,000

m

* Null hypothesis H,: B1=0: Additional model complexity
doesn’t explain a significant portion of variation in response

LM1: m,=B0+¢

Test using F statistic: LM2: m; = B0 + B1(g) + ¢

- p is the number of parameters in LM1

- g is the number of parameters in LM2

- nis the sample size

- RSS: Residual sum of squares

- B: parameters to learn. €: residual error term.
Under null hypothesis: ( (RSS;y;; = RSS;\,) / (@=p) ) / (RSS,, / (n—q) )

Is distributed as F distribution with (g-p, n-q) degrees of freedom

=>» If F statistic significant: reject null: This p-value is what we report in a meQTL study
=» Otherwise, no meQTL: i.e. RSS,,,; — RSS,, too small vs. increase in model complexity
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cis-meQTLs

Alternative methods of detection:

* Permutation:
* Correlate methylation and genotype.
* Foriinl->nperm:
* Permute genotypes
e Correlate methylation and genotype
* Generate empirical p-value from permuted
correlations
 LMM: Linear mixed models.

12,000,000
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Most epi

Manhattan plot of 450,000 methylation probes

qenomlc variability is genotype-driven
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© source unknown. All rights reserved. This content is excluded from our Creative ) - == T -
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/. - _,'_0 _0'5 ofo Ofs i
. Genome-wide significance at|p<3x10-]
. Prune for probes disrupted by SNP.
=>» 140,000 CpGs associated with genotype at 1% FDR
= 55,000 at Bonferroni-corrected P-value of 102 52
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meQTL effect size

Scaling of discovery power with individuals

MmeQTL effect size

Individuals: 25; meQTLs: 138 Individuals: 50; meQTLs: 2,579 Individuals: 100; meQTLs: 9,825 Individuals: 200; meQTLs: 22,543 meQTL
counts
. be \ b 600
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r 270
| 51
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2 5
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© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Number of meQTLs continues to increase linearly
Weak-effect meQTLs: median R4<0.1 after 400 indiv. N
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Goal: Personalized and Predictive Medicine

1. Intro to Epidemiology: basis of human disease

2. Genetic Epidemiology:
— Genetic basis: GWAS and screening
— Interpreting GWAS with functional genomics
— Calculating functional enrichments for GWAS loci

3. Molecular epidemiology
— meQTLs: Genotype-Epigenome association (cis-/trans-)

— EWAS: Epigenome-Disease association

4. Resolving Causality
— Statistical: Mendelian Randomization
— Application to genotype + methylation in AD
5. Systems Genomics and Epigenomics of disease
— Beyond single loci: polygenic risk prediction models
— Sub-threshold loci and somatic heterogeneity in cancer
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Methylation—>Disease

EWAS
Epigenome-wide association study




m=450,000

eWAS

n n

— :
i
:

Methylation

LM1:p,=B0 +¢€
LM2: p;= B0+ B1(m,) + €

Link methylation& phenotype (~cis-eQTLs):
* linear models and hypothesis testing
* Predict phenotype using methylation
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eWAS

n n
o
i

: I

n

LN
i
Methylation &

m=450,000

LM1: AD = BO + B2(gender) + €
LM2: AD = B0 + B1(m,) + B2(gender) €

Link methylation& phenotype (~cis-eQTLs):
* linear models and hypothesis testing
* Predict phenotype using methylation

Problem:

variance due to phenotype probably very
small (unless your phenotype is cancer)
=>» Needle in a haystack

Control for other sources of variance
to make the variance due to the
phenotype stand out.

If phenotype is Alzheimer’s (AD),
gender incorporates more variance
into your M matrix than does AD.

57



m=450,000

eWAS

n n
o Might have many environmental
M : variables to control for.
Q (INENS)
n

LN
i

Methylation 3

LM1: AD = B0 + B2(gender) + B3(age) + B4(education) + ... + €

LM2: AD = B0 + B1(m,) + B2(gender) + B3(age) + B4(education) + ... + €
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12,000,000

g:

eWAS

Need to account for variance due to genotype as well.

N n N
S Phenotype
L (Disease)
n
LN
—
Methylation &

m=450,000

Genotype
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Role of enhancers vs. promoters in
Alzheimer’s disease association



Enhancers are hemi-methylated and highly variable

I 96782 21480
o _| g
T 4-!-‘ ~ | Promoters show i
et 4 » | leastvariable
o M % & i methylation
C
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H e (o]
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m 3 o
% 17254 g g
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" . — N - Enhancers show
m= 12016 :
g— g V_l_l_(_'—I—l—l—l—- —I_L &mos.t varlable
g ' l6167 ) ! : : 36223 gg 8 — methylation
AN s 1 YT I A B B
s | I 1 1 1 | Ll 1 1 1
g _,_._:1{_1__— n sm::—rﬁ_‘_l o 1e-05 1e-04 1e-03 1e-02 1e-01
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0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

* Highly distinct signatures for
promoters vs. enhancers

 Enhancers hemi-methylated

Methylation level Methylation level . .
SHyiaHon Teve MIEYTation 1B in each person (not bimodal)
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SNP-associated CpGs in enhancers, not promoters

TSS flanking
* Repressed

2
|

*>

1
|

TXEnh

x
Transcribed

5

Enrichment for meQTLs

Promoters

*

* Promoter methylation less affected by genetics
* Enhancer methylation highly genotype-driven
« TSS-flanking and repressed regions also genetic
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AD-associated probes in distal enhancers

Per state: (Obs — Exp) / Total

RR using Permuted Expectation

.05
|

0

00
|

0.

Enhancers

Promoters

T T T T T
0e+00 1e+05 2e+05 3e+05 4e+05

© source unknown. All rights reserved. This content is excluded from our Creative
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* After cleaning with known and inferred covariates.
* Distal and transcribed enhancers enriched.
* Proximal regulators (promoters) depleted.
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...........................

Before: Empirical p=0.06

: Enrichment of
enhancer probes for
association with the
real phenotype.

20405

Grey: Enrichment of
enhancer probes for a
scrambled phenotype.

Empirical p<.0001

After:'

(After conditioning on 7
surrogate variables
discovered with ICA.)

,,,,,,,,,,,

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/. 64
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AD predictive power highest in enhancers
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Top predictive
features are:

e Enhancer
methylation

* All methyl.

* TSS, Het

* Genetics
(incl. APOE)

e Causality?

 Common
pathways?
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AD prediction reveals likely biological pathways

AUC using pathway feature selection; p= 1.922e-11
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Enriched regulatory motifs
suggest potential pathways

HEB/Tcf12: proliferating neural and progenitor cells
GATA: cell growth, blood, cell development
TLX1/NFIC: Neuronal cell fates

=» Mouse AD models «
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Goal: Personalized and Predictive Medicine

1. Intro to Epidemiology: basis of human disease

2. Genetic Epidemiology:
— Genetic basis: GWAS and screening
— Interpreting GWAS with functional genomics
— Calculating functional enrichments for GWAS loci

3. Molecular epidemiology
— meQTLs: Genotype-Epigenome association (cis-/trans-)
— EWAS: Epigenome-Disease association

4. Resolving Causality
— Statistical: Mendelian Randomization
— Application to genotype + methylation in AD

5. Systems Genomics and Epigenomics of disease
— Beyond single loci: polygenic risk prediction models
— Sub-threshold loci and somatic heterogeneity in cancer
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Risk factor causality w/ instrumental variables

C E If X&Y are correlated,
confounders environment possible scenarios are:

e X2Y
x—zcauses P X&EY

G— X —> Y | X€Uu>Y

instrument riskfactormoumome To distinguish, need
) ’ controlled random experiment

 |Isrisk factor X causing disease Y (or a consequence)?
— E.g. alcohol addiction, smoking, blood cholesterol, fever, stress
=» Randomized experiment, with and without X: feasibility? ethics?

* G & randomized experiment (e.g. random Mendelian
inheritance), as only some subjects have genotype

* G (i.v.)must be correlated with Y but only through X
i.e. if X known, G gives no additional information about Y
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1.0

0 Methylatio.6 0.8

0.2

0.0

In silico thought experiment

CA

p=2.946466e-35 p=3.847832e-05
o
0]
=
©
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S
Small but significant 2
effect due to Alz g S -
Same effect due to Alz,
~ but with larger effect due
o
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Hemi-methylation associated with meQTL
yields a p-value that’s 30 orders of
magnitude lower for the AD phenotype.
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Mendelian randomization approach

Account for variance due to genotype, how much does methylation add?

From G, include probe-specific
terms for cis-meQTLs, as well as
including trans-meQTLs in all
comparisons.

VS

With variability
due to
genotype and
environmental
covariates
removed, the
effect due to
phenotype
should become
more
prevalent.
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Causality testing



Modeling complex Human diseases

* Three possible models:

1. Independent Associations

2. Causal Pathway Model

Oo—i—iIl

3. Interaction Model




(1) Independent Associations

Association between Factor A and Disease
Association between Factor B and Disease

No association between Factor A and Factor B
Factor A

Example: 2 independent risk genes X

VA Disease D



(2) Causal Pathway Models

Is the a direct link between risk factor (A) and disease (D)?

N—I

Does the risk factor’s (A) effect on disease (D) depend on an
intermediate step (B)?

A B D

To test:

— Alis associated with Band D

— B is associated with D

— Ais not associated with D when controlling for B

— Note: A MUST come before B temporally




(2) Causal Pathway Models

In reality its a little of both. A’s affect on D is partially
mediated through B

E—>EN

To test:

— Ais associated with Band D

— B is associated with D

— The effect size of A on D is decreased when controlling for B

— Note: A MUST come before B temporally

Example: CR1 effect on cognitive decline




(3) Interaction Models

Factor B’s effect on D is different depending on value for factor A

B B
(A = AA) (A = Aa)

To test:
— A+B+A*B 2 D, if estimate for A*B is significant then
— Stratify by levels of A

Example:
— A drug’s effect is different depending on genotype
— More to come...
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Application to 12 AD GWAS loci

Published
Gene locus reference AD AD NP
ABCA7 rs3764650 Hollingsworth 2010 5.0x10-2"1 0.747 0.187
APOE Any €4 1.2x10-13  1.8x10-23
BIN1 rs744373 Seshadri 2010 1.6x10-11 0.204 0.480
CD2AP rs9349407 Naj 2011/Hollingsworth 2011 8.6x10-° 0.445 0.221
CD33 rs3865444  Naj 2011/Hollingsworth 2012 1.6x10-9 0.133 0.123
CLU rs11136000 Lambert 2009/Harold 2009 7.5x10-9 0.762 0.649
CRA1 rs6656401 Lambert 2009 3.7x109 0.0009 0.057
EPHA1 rs11767557 Naj 2011/Hollingsworth 2011 6.0x10-10 0.562 0.391
MS4A4A rs4938933 Naj 2011 1.7x10-° 0.792 0.567
MS4AG6A rs610932 Hollingsworth 2010 1.2x10-16 0.534 0.820
MTHFD1L rs11754661 Naj 2010 1.9x10-10 0.126 0.934
PICALM rs3851179 Harold 2009 1.9x10-8 0.382 0.171

77



CR1: Causal pathway model

Risk Factors Pathology Clinical Disease

AD specific

Cognitive Alzheimer’s
Decline disease

Neuritic Plaque
Neurofibulary

‘—?

* CR1 first associated with AD in 2009
e Original associated variant is in an intron, no clear function
* Unclear how CR1 locus influences AD susceptibility mechanistically

* Questions:
— Is the effect only on AD?
— Is there a broader effect on cognitive decline?
— Is there an association with AD pathology?
— Does it go through pathology to have an effect of cognitive decline?
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CR1 (rs6656401)

CR1 - Patholo
0.85 % TT
08 I AT/AA (risk allele)
0.75
0.7 CR1 - Global Cognitive
0.65 - . . pecline
06 - . -
0.55 - ' p=0.0008
0.5 - £ \\ o
0.45 - " e Py
04 - : -0.1 \ \
Neuritic Plaque Neurofibillary Tangles;; e \ \
p=0.008 p=0.10 e
Pathology = Global Cognitive Decline =y I & & ¥ & B 3 4 1§ =

p <0.0001 time




Genetic + Epigenetic variation in Alzheimer’s

Dorsolateral prefrontal

Phenotype

Classification
Epigenome MWAS

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

Methylation variation in
723 AD patients & controls  Relate to genotype and AD variation

AD classification accuracy (AUC)

T & 7 & T § 7
APOE4 Dosage [N = G 9 \V/ 9 D
snes B 2]
_Covariates 2 E %D %’:E G 9 M e D

All Meth. = =3
é EnhA1 Meth. 53 G 9 D
S | TssAmetn. —§ N

Methylatlon >> SNPS Estimate causal M roles: regression

Enhancers >> promoters of meQTL effects reduces M<>D

© source unknown. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see
http://ocw.mit.edu/help/fag-fair-use/. 80
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Goal: Personalized and Predictive Medicine

1. Intro to Epidemiology: basis of human disease

2. Genetic Epidemiology:
— Genetic basis: GWAS and screening
— Interpreting GWAS with functional genomics
— Calculating functional enrichments for GWAS loci

3. Molecular epidemiology
— meQTLs: Genotype-Epigenome association (cis-/trans-)
— EWAS: Epigenome-Disease association

4. Resolving Causality
— Statistical: Mendelian Randomization
— Application to genotype + methylation in AD

5. Systems Genomics and Epigenomics of disease
— Beyond single loci: polygenic risk prediction models
— Sub-threshold loci and somatic heterogeneity in cancer
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Beyond top-scoring hits:
1000s of variants of weak effect
cluster in cell type specific enhancers



Rank-based functional testing of weak associations
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Rank all SNPs based on GWAS signal strength
Functional enrichment for cell tvpes and states -
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Weak-effect T1D hits in 50k T-cell enhancers
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e ID-nruning (CElL] r2> 2):- 50k = 41k indenend loci 84
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Cell type specificity stronger for enhancers
o -.|promoters
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* T/B-cells also enriched for promoters, transcribed
enrichment much more cell type specific..
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T1 DlRA-enrlched enhancers spread across genome
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* High concentration of loci in MHC, high overlap
e Yet: manv distinct reaions. 1000s of distinct loci
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Implications for genetic predisposition:
polygenic models for risk prediction



Basic setup of polygenic risk prediction studies

Case-control cohort w/
genotype + phenotype

P

Testing cohort
(power‘llmatters)

Training cohort
(powelmatters)

Selection of SNPs _ @
Estimation of effects 5  APPply predictor . _
Ranking Evaluate accuracy

. Applications@ (testing cohort)

Target cohort:
genotyped individuals
(no phenotypes)

(power Iirlbv;ted to one

individual|at a time)

Apply predictor w/ @
estimated confidence

— Understand total heritability captured in common variants

— Understand disease “architecture”: number of SNPs

— Recognize functional classes associated with weak genetic associations

* Applications @ (new individuals)

— Provide health recommendations at the individual level

— Prioritize high-risk individuals for subsequent testing at population level
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expected P-value of the polygenic score

How many SNPs to include in model?

Dudridge PLoS Genetics 2013
i0:Proportion of markers with no effect Purcell Nature 2009

32
|

$10-095 Schizophrenia risk prediction

30

‘only 5% matter’ | -~

pi0=0.90 -~

—log10(p)

‘only 10% matter’ 00
(but still can’t tell
71 | Which ones until

Fu!,l' rank list) -

26

‘all matter’

— — I T I I
0.0 0.2 0.4 0.6 0.8 1.0

. . 1
inclusion threshold
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* |t depends on:
— Architecture: Fraction of SNPs that are estimated to be functional
— Power: Number of individuals in cohort, i.e. ability to rank correctly
* |t only peaks at 5% (=1-pi0) when sufficient power to rank
— Large fraction of associated markers are hidden within non-significant SNPs

* For pi0=0.90, still need to include all SNPs to maximize predictive power
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Application to pleiotropy and common risk

Trait 1 (schizophrenia)
Case-control cohort w/
genotype + phenotype

|

Selection of SNPs
Estimation of effects
Ranking

Trait 2 (bipolar disorder)
Case-control cohort w/
genotype + phenotype

|

Apply predictor

E Evaluate accuracy

* Ability to assess common genetic risk

— Are the highly-ranked SNPs for one study relevant to a different study?
— Is there a shared genetic architecture between seemingly unrelated traits?

e First use showed schizophrenia and bipolar disorder common risk

— Schizophrenia-ranked SNPs in one cohort...

— ... are predictive of bipolar disorder diagnosis

— ... but not predictive of unrelated (cardiovascular) traits
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Important points/caveats for risk prediction

Always limited by genetic component
— Environment, random effects play big role for most traits

Mendelian=deterministic vs. common variants=prob.ic
— Only a first screen for individuals at risk
Limited by discovery power

— Cohort size limits discriminative power and ranking ability

Limited by genotyped SNPvs vs. all SNPs
— Selection pushes fitness-reducing variants to lower freq
— Genotyped SNPs selected to be common

Even if SNPs are correctly identified, their effects are not

— Winner’s curse: over-estimate above-threshold true effect

Training and testing cohort non-independence

— Relatives, cryptic relatedness, population stratification inflate est,



Goal: Personalized and Predictive Medicine

1. Intro to Epidemiology: basis of human disease

2. Genetic Epidemiology:
— Genetic basis: GWAS and screening
— Interpreting GWAS with functional genomics
— Calculating functional enrichments for GWAS loci

3. Molecular epidemiology
— meQTLs: Genotype-Epigenome association (cis-/trans-)
— EWAS: Epigenome-Disease association

4. Resolving Causality
— Statistical: Mendelian Randomization
— Application to genotype + methylation in AD

5. Systems Genomics and Epigenomics of disease
— Beyond single loci: polygenic risk prediction models

— Sub-threshold loci and somatic heterogeneity in cancer
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This talk: From locl to mechanisms

Building a reference map of the regulatory genome

Enhancers

Regions:

Cell types:
Target genes:
Nucleotides:
Regulators:

Promoters Transcribed Repressed

Enhancers, promoters transcribed, repressed

Predict tissues and cell types of epigenomic activity

Link variants to their target genes using eQTLs, activity, Hi-C
Regulatory consequence of mutation: Conservation, PWMs
Upstream regulators whose activity is disrupted by mutation

Application to GWAS, hidden heritability, and Cancer

GWAS

cATGeCTG | * 93% top hits non-coding - Mechanism? Cell type?
hits CGTGTCTA | -« Lie in haplotype blocks - Causal variant(s)?
‘Hidden’ cATGeceTa | * Many variants, small effects - Pathway-level burden/load
heritability | CGTGTCTA | - Many false positives —> Prioritize w/ regulatory annotations
Cancer CATGCCTG | * Loss of function - Protein-coding variants, convergence
mutations | CATCCCTG | - Gain of function - Regulatory variants, heterogeneity
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Characterizing sub-threshold variants in heart arrhythmia

LIG3
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Focus on sub-threshold variants
- - (e.g. rs1743292 P=1042)

From Arking, D. E., Pulit, S. L., Crotti, L., Harst, P. V., Munroe, P. B,
P Koopmann, T. T., . . . Newton-Cheh, C. (2014). Genetic association

study of QT interval highlights role for calcium myocardial repolarization.

Nature Genetics Nat Genet, 46(8), 826-836. Used with permission.

Trait: QRS/QT interval
(1) Large cohorts, (2) many known hits
(3) well-characterized tissue drivers o4
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Enhancers overlapping GWAS loci share functional properties

Enhancer characteristic GWAS (red) vs. all LV enhancers (blue) Fold difference p-value

— .
H3K27ac density o ; , 4
log(H3K27ac density) ' {11 1 3.10 1.54x10
-10 -5 0 5
F. heart R. atrium R. ventricle F. heart 124 4.40x107
Activity in cardiac tissues - ’ 2
R_ at 118
(Proportion overlap) - - . . . a num 4.13x1 0_2
0 05 1 0 05 1 0 05 1 R ventricle 134 1.15x10
H—
Activity in non-cardiac tissues . 3
(# non-cardiac tissues with activity) I ! 0.59 9.05x10
0 25 50 75
LV-specific hypomethylation —IIEEN—— a7 o
{Proportion of LV-specific 1 ; et f,'f_l.‘;ﬂi;’j” 234 1.07x107°
hypomethylated CpGs) 00 0.1 02 03
LV-specific hypermethylation | _
{Proportion of LV-specific |J— - SR -y 0.39 0.60
hypermethylated CpGs) 0.0 0.1 02 0.3
Primate conservation i e
(Average conservation } [T | 1.14 6.82%x10%
best 100nt window) 02 0.0 0.2 0.4 06
Fetal heart DNase | H——— _
hypersensitivity H+— 7 (2070 o 145 5.25%107
(DNase reads / kb) 0O 1000 2000 3000 4000 5000
. . 5 outliers
CAGE-seq fetal heart - ' oot
(CAGE-seq reads / kb) HEE } # };’Sﬁ?‘.;”"m” 0.83 1.44x102
0 10 20 30 40 50
I - I 4 outliers
CAGE-seq adult heart o et 0.89 017
(CAGE-seq reads / kb) HT 1 } # (50870 totan : :
0 5 10 15 20

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Train machine learning model to prioritize sub-threshold loci
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Mouse phenotypes

96


http://ocw.mit.edu/help/faq-fair-use/

Experimental validation of 11 sub-threshold loci

Lead SNP | p-value Enhancer 1. Luciferase reporter | 2. 4C-seq interactions
rs1886512 | 4.30x10®% | chr13:74,520,000-74,520,400 0.015 No interactions
rs1044503 | 5.13x107 | chr14:102,965,400-102,972,000 4.70x10° CINP, RCOR1

chrd:141,807,800-141,809,600 1.35x10-4 RNF150
rs10030238 | 6.21x107

chrd:141,900,800-141,908,000 - RNF150
rs6565060 | 1.52x10-5 | chr16:82,746,400-82,750,800 5.00x10°3 No interactions
rsa772570 | 1.73x105 | chr3:148,733,200-148,738,600 0.67 -
rsa734637 | 2.23x10% | chr6:126,081,200-126,081,800 1.06x10° HDDC2

chr6:105,706,600-105,710,200 3.20x10 BVES, POPDC3
rs1743292 | 6.48x10°5

chr6:105,720,200-105,723,000 - BVES, POPDC3
rs11263841 | 6.87x10° | chr1:35,307,600-35,312,200 0.22 GJA4, DLGAP3
rs11119843 | 7.14x105 | chr1:212,247 600-212,248 600 0.031 -

s | chr2:11,559,600-11,563,000 0.54

rs6750439 | 1.3mx10% | (spiit into two 2kb fragments) 3.26x107 ROCK2
rs17779853 | 7.73x10°5 | chr17:30,063,800-30,066,800 4.33x10°2 No interactions

© source unknown. All rights reserved. This content is excluded from our Creative
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9 of 11 tested loci show allelic activity, chromatin interactions
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Functional evidence for rs1743292 causality (P=10+42)
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Enhancer 4C links to target gene promoters
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Target gene impact on heart conduction
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Detection and validation of a new cardiac locus
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What would we need to discover rs1743292 without epigenomics?

rs1743292
Minor allele frequency: 0.134
Effect size: -0.5773 +/- 0.17 msec
With 68,900 individuals: 12.8% power to discover at p<5x10-8

rs1743292 has similar effect sizes as many genome-wide significant variants
Many GWAS variants discovered due to winner’s curse: often only have 5-
20% power to discover
Combining epigenomics and GWAS can:

1. Confirm existing GWAS loci are real

2. Discover new sub-threshold loci with weak effect sizes, low power

To reach 80% power to discover rs1743292 at p<5x1078,
we need 146,700 individuals!
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Goal: Personalized and Predictive Medicine

1. Intro to Epidemiology: basis of human disease

2. Genetic Epidemiology:
— Genetic basis: GWAS and screening
— Interpreting GWAS with functional genomics
— Calculating functional enrichments for GWAS loci

3. Molecular epidemiology
— meQTLs: Genotype-Epigenome association (cis-/trans-)
— EWAS: Epigenome-Disease association
4. Resolving Causality
— Statistical: Mendelian Randomization
— Application to genotype + methylation in AD
5. Systems Genomics and Epigenomics of disease

— Beyond single loci: polygenic risk prediction models
— Sub-threshold loci and somatic heterogeneity in cancer
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This talk: From locl to mechanisms

Building a reference map of the regulatory genome

Enhancers

Regions:

Cell types:
Target genes:
Nucleotides:
Regulators:

Promoters Transcribed Repressed

Enhancers, promoters transcribed, repressed

Predict tissues and cell types of epigenomic activity

Link variants to their target genes using eQTLs, activity, Hi-C
Regulatory consequence of mutation: Conservation, PWMs
Upstream regulators whose activity is disrupted by mutation

Application to GWAS, hidden heritability, and Cancer

GWAS cATGeCTG | * 93% top hits non-coding - Mechanism? Cell type?

hits CGTGTCTA | - Lie in haplotype blocks - Causal variant(s)?

‘Hidden’ cATGecTa | * Many variants, small effects - Pathway-level burden/load
heritability | CGTGTCTA | - Many false positives —> Prioritize w/ regulatory annotations
Cancer CATGCCTG | * Loss of function - Protein-coding variants, convergence
mutations | CATCCCTG | « Gain of function - Regulatory variants, heterogeneity
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Regulatory convergence of dlspersed drlver mutations
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Common mutations in regulatory plexus of each gene
Richard Sallari 3
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Cancer genes are more likely to be up-regulated

Genes with dysregulated-normal tumor sample instance pairs
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Dysregulated genes show dispersed non-coding mutations
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Dysregulated genes are enriched for plexus mutations at all distances.

Richard Sallari s
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Non-coding mutations enriched in promoters /
enhancers active in other cell types
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Disruptive mutations in ‘low’ elements are
enriched in enhancers and promoters in other tissues

Richard Sallari 106
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Convergence in immune, signaling, mitoch. functions
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Non-coding drivers of prostate cancer dysregulation
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Convergence in inositol phosphate metabolism picB4 overexkrressi.on in PC3 prostate cancer
adjacent to PTEN, PIK3CA, known cancer genes reduces Erk/Akt activity, synergistic with PTEN
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Personal genomics tomorrow:
Already 100,000s of complete genomes

* Health, disease, quantitative traits:
— Genomics regions =@ disease mechanism, drug targets
— Protein-coding = cracking regulatory code, variation
— Single genes =@ systems, gene interactions, pathways

* Human ancestry:
— Resolve all of human ancestral relationships
— Complete history of all migrations, selective events
— Resolve common inheritance vs. trait association

 What’s missing is the computation
— New algorithms, machine learning, dimensionality reduction
— Individualized treatment from 1000s genes, genome
— Understand missing heritability
— Reveal co-evolution between genes/elements
— Correct for modulating effects in GWAS
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Challenge ahead: From research to clinic

1. Systematic medical genotyping / sequencing

— Currently a curiosity, future: medical practice
2. Systematic medical molecular profiling

— Functional genomics in relevant cell types
3. Systematic perturbation studies for validation

— 1000s of regulatory predictions x 100s cell types
4. Systematic repurposing of approved drugs

— Systems-biology view of drug response
5. Genomics of drug response in clinical trials

— Personalized drug prescription and combinations
6. Partnerships: academia, industry, hospitals

— Interdisciplinary training in each of the instituttions
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Summary: Personalized & Predictive Medicine

1. Intro to Epidemiology: basis of human disease

2. Genetic Epidemiology:
— Genetic basis: GWAS and screening
— Interpreting GWAS with functional genomics
— Calculating functional enrichments for GWAS loci

3. Molecular epidemiology
— meQTLs: Genotype-Epigenome association (cis-/trans-)
— EWAS: Epigenome-Disease association
4. Resolving Causality
— Statistical: Mendelian Randomization
— Application to genotype + methylation in AD
5. Systems Genomics and Epigenomics of disease

— Beyond single loci: polygenic risk prediction models
— Sub-threshold loci and somatic heterogeneity in cancer
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