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Lecture 20
	
Personal genomics, disease epigenomics,  

systems approaches to disease  

Predictive Medicine
	
Molecular Epidemiology 

Mendelian Randomization
	
Polygenic Risk Prediction Models 
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Goal: Personalized and Predictive Medicine  
1. Intro to Epidemiology: basis of human disease  
2. Genetic Epidemiology: 

– Genetic basis: GWAS and screening 
– Interpreting GWAS  with functional genomics  

Calculating functional enrichments for GWAS  loci  

olecular epidemiology  
meQTLs: Genotype-Epigenome  association (cis-/trans-)  
EWAS: Epigenome-Disease association  

esolving Causality  
Statistical: Mendelian  Randomization  
Application to genotype + methylation in AD  

ystems Genomics and Epigenomics of disease  
Beyond single loci: polygenic risk prediction models   

– 
3. M

– 
– 

4. R
– 
– 

5. S
– 
– Sub-threshold loci and somatic heterogeneity in cancer 
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genome epigenome 
biomarkers 

environment 

disease 
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symptoms 

syndrome 

C 
confounders 

Epidemiology
	
The study of the
	 

patterns, causes, and  effects
	  
of health and disease conditions
	  

in defined populations
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 Epidemiology: Definitions and terms 

•		Morbidity  level: how sick an individual is  

•		 Incidence: # of new cases / # people / time period  

•		Prevalence: Total # of cases in population  

•		Attributable  risk: rate in exposed vs. not exposed  

• Population burden: yrs of potential life lost (YPLL),  
quality-/disability-adjusted life year (QALY/DALY)   

•		Syndrome: Co-occurring signs (observed), symptomes 
(reported), and other phenomena; (often hard to 
establish causality  / risk factors)  

•		Prevention challenge: Determine disease, cause, 
understand whether, when, and how to intervene  

5



 Determining disease causes: study design  
• Principles of experimental design  

– Control: comparison to baseline, placebo effect  

– Randomization: Difficult to achieve, ensure mixing   
– Replication: control variability in  initial sample  

– Grouping: understand variation between subgroups   
– Orthogonality: all  combinations of factors/treatments  

– Combinatorics: factorial design n x  n x  n x  < x  n table  

• Challenge of human subjects  

– Legal and ethical constraints, Review boards  

– Randomization  by instrumental variables  

– Clinical trials:  blind (patient), double-blind (doctor too)  

6



 

 

Goal: Personalized and Predictive Medicine  
1. Intro to Epidemiology: basis of human disease 
2. Genetic Epidemiology:  

– Genetic basis: GWAS  and screening  
– Interpreting GWAS  with functional genomics  
– Calculating functional enrichments for GWAS  loci  

3. Molecular epidemiology  
– meQTLs: Genotype-Epigenome  association (cis-/trans-)  
– EWAS: Epigenome-Disease association  

4. Resolving Causality  
– Statistical: Mendelian  Randomization  
– Application to genotype + methylation in AD  

5. Systems Genomics and Epigenomics of disease  
– Beyond single loci: polygenic risk prediction models   
– Sub-threshold loci and somatic heterogeneity in cancer  
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Genetic Epidemiology
	

Genetic factors contributing to disease
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Genome-wide association studies (GWAS)  

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Mccarthy, M. I., Abecasis, G. R., Cardon, L. R., Goldstein, D. B., Little, J., Ioannidis, J. P., & Hirschhorn,
J. N. (2008). "Genome-wide association studies for complex traits: Consensus, uncertainty and challenges." Nat
Rev Genet Nature Reviews Genetics, 9(5), 356-369.

• Iden   
Risk allele G more frequent in patients, A in controls   
But: large regions co-inherited   find causal variant   
Genetics does not specify cell type or process  

tify regions that co-vary with the disease 

• 
• 
• 
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All disease-associated genotypes from GWAS  

• 1000s of studies, each with 1000s of individuals  
– Increasing power, meta-analyses reveal additional loci  
– More loci expected, only fraction of heritability explained 

10

Courtesy of Burdett T (EBI), Hall PN (NHGRI), Hastings E (EBI), Hindorff LA (NHGRI), Junkins HA (NHGRI),

Klemm AK (NHGRI), MacArthur J (EBI), Manolio TA (NHGRI), Morales J (EBI), Parkinson H (EBI) and

Welter D (EBI).The NHGRI-EBI Catalog of published genome-wide association studies.
Available at: www.ebi.ac.uk/gwas. Used with Permission.
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More loci on the way: GWAS growth continues  

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• When to design custom chip: continuously update  
• http://www.genome.gov/admin/gwascatalog.txt  

11
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Decreasing cost of whole-genome sequencing  

Image  by Wetterstrand  KA.  DNA  Sequencing  Costs: Data from the NHGRI Genome Sequencing
Program ( GSP)  Available at: www.genome.gov/sequencingcosts. Image in the public domain.

  

• Simply genotype all known variants at >0.1% freq 

• Or: sequence complete diploid genome of everyone  
12

www.genome.gov/sequencingcosts


 

 

Genetic epidemiology: What to test  
• Family risk alleles, inherited with  common trait 

– Specific genes,  specific variants, family history  

Monogenic, actionable, protein-coding mutations   
– Most understood, highest impact, easiest to interpret   
All  coding SNPs with  known disease association  

– What if not druggable  / treatable? Want/need know?   
All  coding/non-coding associations  from GWAS 

– Thousands of significant associations (1350 on 6/2012)  

All  common SNPs, regardless of association  

– HapMap  and 1000 Genomes capture common variants  

• 

• 

• 

• 

• Genome: all SNPs, CNVs, rare/private mutations 
13



 

 

Predictive medicine: When to screen  
•		Diagnostic testing: after symptoms, confirm a hypothesis, 

istinguish between possibilities  

redictive risk: before symptoms even manifest  

ewborn: heel pick, store, for early treatment  

re-natal testing: ulstrasound, maternal serum  vs. 
eedles, probes, chorionic villus  sampling  

re-conception testing: common/rare disorders  

arrier testing: specific mutation  in  family history  

enetics vs. biomarkers : cause vs. consequence?  

d

•		P

•		N

•		P
n

•		P

•		C

•		G

14



 

 

Goal: Personalized and Predictive Medicine  
1. Intro to Epidemiology: basis of human disease  

enetic Epidemiology:  
 Genetic basis: GWAS  and screening  
 Interpreting GWAS  with functional genomics  
 Calculating functional enrichments for GWAS  loci   

olecular epidemiology  
 meQTLs: Genotype-Epigenome  association (cis-/trans-)  
 EWAS: Epigenome-Disease association  

esolving Causality  
 Statistical: Mendelian  Randomization  
 Application to genotype + methylation in AD  

ystems Genomics and Epigenomics of disease  
 Beyond single loci: polygenic risk prediction models   

2. G
–
–
–

3. M
–
–

4. R
–
–

5. S
–
– Sub-threshold loci and somatic heterogeneity in cancer 
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Interpreting disease associations   
Functional  genomics of GWAS   

16
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Interpreting disease-association signals
	

(1) Interpret variants using Epigenomics  
- Chromatin states: Enhancers, promoters, motifs 

- Enrichment in individual loci, across 1000s of SNPs in T1D 

G

(2) Epigenome changes in disease  
- Intermediate molecular phenotypes associated with disease
	

- Variation in brain methylomes of Alzheimer’s patients
	
17



   

 

 

  
 

  
   

   

  Complex disease: strong non-coding component  

Monogenic / Polygenic / Complex 
Mendelian Disease Disease 

Coding 

Non-coding 

Human Genetic Mutation Database Catalog of GWAS studies 
April 2010 release Hindorff et al. PNAS 2009 

Slide credit: Benjamin Raby  18



 

  

   

      
         

            

      

  

Genomic medicine: challenge and promises  

1. The promise of genetics  

– Disease mechanism  

– New target genes  

– New therapeutics  

– Personalized  medicine  

 The challenge  

– 90+% disease hits non-coding  

– Cell type  of action not known  

– Causal variant not known  

– Mechanism not known  

2.

Hillmer Nature Genetics 2008 

GWAS: simple χ2 statistical test 

Courtesy of Macmillan Publishers Limited. Used with permission 
Source: Hillmer, A. M., Brockschmidt, F. F., Hanneken, S., Eigelshoven, S., 
Steffens, M., Flaquer, A., . . . Nöthen, M. M. (2008). "Susceptibility variants 

for male-pattern baldness on chromosome 20p11." Nature Genetics Nat Genet, 

40(11), 1279-1281. doi:10.1038/ng.228 

19
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Genomic medicine: challenge and promises  
3. The remedy  

nnotation of non-coding  
enome (ENCODE/Roadmap)  

inking of enhancers to 
egulators and target  genes  
ew methods for utilizing them   

The deliverables  
– Relevant cell type  
– Target genes  
– Causal variant  
– Upstream regulator  
– Relevant pathways  

– A
g

– L
r

– N

Roadmap Epigenomics, Nature 2015 4. 

– Intermediate phenotypes 
Ernst, Nature 2011 20

Courtesy of NIH Roadmap Epigenomics Mapping
Consortium. Used with permission. 

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Ernst, J. et al. (2011). Mapping and analysis of chromatin
state dynamics in nine human cell types. Nature, 473(7345), 43-49.

http://www.roadmapepigenomics.org/
http://www.roadmapepigenomics.org/
http://www.nature.com/nature/journal/v473/n7345/full/nature09906.html
http://www.nature.com/nature/journal/v473/n7345/full/nature09906.html


 

      

   

    

 

 

This talk: From loci to mechanisms  

Building a reference map of the regulatory genome  

Regions: Enhancers, promoters, transcribed, repressed 

Enhancers Promoters Transcribed Repressed 

Cell types:   Predict tissues and cell  types  of epigenomic act ivity  
Target genes:  Link variants to their  target genes  using  eQTLs,  activity,  Hi-C  
Nucleotides:  Regulatory consequence of mutation: Conservation, PWMs  
Regulators:  Upstream regulators whose activity is disrupted  by mutation  

Application to GWAS, hidden heritability, and Cancer  
GWAS CATGCCTG • 93% top hits non-coding Mechanism? Cell type? 
hits  CGTGTCTA  • Lie in haplotype blocks   Causal variant(s)?  

‘Hidden’		 CATGCCTG  • Many  variants,  small effects   Pathway-level burden/load 
heritability  CGTGTCTA  • Many  false positives   Prioritize w/  regulatory  annotations  

Cancer		 CATGCCTG  • Loss  of  function   Protein-coding variants,  convergence  
mutations  CATCCCTG  • Gain of  function   Regulatory  variants,  heterogeneity  

21



   

 

 

 

 
 

  

  

 
 

Dissecting non-coding genetic associations  

3. Causal nucleotide(s) 

2. Target gene(s) 

1. Tissue/cell type(s) 

4. Upstream regulator(s) 
TF 

TF TF 

5. Cellular phenotypes 6. Organismal phenotypes 

GWAS region 
SNPs 

1. Establish relevant tissue/cell type  

2. Establish downstream target  gene(s)  

3. Establishing causal  nucleotide variant  

4. Establish upstream regulator  causality  

5. Establish cellular  phenotypic  consequences  

6. Establish organismal  phenotypic  consequences   
22



 
 

Using epigenomic maps  
to predict disease-relevant tissues  
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Identifying disease-relevant cell types  

el
ls

 
e 

Stem Cell Immune Heart Liver 
Enhancers  Enhancers  Enhancers  Enhancers  

• For every trait in the GWAS catalog: 

– Identify all associated regions at P-value threshold 

– Consider all SNPs in credible interval (R2≥;8)  

– Evaluate overlap with tissue-specific enhancers  

– Keep tissues showing significant enrichment (P<0.001)   
Repeat for all traits (rows) and all cell types (columns)   • 

24



 GWAS hits in enhancers of relevant cell types 
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Linking traits to their relevant cell/tissue types  

© source unknown. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 26

http://ocw.mit.edu/help/faq-fair-use/


27



               

   

Immune activation + neural repression in human + mouse  

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Gjoneska, E., Pfenning, A. R., Mathys, H., Quon, G.,Kundaje, A., Tsai, L., & Kellis, M. (2015). " Conserved Epigenomic signals in
mice and humans reveal immune basis of Alzheimer’s disease." Nature, 518 (7539), 365-369. doi:10.1038/nature14252 

Sample mouse brain 
epigenomics  during Two  contrasting  signatures  of 
neurodegeneration immune  activation  vs.  neural  repression 

Is  inflammation  simply  a  consequence  of  neuronal  loss? 
28 

http://www.nature.com/nature/journal/v518/n7539/full/nature14252.html
http://www.nature.com/nature/journal/v518/n7539/full/nature14252.html


 

   
    

 

 
  

 
  

       

Genetic evidence for immune vs. neuronal components
	

Increasing Decreasing 
(immune) (neuronal) 

Courtesy of Macmillan Publishers Limited. Used with permission. 
Source: Gjoneska,  E.,  Pfenning,  A.  R.,  Mathys,  H.,  Quon,  G., Kundaje,  A.,  Tsai,  L.,  &  Kellis,  M.  (2015).  "Conserved 
Epigenomic  signals in  mice and  humans reveal  immune  basis of  Alzheimer’s  disease."  Nature,  518(7539),  365-369. 
doi:10.1038/nature14252 

Only increasing (immune) enhancers Neuronal cell types are depleted 
enriched in AD-associated SNPs for AD-associated SNPs 

Indicates immune cell dysregulation is causal component  
Microglial cells: resident immune cells of adult brain  
Macrophages: infiltrate brain in neurodegeneration  

29

http://www.nature.com/nature/journal/v518/n7539/full/nature14252.html
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Using epigenomic annotations   
for fine-mapping disease regions   

30



 

 

 

      
   

LD: both a  
blessing &  

a curse  

Observation: LD 
blocks in which 
there is no 
evidence for 
historical 

© source unknown. All rights reserved. This content is excluded from our Creative recombination Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 31
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Causal variant not known in most GWAS regions
	

Courtesy of Macmillan Publishers Limited. Used with permission.  
Source: Smemo, S., Tena, J. J., Kim, K., Gamazon, E. R., Sakabe, N. J.,Gómez-Marín, C., . . .

Nóbrega, M. A. (2014).   "Obesity-associated variants within FTO form long-range functional

connections with IRX3." Nature, 507(7492), 371-375. doi:10.1038/nature13138  

© source unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.  

LD (Linkage disequilibrium): large regions co-inherited in blocks  
Blessing for initial mapping (few tags), curse for fine-mapping  

Use functional annotations to predict causal variant(s)
	
32

http://ocw.mit.edu/help/faq-fair-use/
http://www.nature.com/nature/journal/v507/n7492/full/nature13138.html
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Multiple lines of evidence for fine-mapping  

Courtesy  of  Macmillan  Publishers Limited.  Used  with  permission.  Ward,  L.  D.,  &  Kellis,  M.  (2012).  Interpreting noncoding genetic variation  in  complex
           traits and human disease. Nat Biotechnol Nature Biotechnology, 30(11), 1095-1106. doi:10.1038/nbt.2422. Used with permission.

Ward  and  Kellis, Nature Biotechnology  2012  

• Epigenomic information: enhancers & linking (target  genes)  
• Motif information: causal variants &  upstream regulators  
• Evolutionary conservation: causal variants & conserved motifs 33



 

 

   

Detect SNPs that disrupt conserved regulatory motifs  

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Lindblad-Toh,  Kerstin,  Manuel  Garber,  Or Zuk,  Michael  F.  Lin,  Brian J.   Parker,

Ste fan Washietl, Po uya Kh eradpou r, et al. “A Hi gh-Resolu t ion  Map o   f Human Ev  olutionary 

Constraint Using 29 Mammals.” Nature  478, no. 7370 (2011): 476–82.do i:10.1038/nature10530.

• Functionally-associated SNPs enriched in states, constraint  
• Prioritize candidates, increase resolution, disrupted motifs  

34



 

   
 

Allele-specific chromatin marks: cis-vs-trans effects
	

© source unknown.  All ri ghts reserved.  This content i s excluded  from our Creative 
Commons license. For more  information,  see  http://ocw.mit.edu/help/faq-fair-use/. 

• Maternal and paternal GM12878  genomes  sequenced
	 
• Map  reads to phased  genome, handle SNPs indels  

35
• Correlate activity changes with sequence differences
	35
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Predict effect of common, rare, somatic mutations  

All: Regulatory and epigenomic annotations  

Rare/somatic: Predict TF binding disruption 

Richard Sallari 
Common: allelic activity in heterozygous lines Xinchen Wang 

36



  

  

     

HaploReg: public resource for dissecting GWAS
	

Courtesy of the authors. License: CC BY-NC.
Source: Ward, Lucas D. and Manolis Kellis. "HaploReg: a resource for exploring chromatin states, conservation, and regulatory

          motif alterations within sets of genetically linked variants." Nucleic Acids Research 40, no. D1 (2012): D930-D934.
          

• Start with any list of SNPs or select a GWA study       
– Mine ENCODE and Roadmap epigenomics data for hits   
– Hundreds of assays, dozens of cells, conservation, motifs  
– Report significant overlaps and link to info/browser  

• Try it out: http://compbio.mit.edu/HaploReg   Ward, Kellis NAR 2011 
37
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 Predicting target genes  

38



   

Three lines of linking evidence   
ticPhysical Functional Gene   

© source unknown.  All ri ghts reserved.  This content Courtesy  of  Macmillan Pu blishers Limited.  Used  with  permission.  Ward,  L.  D.,  &  Kellis,  M.  (2012). 

is excluded  from our Creative  Commons license. Interpreting  noncoding  genetic variation  in  complex  traits and  human  disease.  Nat  Biotechnol

For more  information,  see  http://ocw.mit.edu/help/        Nature Biotechnology, 30(11), 1095-1106. doi:10.1038/nbt.2422. Used with permission.
faq-fair-use/. 

Hi-C: Physical Enhancer-gene  eQTL  evidence: SNP  
proximity  in 3D  activity correlation  effect on expression   

39
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Targets: 3D folding and expr. genetics indicate IRX3+IRX5  

Cohort of 20  homozygous  risk and  
18  homozygous non -risk individuals: 
Genotype-dependent expression?  

Dixon, Nature 2012 

Topological domains span 2.5Mb eQTL targets: IRX3 and IRX5 

Implicate 8 candidate genes   

Risk allele: increased expression  

(gain-of-function)  
404

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.
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 Goal: Personalized and Predictive Medicine  
1. Intro to Epidemiology: basis of human disease  
2. Genetic Epidemiology:  

– Genetic basis: GWAS  and screening  
– Interpreting GWAS  with functional genomics  
– Calculating functional enrichments for GWAS  loci  

3. Molecular epidemiology  
– meQTLs: Genotype-Epigenome  association (cis-/trans-)  
– EWAS: Epigenome-Disease association  

4. Resolving Causality  
– Statistical: Mendelian  Randomization  
– Application to genotype + methylation in AD  

5. Systems Genomics and Epigenomics of disease  
– Beyond single loci: polygenic risk prediction models   
– Sub-threshold loci and somatic heterogeneity in cancer  

41



  
 

 

 
 

   
  

  

 

Interpreting disease-association signals
	

(1) Interpret variants  using Epigenomics  
- Chromatin states:  Enhancers, promoters, motifs  

- Enrichment in  individual  loci,  across 1000s of SNPs in T1D  

GWAS 
CATGACTG  
CATGCCTG  

Genotype Disease 

mQTLs 

Epigenome 
MWAS 

(2) Epigenome changes in disease  
- Intermediate molecular phenotypes associated with disease
	

- Variation in brain methylomes  of Alzheimer’s patients
	 
42



 Goal: Personalized and Predictive Medicine  
1. Intro to Epidemiology: basis of human disease  

Genetic Epidemiology:  
 Genetic basis: GWAS  and screening  
 Interpreting GWAS  with functional genomics  
 Calculating functional enrichments for GWAS  loci  

Molecular epidemiology  
 meQTLs: Genotype-Epigenome  association (cis-/trans-)   
 EWAS: Epigenome-Disease association  

Resolving Causality  
 Statistical: Mendelian  Randomization  
 Application to genotype + methylation in AD  

Systems Genomics and Epigenomics of disease  
 Beyond single loci: polygenic risk prediction models   
 Sub-threshold loci and somatic heterogeneity in cancer  

43
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Molecular Epidemiology
	
Molecular Biomarkers  of disease state:
	 

Gene expression, DNA  methylation,  
chromatin in specific  cell types
	 

44



chr2

meQTL−linked CpG r^2

meQTL SNP r^2

SNP AAF

Genotype

BRN.MID.FRNTL E073

BRN.ANG.GYR E067

BRN.ANT.CAUD E068

BRN.CING.GYR E069

BRN.HIPP.MID E071

BRN.INF.TMP E072

BRN.SUB.NIG E074

LIV.ADLT E066

BLD.CD14.PC E029

BLD.CD4.MPC E037

BLD.CD4.CD25M.CD45RA.NPC E039

LNG.IMR90 E017

GI.STMC.MUS E111

SKIN.PEN.FRSK.FIB.01 E055

MUS.TRNK.FET E089

BONE.OSTEO E129

Genes(+)

Genes(−)

Mean Methylation

Normalized Methylation

Methylation StdDev

meQTL−linked CpG r^2

0

146

293

439

586

241,400,000 241,500,000 241,600,000 241,700,000 241,800,000 241,900,000 242,000,000 242,100,000 242,200,000 242,300,000
3' 5'
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5' 3'

 

 

 

 

 

 

 

 

 

     

  

 

 

     

 
 

 
 

 
 

    
  

    

  
  

 
 

     
    

Genetic and epigenetic data in 750  Alzheimer’s patients/controls
	 
MAP Memory and Aging Project 

+ ROS Religious Order Study 

Dorsolateral PFC
	

.

.

Reference  
Chromatin  

states  
(Bernstein)  

Genotype 

(1M SNPs 

x700 ind.) 

(De Jager) 

Brain
	
Liver 
Blood 
Lung 
GI 
Skin 
Muscle 
Bone 

Methylation 

(450k probes 

x 700 ind) 

(De Jager) 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

750 subjects, initially cognitively normal, Alzheimer’s diagnosed by pathology. (Bennett)  45
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Data Matrices – An example scenario 
n=750 individuals n=750 individuals n=750 individuals n=750 individuals 

Genotype 

g=
1

2
,0

0
0

,0
0

0
 

Methylation 

m
=4

5
0

,0
0

0
 

e=
1

5 1
0

 

“Environment” 

p
=

Phenotype 
(Disease) 

M  - Illumina  Methylation 450k array,  
450,000 probes targeting  CpGs  
genome-wide.  

G  - Affy  SNP arrays, imputed  against 
CEU thousand  genomes  reference 
panel,  yielding  12m SNPs.  

E  - Clinical covariates that might mask 
the variation due  to our 
phenotype, e.g.  gender,  smoking,  
age or sample batch.   

P  - Phenotype  of interest,  sometimes  
measured with multiple markers 
(clinical Alz. diagnosis vs.  pathology 
Alz. diagnosis vs. count of neuritic  
plaques).  

n  -> number of individuals in cohort.  
46

E  
environment 

cause D G M Alzheimer 
genotype 

methylation effects disease 46



 
 

 
 

   
 

 
 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
  

EWAS: Capturing variability in the Epigenome
	
attributable to disease
	

D 
X 

Epigenome 
DNA methylation Phenotype 

!lzheimer’s Disease 

E 
Environment 

Age, Education 
Gender, etc. 

Known variable 
correction 

C 
Experimental, Technical 

Cell type mixtures, 
Batch effects, Other 

Unknown Confounders 

Known & ICA 
inferred variable 

correction 

EWAS 
Hundreds of AD 
associated loci, 

enriched in enhancers 
and relevant 

pathways 

G meQTL 
Genotype (~60K 

5M Common CpGs) 
Variants 
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Excluding discovered and known covariates
	

© source unknown.  All ri ghts reserved.  This content  is excluded  from our Creative
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Infer covariates using ICA, 

compare to known,  

exclude both.  

Strongest effects:  

• Plate (batch) 

• Cell mixture 

• Bisulfite conversion 

• Gender 

• Age 

Variance explained:  

• Known: 25% 

• Inferred: 35% 

• Together: 40% 
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C Econfounders environment 

DMG 
effects 

cause 

genotype methylation Disease 

GenotypeMethylation
	 
Discovering  mQTLs
	 

Methylation Quantitative Trait Loci
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cis-meQTLs  

M 

n=750 n=750 Use linear models to identify cis-meQTLs w/in some genomic window. 
=4

5
0

,0
0

0
 

0
0

0
0

0
0

,
G 

m 1
2

,
g=

For methyl mark mi and SNP gj: 
mi = β0 + β1(gj) + ε 

• Given several predictors: is additional predictor increasing 
accuracy more than complexity introduced? 

• Likelihood ratio testing paradigm: predict methylation with 
and without genotype (only works for nested models) 

• Null hypothesis H0: β1=0: Additional model  complexity 
’t explain a  significant portion of variation in response  

LM1:  mi  = β0 + ε  
LM2:  mi  = β0 + β1(gj) + ε  

r term.  

2) / (q –  p) ) / ( RSSLM2  / (n –  q) )  
, n-q) degrees of freedom  
is p-value is what we report  in a meQTL  study  
SSLM2  too small vs. increase in model  complexity  

50

doesn

Test using F statistic: 
- p is the number of parameters in LM1 
- q is the number of parameters in LM2 
- n is the sample size 
- RSS: Residual sum of squares 
- β: parameters to learn. ε: residual erro
Under null hypothesis: ( (RSSLM1 – RSSLM

Is distributed as F distribution with (q-p
 If F statistic significant: reject null: Th
 Otherwise, no meQTL: i.e. RSSLM1 – R

50



 

 
 

  

 

 

cis-meQTLs  

M 

n n 
=4

5
0

,0
0

0
 

0
0

0
0

0
0

,
G 

m 1
2

,
g=

Alternative methods of detection:  

		 Permutation:  
•		 Correlate methylation and genotype.  
•		 For i in 1   -> nperm:  

•		 Permute genotypes  
•		 Correlate methylation and genotype  

•		 Generate empirical p-value from permuted 
correlations  

		 LMM:  Linear mixed models.  

•

•

51
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3 4 

1 

2 

3 4 

Most epigenomic variability is genotype-driven 
Manhattan plot of 450,000 methylation probes 

P)
 

10
 

lo
g

-(
va

lu
e 

-P

Chromosome and genomic position 

Genome-wide significance at p<3x10-10 
. 

Prune for probes disrupted by SNP. 

0 

•
	
•
	
 140,000 CpGs associated with genotype at 1% FDR 


	
 55,000 at Bonferroni-corrected P-value of 10-2
	

52

© source unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
     

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/


 

 
  

     
   

Scaling of discovery power with individuals
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• Number of meQTLs continues to increase linearly 
• Weak-effect meQTLs: median R2<0.1 after 400 indiv. 53
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 Goal: Personalized and Predictive Medicine  
1. Intro to Epidemiology: basis of human disease  
2. Genetic Epidemiology:  

– Genetic basis: GWAS  and screening  
– Interpreting GWAS  with functional genomics  
– Calculating functional enrichments for GWAS  loci  

3. Molecular epidemiology  
– meQTLs: Genotype-Epigenome  association (cis-/trans-)   
– EWAS: Epigenome-Disease association   

4. Resolving Causality  
– Statistical: Mendelian  Randomization  
– Application to genotype + methylation in AD  

5. Systems Genomics and Epigenomics of disease  
– Beyond single loci: polygenic risk prediction models   
– Sub-threshold loci and somatic heterogeneity in cancer  

54



  
 

 

  

 

 

 confounders 

DMG 
effects 

cause 

genotype methylation 

environment 

Disease 

 C E

MethylationDisease
	 
EWAS 
	

Epigenome-wide association study 
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eWAS  

Methylation 

n n 

1
0 Phenotype 

e= (Disease) 

=4
5

0
,0

0
0

 
m

Link methylationphenotype  (~cis-eQTLs):  
  linear models and hypothesis testing  
 Predict phenotype using methylation  

•
•

LM1: pi 

LM2: p  = β0 + β1(m ) + ε  
= β0 + ε 

i j
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eWAS  
n n  

Methylation 

m
=4

5
0

,0
0

0
 

Phenotype 
(Disease) p

=
1

0
 

n  

“Environment” 
e=

1
5

 

LM1: AD = β0 + β2(gender) + ε 
LM2: AD = β0 + β1(mj) + β2(gender) ε 

Link methylationphenotype  (~cis-eQTLs):  
•  linear models and hypothesis testing  
• Predict phenotype using methylation  
 

Problem:   
variance due to phenotype probably very  
small (unless  your phenotype  is cancer)   
 Needle in a  haystack  
 
Control  for other sources of variance   
to make the variance due to the  
phenotype stand out.   
 
If phenotype is !lzheimer’s (!D),   
gender incorporates  more variance  
into your M matrix than does AD.  
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eWAS  

Methylation 

Phenotype 
(Disease) 

n n 

m
=4

5
0

,0
0

0
 

p
=

1
0

 
“Environment” 

n 

e=
1

5
 

Might have many environmental 
variables to control  for.  

LM1:  AD = β0 + β2(gender)  + β3(age) + β4(education) + <  + ε  
LM2: AD = β0 + β1(mj) + β2(gender) + β3(age) + β4(education) + < + ε 
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eWAS  
Need to account for variance due to genotype as well.  

Methylation 

Phenotype 
(Disease) 

n n 

m
=4

5
0

,0
0

0
 

p
=

1
0

 

“Environment” 

n 

e=
1

5
 

Genotype 

n 

g=
1

2
,0

0
0

,0
0

0
 

59



Role of enhancers vs. promoters in  
!lzheimer’s disease  association
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Enhancers are hemi-methylated and highly variable
	

Enhancers show 
most variable 
methylation 

Promoters show 
least variable 
methylation 

© source unknown. All rights reserved. This content is excluded from our Creative
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• Highly distinct signatures for  
promoters vs. enhancers  

• Enhancers hemi-methylated 
Methylation level Methylation level in each person (not bimodal) 

61
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SNP-associated CpGs in enhancers, not promoters 

• Promoter methylation less affected by genetics 
• Enhancer methylation highly genotype-driven 

*

*

*

*

*

*
*

*
*

*

*

* * *

  

 
 

 

 

 

 

 

 

  
 

 
 

TSS flanking 
Enhancers Repressed 

En
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t f
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 m
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1
2 

.5
 Transcribed 

Promoters 

TxEnh
	

• TSS-flanking and repressed regions also genetic
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AD-associated probes in distal enhancers  
Pe

r 
st

at
e:

 (
O

b
s 
– 

Ex
p

) 
/ 

To
ta

l  

Enhancers 

Promoters 

© source unknown.  All ri ghts reserved.  This content  is excluded  from our Creative
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• After cleaning with known and  inferred covariates.  

• Distal and  transcribed enhancers enriched.  

Proximal  regulators (promoters) depleted.  
63
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ICA covariate correction cleans up enhancer signal  

Before:  

Orange: Enrichment of 
enhancer probes for 
association with the 
real phenotype. 

Grey: Enrichment of 
enhancer probes for a 
scrambled phenotype. 

After: 
(After conditioning on 7 
surrogate variables 
discovered with ICA.) 

Empirical p=0.06 

Empirical p<.0001 

© source unknown. All rights reserved. This content is excluded from our Creative
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AD predictive power highest in enhancers 

A
P

O
E 

enhancers 

methylome 

promoters 

All SNPs 

Top predictive  
features are:  
•		Enhancer 

ethylation  

ll me thyl.  

SS, Het  

enetics  
incl. APOE)  

ausality?  

ommon  
athways? 

m

• A

• T

•		G
(

• C

•		C
p
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NRSF 

ELK1 

All probes, ranked by AD assoc. P-value 

Non−significant pathways Significant pathways

0.
60

0.
65

0.
70

0.
75

AUC using pathway feature selection; p= 1.922e−11

AD prediction reveals likely biological pathways 

All probes, ranked by AD assoc. P-value  

CTCF 

© source unknown. All rights reserved. This content is excluded from our Creative
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Enriched regulatory motifs 

suggest potential pathway s 

HEB/Tcf12: proliferating  neural and progenitor cells  

GATA: cell growth, blood,  cell development  


66
TLX1/NFIC: Neuronal cell fates Mouse AD models 66
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 Goal: Personalized and Predictive Medicine  
1. Intro to Epidemiology: basis of human disease  
2. Genetic Epidemiology:  

– Genetic basis: GWAS  and screening  
– Interpreting GWAS  with functional genomics  
– Calculating functional enrichments for GWAS  loci  

3. Molecular epidemiology  
– meQTLs: Genotype-Epigenome  association (cis-/trans-)   
– EWAS: Epigenome-Disease association  

4. Resolving Causality  
– Statistical: Mendelian  Randomization  
– Application to genotype + methylation in AD  

5. Systems Genomics and Epigenomics of disease  
– Beyond single loci: polygenic risk prediction models   
– Sub-threshold loci and somatic heterogeneity in cancer  

67
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ins

C E 
confounders environment 

Risk factor causality w/ instrumental variables  
If XY are correlated, 
possible scenarios are: 
• XY  
• causes  X Y  

G Y • XU Y    X
trument  

risk factor  outcome  To distinguish, need  
effects  controlled random experiment  

 Is risk factor X causing disease Y (or a consequence)?  

– E.g. alcohol addiction, smoking, blood cholesterol, fever, stress   
 Randomized experiment, with and without X: feasibility? ethics?  

 G  randomized experiment  (e.g. random  Mendelian   
inheritance), as only some subjects have genotype   

 G (i.v.)must be correlated with Y but only through X  
i.e. if X known, G gives no additional information  about Y   

68
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In silico  thought experiment  

0 200 400 600 8000.
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0 200 400 600 8000.
0

0.
2

0.
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0.
6

0.
8

1.
0

p=3.847832e−05

noi
at

ylh
et

M

Subjects

AD
nonAD

Same effect due to Alz, 
but with larger effect due 
to genotype. 

CC 

Small but significant 
effect due to Alz 

CA 
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Hemi-methylation associated with meQTL 
yields a p-value that’s 30 orders of 
magnitude lower for the AD phenotype. 

69
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 MGE P+ + = GE P+ = 

From G, include probe-specific 
terms for cis-meQTLs, as well as 
including trans-meQTLs in all 
comparisons. 

VS 

 

 
 
 

Mendelian randomization approach  
Account for variance due to genotype, how much does methylation add?  

With variability 
due to 
genotype and 
environmental 
covariates 
removed, the 
effect due to 
phenotype 
should become 
more 
prevalent. 
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 Causality testing
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Modeling complex Human diseases  
• Three possible models: 

1. Independent Associations 

D 

MG X 

2. Causal Pathway Model  

3. Interaction Model  

D 

G 

M 

Genotype
	

DG M 

D 

MG 

72

Methylation
	

Disease
	



 
 
 
 
 
 

  
  

 
 

  
 
 
 

 

  
 

 
 

 

  

(1) Independent Associations  

D 

MG X 

• Association between Factor A and Disease 
• Association between Factor B and Disease 
• No association between Factor A and Factor B  

G Factor A
	

• Example: 2 independent risk genes X Factor B 

Y Disease D  
73



   
 

 
 

   
 

 
 

 

  

 

 

  

   

 

  
 

 
 

(2) Causal Pathway Models  

• Is the a direct link between risk factor (A) and disease (D)?  

DA 

• Does the risk factor’s (!) effect on disease (D) depend on an 
intermediate step (B)? 

DA B 

• To test: 
– A is associated with B and  D  
– B is  associated with D  
– A is not associated with D when controlling for 

 
– Note: A MUST  come  before B temporally  

B 

D 

G 

X 

Factor A
	

Factor B
	

Disease D  
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(2) Causal Pathway Models  

• In reality its a little  of both;  !’s affect  on D is partially  
mediated  through B  

A DB 

• To test: 
– A is associated with B  and D  
– B is associated with D  
– The effect  size of A on D is decreased  when con

 
– Note: A MUST  come before B temporally  

 

• Example:  CR1 effect  on cognitive decline  

trolling for B 

A Factor A  
 
Factor B  
 
Disease D D 

B 
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(3) Interaction Models  

• Factor B’s effect on D is different depending on value for factor !  

B 
(A = Aa) 

B 
(A = AA) 

D 

B 
(A = aa) 

• To test: 
– A + B + A*B  D, if estimate for A*B is significant then   
– Stratify by levels of A  

 
• Example:  

– ! drug’s effect is  different depending  on genotype  
– More to come<  
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Gene locus reference 
Published 

AD AD NP 

BIN1 

CD2AP 

CD33 

rs744373 

rs9349407 

rs3865444 

Seshadri 2010 

Naj 2011/Hollingsworth 2011 

Naj 2011/Hollingsworth 2012 

1.6x10-11 

8.6x10-9 

1.6x10-9 

0.204 

0.445 

0.133 

0.480 

0.221 

0.123 

ABCA7 rs3764650 Hollingsworth 2010 5.0x10-21 0.747 0.187 
APOE Any ε4 1.2x10-13 1.8x10-23 

CLU rs11136000 Lambert 2009/Harold 2009 7.5x10-9 0.762 0.649 
CR1 rs6656401 Lambert 2009 3.7x10-9 0.0009 0.057 

EPHA1 rs11767557 Naj 2011/Hollingsworth 2011 6.0x10-10 0.562 0.391 
MS4A4A rs4938933 Naj 2011 1.7x10-9 0.792 0.567 
MS4A6A rs610932 Hollingsworth 2010 1.2x10-16 0.534 0.820 

MTHFD1L rs11754661 Naj 2010 1.9x10-10 0.126 0.934 
PICALM rs3851179 Harold 2009 1.9x10-8 0.382 0.171 

Application to 12 AD GWAS loci  

77



 

  

  

   

 

 
 

 
Tangles 

 

CR1: Causal pathway model  

Risk Factors Pathology Clinical Disease
	

Alzheimer’s 
disease 

Genetic 
CR1 

Cognitive 
Decline 

AD specific 
Neuritic Plaque 
Neurofibulary 

? 
• CR1  first associated with AD  in 2009  
• Original associated variant is in an intron, no clear function  
• Unclear how CR1  locus influences AD susceptibility mechanistically  

• 
 

Questions: 
– Is  the effect only on AD?   
– Is there a broader effect on cognitive decline?  
– Is  there an association with AD pathology?  
– Does  it go through pathology to have an effect of cognitive decline?  
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CR1 (rs6656401)  

CR1  Pathology 

0.4 

0.45 

0.5 

0.55 

0.6 

0.65 

0.7 

0.75 

0.8 

0.85 

Neuritic Plaque Neurofibillary Tangles 

TT 
AT/AA (risk allele) 

CR1  Global Cognitive 
Decline 

p=0.0008 

p=0.008 p=0.10
	

Pathology  Global Cognitive Decline 
p < 0.0001 time 
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Genetic + Epigenetic variation in !lzheimer’s
	

Relate to genotype and AD variation 723 AD patients & controls 
Methylation variation in 

Genome 

meQTL 

Phenotype 

Classification 
Epigenome MWAS 

1 
2 

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

Methylation >> SNPs Estimate causal M roles: regression  
Enhancers >> promoters of meQTL effects reduces MD 

© source unknown. All rights reserved. This content is excluded

from our Creative Commons license. For more information, see
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 Goal: Personalized and Predictive Medicine  
1. Intro to Epidemiology: basis of human disease  
2. Genetic Epidemiology:  

– Genetic basis: GWAS  and screening  
– Interpreting GWAS  with functional genomics  
– Calculating functional enrichments for GWAS  loci  

3. Molecular epidemiology  
– meQTLs: Genotype-Epigenome  association (cis-/trans-)   
– EWAS: Epigenome-Disease association  

4. Resolving Causality  
– Statistical: Mendelian  Randomization  
– Application to genotype + methylation in AD  

5. Systems Genomics and Epigenomics of disease  
– Beyond single loci: polygenic risk prediction models   
– Sub-threshold loci and somatic heterogeneity in cancer  
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Beyond top-scoring hits:   
1000s of variants of weak effect  

cluster in cell type specific enhancers  
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Rank-based functional testing of weak associations  

Enrichment peaks at 10,000s of SNPs 
down the rank list, even after LD pruning! 

© source unknown. All rights reserved. This content is excluded from our Creative
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• Rank all SNPs based on GWAS signal strength  
• Functional enrichment for cell types and states  83
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Weak-effect T1D hits in 50k T-cell enhancers  
enhancers 

CD4+ T-cells 

T-cells 
B-cells 

Other cell types 
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• LD-pruning (CEU r2>.2): 50k  41k independ. loci  84
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Cell type specificity stronger for enhancers  
enhancers promoters 

transcribed 

CD4+ T-cells 

T-cells 
B-cells 

Other cell types 

© source unknown. All rights reserved. This content is excluded from our Creative
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• T/B-cells also enriched for promoters, transcribed  
• Enhancer enrichment much more cell type specific  85
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T1D/RA-enriched enhancers spread across genome
	

© source unknown. All rights reserved. This content is excluded from our Creative
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• High concentration of loci in MHC, high overlap
	
• Yet: many distinct regions, 1000s of distinct loci
	 86
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Implications for genetic predisposition:  
polygenic models for risk prediction  
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Basic setup of polygenic risk prediction studies  
Case-control cohort w/ 
genotype + phenotype 

Training cohort Testing cohort 

Selection of SNPs 
Estimation of effects 
Ranking 

Apply predictor 
Evaluate accuracy 

Apply predictor w/ 
estimated confidence 

Target cohort: 
genotyped individuals 

(no phenotypes) 

1 

(power matters) (power matters) (power limited to one 
individual at a time) 

2 

• Applications 1    (testing cohort) 
– Understand total heritability captured in common variants 

– Understand disease “architecture”: number of SNPs 
– Recognize functional classes associated with weak genetic associations 

• Applications 2: 2    (new individuals) 
– Provide health recommendations at the individual level 

– Prioritize high-risk individuals for subsequent testing at population level 
88



 

    

 
 

 

 

   
  
  

   

 

  

  
   

 
  

     
  

How many SNPs to include in model?  
 

sc
or

e
c 

ni
ge

ly
 p

o
he

of
 t

ue
 

-v
al

P
ct

ed
 

pe
ex

Dudridge PLoS Genetics 2013 
pi0:Proportion of markers with no effect Purcell Nature 2009 

Schizophrenia risk prediction 

‘only 5% matter’ 

‘only 10% matter’
	
(but still can’t tell
	
Which ones until
	 ‘all matter’ Full rank list) 

inclusion threshold 
© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

• It depends on:  
– Architecture: Fraction of SNPs that are estimated to be functional  
– Power: Number of individuals in cohort,  i.e. ability to rank correctly  
It only peaks at 5% (≈1-pi0) when sufficient power to  rank  
– Large fraction of associated markers are hidden within  non-significant SNPs  

• 

• For pi0=0.90, still need to include all SNPs to maximize predictive power 89

http://ocw.mit.edu/help/faq-fair-use/
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Application to pleiotropy and common risk  
Trait 1 (schizophrenia) 
Case-control cohort w/ 
genotype + phenotype 

Selection of SNPs 
Estimation of effects 
Ranking 

Apply predictor 
Evaluate accuracy 

Trait 2 (bipolar disorder) 
Case-control cohort w/ 
genotype + phenotype 

• Ability  to assess common genetic risk  
 Are the highly-ranked SNPs for one study relevant to a different study?  

 Is there a shared genetic architecture between seemingly unrelated traits?  

irst use showed schizophrenia and bipolar disorder common risk   
 Schizophrenia-ranked SNPs in one cohort<  

 < are predictive of bipolar disorder diagnosis  
 < but not predictive of unrelated (cardiovascular) traits  

–
–

• F
–
–
–
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 Important points/caveats for risk prediction  
• Always limited by genetic component  

– Environment, random effects play big role for most traits  

• Mendelian=deterministic vs. common variants=prob.ic 

– Only a first screen for individuals at risk  

• Limited by discovery power  

– Cohort size limits discriminative power and ranking ability  

• Limited by genotyped SNPvs  vs. all SNPs 

– Selection pushes fitness-reducing variants to lower freq  

– Genotyped SNPs selected to be common  

• Even if SNPs are correctly id entified,  their effects are not  

– Winner’s curse: over-estimate above-threshold true  effect  

• Training and testing cohort non-independence  

– Relatives, cryptic relatedness, population stratification inflate est. 
91
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Goal: Personalized and Predictive Medicine  
1. Intro to Epidemiology: basis of human disease  
2. Genetic Epidemiology:  

– Genetic basis: GWAS  and screening  
– Interpreting GWAS  with functional genomics  
– Calculating functional enrichments for GWAS  loci  

3. Molecular epidemiology  
– meQTLs: Genotype-Epigenome  association (cis-/trans-)   
– EWAS: Epigenome-Disease association  

4. Resolving Causality  
– Statistical: Mendelian  Randomization  
– Application to genotype + methylation in AD  

5. Systems Genomics and Epigenomics of disease  
– Beyond single loci: polygenic risk prediction models  
– Sub-threshold loci and somatic heterogeneity in cancer  
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This talk: From loci to mechanisms  

Building a reference map of the regulatory genome  
Enhancers Promoters Transcribed Repressed 

Regions: Enhancers, promoters, transcribed, repressed 
Cell types:   Predict tissues and cell  types  of epigenomic act ivity  
Target genes:  Link variants to their  target genes  using  eQTLs,  activity,  Hi-C  
Nucleotides:  Regulatory consequence of mutation: Conservation, PWMs  
Regulators:  Upstream regulators whose activity is disrupted  by mutation  

Application to GWAS, hidden heritability, and Cancer   
GWAS CATGCCTG  • 93%  top hits  non-coding  Mechanism?  Cell type? 
	
hits  CGTGTCTA  • Lie in haplotype blocks   Causal variant(s)?
	 

‘Hidden’  CATGCCTG  • Many  variants,  small effects   Pathway-level burden/load 
heritability  CGTGTCTA  • Many  false positives   Prioritize w/  regulatory  annotations  

Cancer    • s  of  function  CATGCCTG Los  Protein-coding variants,  convergence  
mutations  CATCCCTG   • Gain of  function   Regulatory  variants,  heterogeneity  
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Characterizing sub-threshold variants in heart arrhythmia
	

© source unknown. All rights reserved.This
content is excluded from our Creative

Commons license. For more information, see

http://ocw.mit.edu/help/faq-fair-use/.

Focus on sub-threshold variants  

(e.g. rs1743292  P=10-4.2) 

Trait: QRS/QT interval  
   

  
 

(1) Large cohorts, (2) many known hits  
 (3) well-characterized tissue drivers 94

From Arking, D. E., Pulit, S. L., Crotti, L., Harst, P. V., Munroe, P. B.,
Koopmann, T. T., . . . Newton-Cheh, C. (2014). Genetic association
study of QT interval highlights role for calcium myocardial repolarization.
Nature Genetics Nat Genet, 46(8), 826-836. Used with permission.
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Enhancers overlapping GWAS loci share functional properties  

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Train machine learning model to prioritize sub-threshold loci  
95
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Functional evidence for sub-threshold target genes  

Zebrafish phenotypes Human genetics 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Mouse phenotypes 
96
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Experimental validation of 11 sub-threshold loci  

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

9 of 11 tested loci show allelic activity, chromatin interactions  

97
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Functional evidence for rs1743292 causality (P=10-4.2)  

Enhancer 4C links to target gene promoters Heart enhancer activity  

Motif disruption Allelic DNase in multiple individuals 
© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Allelic enha-

ncer activity  98
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Target gene impact on heart conduction
	

Optical voltage mapping 

zebrafish embryo hearts 
voltage-sensitive fluorescent dye 

ventricle 

atrium 

transmembrane voltage 
(ventricle) 

© source unknown. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

Detection and validation of a new cardiac locus  

99
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What would we need to discover rs1743292 without epigenomics?  

rs1743292 
Minor allele frequency: 0.134  

Effect size: -0.5773 +/- 0.17 msec  
With 68,900 individuals: 12.8% power to discover at p<5x10-8  

•		 rs1743292 has similar effect sizes  as many genome-wide significant variants  

•		 Many GWAS variants discovered due to winner’s curse: often only have 5-

20% power to discover  

•		 Combining epigenomics  and GWAS can:  

1. Confirm existing GWAS loci are real  

2. Discover new sub-threshold loci  with weak effect sizes, low power  

To reach 80% power to discover rs1743292 at p<5x10-8 ,  
we need 146,700 individuals!  
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 Goal: Personalized and Predictive Medicine  
1. Intro to Epidemiology: basis of human disease  

enetic Epidemiology:  
Genetic basis: GWAS  and screening  
Interpreting GWAS  with functional genomics  
Calculating functional enrichments for GWAS  loci  

olecular epidemiology  
meQTLs: Genotype-Epigenome  association (cis-/trans-)   
EWAS: Epigenome-Disease association  

esolving Causality  
Statistical: Mendelian  Randomization  
Application to genotype + methylation in AD  

ystems Genomics and Epigenomics of disease  
Beyond single loci: polygenic risk prediction models  
Sub-threshold loci and somatic heterogeneity in cancer   

2. G
– 
– 
– 

3. M
– 
– 

4. R
– 
– 

5. S
– 
– 
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This talk: From loci to mechanisms  

Building a reference map of the regulatory genome  
Enhancers Promoters Transcribed Repressed 

Regions: Enhancers, promoters, transcribed, repressed 
Cell types:   Predict tissues and cell  types  of epigenomic act ivity  
Target genes:  Link variants to their  target genes  using  eQTLs,  activity,  Hi-C  
Nucleotides:  Regulatory consequence of mutation: Conservation, PWMs  
Regulators:  Upstream regulators whose activity is disrupted  by mutation  

Application to GWAS, hidden heritability, and Cancer   
GWAS CATGCCTG  • 93%  top hits  non-coding  Mechanism?  Cell type?  
hits  CGTGTCTA  • Lie in haplotype blocks   Causal variant(s)?  

‘Hidden’  CATGCCTG  • Many  variants,  small effects   Pathway-level burden/load 
heritability  CGTGTCTA  • Many  false positives   Prioritize w/  regulatory  annotations  

Cancer     function  CATGCCTG • Loss of  Protein-coding variants,  convergence  
mutations  CATCCCTG  • Gain of  function   Regulatory  variants,  heterogeneity  
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Regulatory convergence of dispersed driver mutations  

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Common mutations in regulatory plexus of each gene  
Richard Sallari 103
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Cancer genes are more likely to be up-regulated
	

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Richard Sallari  104
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Dysregulated genes show dispersed non-coding mutations
	

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Dysregulated genes are enriched for plexus mutations at all distances. 
Richard Sallari 105
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Non-coding mutations enriched in promoters /  
enhancers active in other cell types
	

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Disruptive mutations in ‘low’ elements are 
enriched in enhancers and promoters in other tissues 

Richard Sallari 106
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Statistical model for excess of rare/somatic variants  

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

•Correct for region-, state-, tumor-specific rate variation  107

http://ocw.mit.edu/help/faq-fair-use/


 

 
     

   

Convergence in immune, signaling, mitoch. functions  

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

•Pathway-level convergence, hierarchical model  108
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Non-coding drivers of prostate cancer dysregulation  

Regulatory mutations reveal 
Convergence in immune, signaling, new cancer driver genes 

mitochondrial functions 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Convergence in inositol phosphate metabolism PLCB4 overexpression in PC3 prostate cancer  
adjacent to PTEN, PIK3CA, known cancer genes reduces Erk/Akt activity, synergistic with PTEN  

109
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Personal genomics tomorrow:  
Already 100,000s of complete genomes  

• Health, disease, quantitative traits: 
– Genomics regions  disease mechanism, drug targets  
– Protein-coding  cracking regulatory code, variation  
– Single genes  systems, gene interactions, pathways  

• Human ancestry:  
– Resolve all of human ancestral relationships  
– Complete history of all migrations, selective events  
– Resolve common inheritance vs. trait association  

• What’s missing is the computation  
– New algorithms,  machine learning, dimensionality reduction  
– Individualized treatment from 1000s genes, genome  
– Understand missing heritability  
– Reveal co-evolution between genes/elements  
– Correct for modulating effects in GWAS  
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Challenge ahead: From research to clinic  
1. Systematic medical genotyping / sequencing 

– Currently  a curiosity, future: medical practice  

2. Systematic medical molecular profiling  

– Functional genomics in  relevant cell types  

3. Systematic perturbation  studies  for validation  

– 1000s of regulatory predictions x 100s cell types  

4. Systematic repurposing of approved drugs  

– Systems-biology view of drug response   

5. Genomics of drug response in cli nical trials  

– Personalized drug prescription  and combinations  

6. Partnerships:  academia, industry, hospitals  

– Interdisciplinary training in each of the instituttions  111



 Summary: Personalized & Predictive Medicine  
1. Intro to Epidemiology: basis of human disease  
2. Genetic Epidemiology:  

– Genetic basis: GWAS  and screening  
– Interpreting GWAS  with functional genomics  
– Calculating functional enrichments for GWAS  loci  

3. Molecular epidemiology  
– meQTLs: Genotype-Epigenome  association (cis-/trans-)   
– EWAS: Epigenome-Disease association  

4. Resolving Causality  
– Statistical: Mendelian  Randomization  
– Application to genotype + methylation in AD  

5. Systems Genomics and Epigenomics of disease  
– Beyond single loci: polygenic risk prediction models  
– Sub-threshold loci and somatic heterogeneity in cancer   
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