
Lecture 18 
Molecular Evolution and Phylogenetics 

6.047/6.878 - Computational Biology:  Genomes, Networks, Evolution 

Somewhere, something went wrong… 
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Challenges in Computational Biology 

DNA 

4 Genome Assembly 

1 Gene Finding 5 Regulatory motif discovery 

Database lookup 3 

Gene expression analysis 8 

RNA transcript 

Sequence alignment 2 

Evolutionary Theory 7 
TCATGCTAT 
TCGTGATAA 
TGAGGATAT 
TTATCATAT 
TTATGATTT 

Cluster discovery 9 Gibbs sampling 10 

Protein network analysis 11 

12 Metabolic modelling 

Comparative Genomics 6 

Emerging network properties 13 
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Concepts of Darwinian Evolution 

Selection 

Taken from Yuri Wolf, Lecture Slides, Feb. 2014 

Image in the public domain.

Courtesy of Yuri Wolf; slide in the public domain.
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Concepts of Darwinian Evolution 

Charles Darwin 1859. Origin of Species [one and only 
illustration]: "descent with modification" 

Taken from Yuri Wolf, Lecture Slides, Feb. 2014 

Image in the public domain.

Courtesy of Yuri Wolf; slide in the public domain.
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Tree of Life 

Image in the public domain.© Neal Olander. All rights reserved. This content is excluded from our

Creative Commons license. For more information, see http://ocw.mit.

edu/help/faq-fair-use/.
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Goals for today: Phylogenetics 
• Basics of phylogeny: Introduction and definitions 

– Characters, traits, nodes, branches, lineages, topology, lengths 
– Gene trees, species trees, cladograms, chronograms, phylograms 

1. From alignments to distances: Modeling sequence evolution 
– Turning pairwise sequence alignment data into pairwise distances 
– Probabilistic models of divergence: Jukes Cantor/Kimura/hierarchy 

2. From distances to trees: Tree-building algorithms 
– Tree types: Ultrametric, Additive, General Distances 
– Algorithms: UPGMA, Neighbor Joining, guarantees and limitations 
– Optimality: Least-squared error, minimum evolution (require search) 

3. From alignments to trees: Alignment scoring given a tree 
– Parsimony: greedy (union/intersection) vs. DP (summing cost) 
– ML/MAP (includes back-mutations, lengths): peeling algorithm (DP) 

4. Tree of Life in Genomic Era 
– The prokaryotic problem (no real taxa and HGT) 
– Interpreting the forest of life 
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Introduction: Basics and Definitions 

Characters, traits, gene/species trees 
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Ancestral Node  
or ROOT of  

the Tree 
Internal Nodes or 
Divergence Points 

(represent hypothetical 
ancestors of the taxa) 

Branches or 
  Lineages 

Terminal Nodes  

A 

B 

C 

D 

E 

Represent the 
TAXA (genes, 
populations, 
species, etc.) 
used to infer 
the phylogeny  

Common Phylogenetic Tree Terminology 
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Extinctions part of life 

Phylogenetic tree showing archosaurs, dinosaurs, birds, etc. through geologic time removed due to copyright restrictions.
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Phylogenetics 
General Problem:  
Infer complete ancestry of  
a set of ‘objects’ based on  
knowledge of their ‘traits’ 
 

‘Objects’ can be: Species,  
Genes, Cell types, Diseases,  
Cancers, Languages, Faiths,  
Cars, Architectural Styles 
 

‘Traits’ can be: Morphological, molecular, 
gene expression, TF binding, motifs, words… 
 

Historical record varies: Fossils, imprints,  
timing of geological events, ‘living fossils’,  
sequencing of extinct species, paintings, stories.  
 

Today: Phylogenies using only extant species data 
 gene trees (paralog / ortholog / homolog trees) 

Mammal family tree removed due to copyright restrictions.
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Inferring Phylogenies: Traits and Characters 

Trees can be inferred by several criteria: 
– Traditional traits: Morphology data 

 
 
 
 
 

– Modern traits: Molecular data 
   Kangaroo ACAGTGACGCCCCAAACGT 
   Elephant ACAGTGACGCTACAAACGT 
   Dog  CCTGTGACGTAACAAACGA 
   Mouse CCTGTGACGTAGCAAACGA 
   Human CCTGTGACGTAGCAAACGA 

© Source unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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From physiological traits to DNA characters 
• Traditional phylogenetics 

– Building species trees 
– Small number of traits 

• Hoofs, nails, teeth, horns 
– Well-behaved traits, each arose once 

• Parsimony principle, Occam’s razor 
 

• Modern phylogenetics 
– Building gene trees and species trees 
– Very large number of traits 

• Every DNA base and every protein residue 
– Frequently ill-behaved traits 

• Back-mutations are frequent (convergent evolution) 
• Small number of letters, arise many times independently 

12



Taxon A 

Taxon B 

Taxon C 

Taxon D 

1 
1 

1 

6 

3 

5 

Taxon A 

Taxon B 

Taxon C 

Taxon D 

Taxon A 

Taxon B 

Taxon C 

Taxon D 

Three types of trees 

Cladogram                 Chronogram  Phylogram 

Topology only Topology + 
Divergence times 

Topology + 
Divergence times + 
Divergence rates 

t1 t3 t2 
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Inferring a tree from nucleotides/peptides 

Molecular 
phylogenetic 

methods 

Sequence data: 
-Nucleotide alignments 
-Peptide alignments 

Evolutionary history 
represented as a 

binary tree 

© Source unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 14
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Two basic approaches for phylogenetic inference 

Distance based 

Character based 

From alignments 
To phylogenies 

From Sequences 
To Distances 

Tree building 
algorithms 

Pair-wise distance matrix Sequence alignment 

Sequence alignment Output tree 

Output tree 

Couple to  
tree proposal 
and scoring 

1 2 

3 

4 
15
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Goals for today: Phylogenetics 
• Basics of phylogeny: Introduction and definitions 

– Characters, traits, nodes, branches, lineages, topology, lengths 
– Gene trees, species trees, cladograms, chronograms, phylograms 

1. From alignments to distances: Modeling sequence evolution 
– Turning pairwise sequence alignment data into pairwise distances 
– Probabilistic models of divergence: Jukes Cantor/Kimura/hierarchy 

2. From distances to trees: Tree-building algorithms 
– Tree types: Ultrametric, Additive, General Distances 
– Algorithms: UPGMA, Neighbor Joining, guarantees and limitations 
– Optimality: Least-squared error, minimum evolution (require search) 

3. From alignments to trees: Alignment scoring given a tree 
– Parsimony: greedy (union/intersection) vs. DP (summing cost) 
– ML/MAP (includes back-mutations, lengths): peeling algorithm (DP) 

4. Tree of Life in Genomic Era 
– The prokaryotic problem (no real taxa and HGT) 
– Interpreting the forest of life 

1 

2 

3 

4 
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1. From alignments to distances 

Modeling evolutionary rates 

Distance estimation 
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Measuring evolutionary rates 

• Nucleotide divergence 
– Uniform rate.  Overall percent identity.  

• Transitions and transversions 
– Two-parameter model. A-G, C-T more frequent.  

• Synonymous and non-synonymous substitutions 
– Ka/Ks rates.  Amino-acid changing substitutions 

• Nactual mutations > N observed substitutions  
– Some fraction of “conserved” positions mutated twice 

A 
C 

G 

T 

A 
C 

G 

T 

.1 

.1 

.2 
.6 

.6 
.1 

.2 .1 
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‘Evolving’ a nucleotide under random model 

A G 

C T 

.1 

.1 .1 

.1 

.1 

.1 

.7 .7 

.7 .7 

• At time step 0, start with letter A 
• At time step 1:  

– Remain A with probability 0.7 
– Change to C,G,T with prob. 0.1 each 

• At time step 2:  
– In state A with probability 0.52 

• Remain A with probability 0.7 * 0.7 
• Go back to A from C,G,T with 0.1*0.1 each 

– In states C,G,T with prob. 0.16 each 

t=1 t=2 t=3 t=4 t=5 

A 1 0.7 0.52 0.412 0.3472 

C 0 0.1 0.16 0.196 0.2176 

G 0 0.1 0.16 0.196 0.2176 

T 0 0.1 0.16 0.196 0.2176 
19



Modeling Nucleotide Evolution 
During infinitesimal time t, there is not enough time for two 

substitutions to happen on the same nucleotide 
 
So we can estimate P(x | y, t), for x, y  {A, C, G, T} 
 
Then let 
 
   P(A|A, t) ……  P(A|T, t) 
S(t) =   …  … 
   P(T|A, t) …… P(T|T, t) 
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Modeling Nucleotide Evolution 
Reasonable assumption: multiplicative  
 (implying a stationary Markov process) 
 
S(t+t’) = S(t)S(t’) 
 
That is, P(x | y, t+t’) = z P(x | z, t) P(z | y, t’) 
 
Jukes-Cantor: constant rate of evolution 
 
         1 - 3       
For short time , S() =             1 - 3      
                 1 - 3   
                    1 - 3 
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Modeling Nucleotide Evolution 
Jukes-Cantor: 
 
For longer times, 
   
  r(t) s(t)  s(t)  s(t) 
S(t) =  s(t) r(t)   s(t)  s(t) 
  s(t) s(t)  r(t)   s(t) 
  s(t) s(t)  s(t)  r(t) 
 
Where we can derive: 
 
  r(t) = ¼ (1 + 3 e-4t) 
  s(t) = ¼ (1 – e-4t) 

A G 

C T 

A other 
3 

1-3 

 

1- 

 

  

 

 

 

Geometric asymptote to 1/4 
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Modeling Nucleotide Evolution 

Kimura: 
 
Transitions: A/G, C/T 
Transversions: A/T, A/C, G/T, C/G 
 
Transitions (rate ) are much more likely than transversions (rate ) 
 
   r(t) s(t)  u(t)  u(t) 
       S(t) = s(t) r(t)   u(t)  u(t) 
   u(t) u(t)   r(t)   s(t) 
   u(t) u(t)  s(t)  r(t) 
 

Where  s(t) = ¼ (1 – e-4t) 
    u(t) = ¼ (1 + e-4t – e-2(+)t) 
    r(t)  = 1 – 2s(t) – u(t) 

A G C T 

A 
G 

C 

T 
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Distance between two sequences 

Given (well-aligned portion of) sequences xi, xj, 
 
Define  
 dij = distance between the two sequences 
 
One possible definition: 
 dij = fraction f of sites u where xi[u]  xj[u] 
 
Better model (Jukes-Cantor): 
 dij = - ¾ log(1 – 4f / 3)  

r(t) = ¼ (1 + 3 e-4t) 
s(t) = ¼ (1 – e-4t) 

Observed F = [ 0.1,    0.2,  0.3,    0.4,   0.5,   0.6,   0.7]) 
Actual      D = [0.11, 0.23, 0.38, 0.57, 0.82, 1.21, 2.03] 
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Many nucleotide models have been developed 
Varying levels of complexity (parameters) 

Models also exist for peptides and codons 

© Source unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Goals for today: Phylogenetics 
• Basics of phylogeny: Introduction and definitions 

– Characters, traits, nodes, branches, lineages, topology, lengths 
– Gene trees, species trees, cladograms, chronograms, phylograms 

1. From alignments to distances: Modeling sequence evolution 
– Turning pairwise sequence alignment data into pairwise distances 
– Probabilistic models of divergence: Jukes Cantor/Kimura/hierarchy 

2. From distances to trees: Tree-building algorithms 
– Tree types: Ultrametric, Additive, General Distances 
– Algorithms: UPGMA, Neighbor Joining, guarantees and limitations 
– Optimality: Least-squared error, minimum evolution (require search) 

3. From alignments to trees: Alignment scoring given a tree 
– Parsimony: greedy (union/intersection) vs. DP (summing cost) 
– ML/MAP (includes back-mutations, lengths): peeling algorithm (DP) 

4. Tree of Life in Genomic Era 
– The prokaryotic problem (no real taxa and HGT) 
– Interpreting the forest of life 

26



2. Distance-based tree-building algorithms 

Mapping a distance matrix to a tree 

UPGMA, NJ,  
LSE, ME 

27
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Distance matrix  Phylogenetic tree 

Hum Mou Rat Dog Cat 

Human 0 4 5 7 6 
Mouse h.y.m 0 3 8 5 

Rat h.y.r m.r 0 9 7 
Dog h.z.x.d m.y.z.x.d r.y.z.x.d 0 2 
Cat h.z.x.c m.y.z.x.c r.y.z.x.c d.c 0 

Human 

Dog 

Cat 

Mouse 

Rat 

d 

c 
x 

h 
z m 

y 
r 

Goal:  
Minimize discrepancy between observed distances and tree-based distances 

Map distances Dij 

to a tree 
Tree implies 

a distance matrix 
Mij 

min ij (Dij-Mij)2 
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Ultrametric distances & 3 Point Condition 
• For all points i, j, k 

– two distances are equal and third is smaller 
 d(i,j) <= d(i,k) = d(j,k) 
 a+a  <=  a+b  =  a+b 

 
a 

a 

b 

i 

j 

k 

where a <= b 

• Result:  
– All paths from leaves are equidistant to the root 
– Rooted tree with uniform rates of evolution 

29



Ultrametric trees 

       A    B    C 
A     0    3    3 
B     3    0    2  
C     3    2    0 

Symmetric 0-diagonal 
matrix of divergence 
times 

       A    B    C 
A     0    6    6 
B     6    0    4  
C     6    4    0 

For now imagine that these 
are just the number of substitutions 
between pairs: 
 
A:   GCCCAACTA 

B:   GTTTCCCTC 
Taken from Ran Libeskind-Hadas, Lecture Slides, Fall, 2013 30



Ultrametric Trees 

• Given a symmetric n x n 0-diagonal matrix D, an ultrametric tree T for 
that matrix is one in which: 
– There are n leaves, one for each row (column) of D 
– Each internal node is labeled by a time in D and has exactly two 

children 
– Along any path from the root to a leaf, the (divergence) times at the 

internal nodes strictly decrease 
– For any two leaves i, j of T, the LCA of i, j is labeled with time D(i, j) 

  A    B    C 

A   0    3    3 

B     3    0    2  

C     3    2    0 

3 

2 

A B C 

Taken from Ran Libeskind-Hadas, Lecture Slides, Fall, 2013 31



Ultrametric Matrix Construction 

       A    B    C    D    E 

A     0    5    2    5    7 

B     5    0    5    3    7 

C     2    5    0    5    7 

D     5    3    5    0    7   

E     7     7    7    7    0 

       A    B    C    D    E 

A     0    5    2    5    7 

B     5    0    4    3    7 

C     2    4    0    5    7 

D     5    3    5    0    7   

E     7     7    7    7    0 

• Algorithms exist for “ultrametrifying” matrices. 
 

Taken from Ran Libeskind-Hadas, Lecture Slides, Fall, 2013 32



Minimum Spanning Tree (MST) 

• There is a unique path between any two vertices in a 
spanning tree 

• Adding an edge to a spanning tree creates a cycle 
• Any edge on that cycle can be removed and we’ll still 

have a spanning tree 
• MST is found using Prim’s Algorithm (graph traversal) 

Taken from Ran Libeskind-Hadas, Lecture Slides, Fall, 2013 33



The “Ultrametrification” Algorithm 

Given n x n symmetric 0-diagonal matrix D that is not 
ultrametric 
1.Construct a completely connected graph with n 
vertices, one per row of A.  The edge weight from 
vertex i to vertex j is D(i, j). 
2.Find a minimum spanning tree (MST) of this graph. 
3.Build a new matrix D’ such that D’(i, j) is the largest 
weight on the unique path from i to j in the MST. 

 

Taken from Ran Libeskind-Hadas, Lecture Slides, Fall, 2013 34



Distances: (b) Additive distances 

• All distances satisfy the four-point condition 
– Any quartet can be labeled i,j,k,l such that:  

• d(i,j) + d(k,l) <=    d(i,k)  +    d(j,l)    =    d(i,l)  +  d(j,k) 
• (a+b)+(c+d) <= (a+m+c)+(b+m+d) = (a+m+d)+(b+m+c) 

 
 
 
 
 

• Result:  
– All pairwise distances obtained by traversing a tree 

a 

b 

m 

i 

j 

k 

l 

c 

d 
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Distances: (c) General distances 
• In practice, a distance matrix is neither ultrametric nor additive 

– Noise 
• Measured distances are not exact 
• Evolutionary model is not exact 

– Fluctuations 
• Regions used to measure distances not representative of the species 

tree 
• Gene replacement (gene conversion), lateral transfer 
• Varying rates of mutation can lead to discrepancies 

 
• In the general case, tree-building algorithms must handle noisy 

distance matrices 
– Such a tree can be obtained by 

• Enumeration and scoring of all trees (too expensive) 
• Neighbor-Joining (typically gives a good tree) 
• UPGMA (typically gives a poor tree) 
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Algorithms: (a) UPGMA (aka Hierarchical Clustering) 

Initialization: 
 Assign each xi into its own cluster Ci 
 Define one leaf per sequence, height 0 
 
Iteration: 
 Find two clusters Ci, Cj s.t. dij is min 
 Let Ck = Ci  Cj 
 Define node connecting Ci, Cj,  
  & place it at height dij/2 

 Delete Ci, Cj 
 
Termination: 
 When two clusters i, j remain,  
  place root at height dij/2 

1 4 

3 2 5 

1 4 2 3 5 

(Unweighted Pair Group Method with Arithmetic mean) 
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Ultrametric Distances & UPGMA 

UPGMA is guaranteed to build the correct tree if distance is 
ultrametric 

  
 Proof: 

1. The tree topology is unique, given that the tree is binary 
2. UPGMA constructs a tree obeying the pairwise distances 

1 4 2 3 5 
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Weakness of UPGMA 
Molecular clock assumption:  
 implies time is constant for all species 
 
However, certain species (e.g., mouse, rat) evolve much faster 
 
Example where UPGMA messes up: 

2 
3 

4 
1 

1 4 3 2 

Correct tree UPGMA 
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Algorithms: (b) Neighbor-Joining 

• Guaranteed to produce the correct tree if distance is additive 
• May produce a good tree even when distance is not additive 

 
Step 1: Finding neighboring leaves 
 
Define 
 
Dij = dij – (ri + rj) 
 
Where 
      1 
 ri = –––––k dik 
   |L| - 2 
 
Claim: The above “magic trick” ensures that Dij is minimal iff i, j are neighbors 
Proof: Beyond the scope of this lecture (Durbin book, p. 189) 

1 

2 4 

3 

0.1 
0.1 0.1 

0.4 0.4 
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Algorithm: Neighbor-joining 
Initialization: 
 Define T to be the set of leaf nodes, one per sequence 
 Let L = T 
 
Iteration: 
 Pick i, j s.t. Dij is minimal 
 Define a new node k, and set dkm = ½ (dim + djm – dij) for all m  L 
  
 Add k to T, with edges of lengths dik = ½ (dij + ri – rj) 
 Remove i, j from L;  
 Add k to L 
 
Termination: 
 When L consists of two nodes, i, j, and the edge between them of length dij 
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COMPUTATIONAL METHOD 

Clustering algorithm Optimality criterion 

D
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A 
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PARSIMONY 
 
MAXIMUM LIKELIHOOD 

UPGMA 
 
NEIGHBOR-JOINING 

MINIMUM EVOLUTION 
 
LEAST SQUARES 

Algorithms: (c) Distance-fitting algoriths 

• With distance-based algorithms, we can also aim to 
directly minimize discrepancy between original 
distance matrix and tree-based distance matrix 

42



Distance matrix  Phylogenetic tree 

Hum Mou Rat Dog Cat 

Human 0 4 5 7 6 
Mouse h.y.m 0 3 8 5 

Rat h.y.r m.r 0 9 7 
Dog h.z.x.d m.y.z.x.d r.y.z.x.d 0 2 
Cat h.z.x.c m.y.z.x.c r.y.z.x.c d.c 0 

Human 

Dog 

Cat 

Mouse 

Rat 

d 

c 
x 

h 
z m 

y 
r 

Goal:  
Minimize discrepancy between observed distances and tree-based distances 

Map distances Dij 

to a tree 
Tree implies 

a distance matrix 
Mij 

min ij (Dij-Mij)2 
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Aside: Alternative to Molecular clock? 

Divergence between orthologous sequences is proportional to time 
separating the species. 

Different genes evolve at specific, roughly constant rates. 

Zuckerkandl & Pauling 1962 

divergence time 

di
st

an
ce

 

time 

ra
te

 

sampling 
error 

Taken from Yuri Wolf, Lecture Slides, Feb. 2014 Courtesy of Yuri Wolf; slide in the public domain. 44



Molecular Clock 
Under MC all individual gene trees are ultrametric (up to a sampling error) 
and identical to the species tree up to a scaling factor (evolution rate). 

A 

B 
C 
D 
E 
F 
G 
H 

time 

A 

B 
C 
D 
E 
F 
G 
H 

distance 

A 

B 
C 
D 
E 
F 
G 
H 

distance 

species 
tree 

gene 1 gene 2 

Taken from Yuri Wolf, Lecture Slides, Feb. 2014 

Are these really ultrametric? 

Courtesy of Yuri Wolf; slide in the public domain.
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Molecular Clock 
Most of the real phylogenetic trees are far from being ultrametric. 

Molecular clock is substantially overdispersed. 

time 

ra
te

 

0.2 

ideal expected based 
on sampling error 

observed 

Taken from Yuri Wolf, Lecture Slides, Feb. 2014 
Courtesy of Yuri Wolf; slide in the public domain.
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Relaxed Molecular Clock 

Relaxed molecular clock models allows for rate variation. 

Rates are sampled from prior distributions with limited variance, 
independently or in autocorrelated manner. 

Genes are either analyzed individually, or as concatenated alignments 
(implying evolution as a single unit). 

time 

ra
te

 

Taken from Yuri Wolf, Lecture Slides, Feb. 2014 
Courtesy of Yuri Wolf; slide in the public domain.
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Universal Pacemaker 

Universal Pacemaker model assumes that evolutionary time runs at 
different pace in each lineage. 

Under the UPM, species trees are intrinsically non-ultrametric. 

A 

B 
C 
D 
E 
F 
G 
H 

A 
B 

C 
D 

E 
F 

G 
H 

time pacemaker 
ticks 

Taken from Yuri Wolf, Lecture Slides, Feb. 2014 
Courtesy of Yuri Wolf; slide in the public domain.
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Pacemaker vs Clock 

Both overdispersed MC and UPM models predict that individual gene 
trees would deviate from ultrametricity. 

Under MC these deviations are expected to be uncorrelated. 

Under UPM these deviations are expected to be correlated, so there 
exists a non-ultrametric pacemaker tree that can significantly reduce 
variance of observed rates.  

A testable hypothesis! 

 

2,300 trees of 100 prokaryotic species; 

7,000 trees of 6 Drosophila species 

1,000 trees of 9 yeast species 

5,700 trees of 8 mammalian species 

Taken from Yuri Wolf, Lecture Slides, Feb. 2014 
Courtesy of Yuri Wolf; slide in the public domain.
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Pacemaker vs Clock 

2,300 trees of 100 prokaryotic species; 

7,000 trees of 6 Drosophila species 

1,000 trees of 9 yeast species 

5,700 trees of 8 mammalian species 

All show an overwhelming support to UPM model. 

 

Snir 2012; work in progress at NCBI (NIH) 

Taken from Yuri Wolf, Lecture Slides, Feb. 2014 
Courtesy of Yuri Wolf; slide in the public domain.
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Goals for today: Phylogenetics 
• Basics of phylogeny: Introduction and definitions 

– Characters, traits, nodes, branches, lineages, topology, lengths 
– Gene trees, species trees, cladograms, chronograms, phylograms 

1. From alignments to distances: Modeling sequence evolution 
– Turning pairwise sequence alignment data into pairwise distances 
– Probabilistic models of divergence: Jukes Cantor/Kimura/hierarchy 

2. From distances to trees: Tree-building algorithms 
– Tree types: Ultrametric, Additive, General Distances 
– Algorithms: UPGMA, Neighbor Joining, guarantees and limitations 
– Optimality: Least-squared error, minimum evolution (require search) 

3. From alignments to trees: Alignment scoring given a tree 
– Parsimony: greedy (union/intersection) vs. DP (summing cost) 
– ML/MAP (includes back-mutations, lengths): peeling algorithm (DP) 

4. Tree of Life in Genomic Era 
– The prokaryotic problem (no real taxa and HGT) 
– Interpreting the forest of life 

 51



3. Character-based tree-scoring algorithms 
3a: Parsimony (set-based) 
3b: Parsimony (Dyn. Prog.) 

3c: Maximum Likelihood 

52
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Basic algorithms of phylogenetic methods 

Distance based 

Character based 

From alignments 
To phylogenies 

From Sequences 
To Distances 

Tree building 
algorithms 

Pair-wise distance matrix Sequence alignment 

Sequence alignment Output tree 

Output tree 

Couple to  
tree proposal 
and scoring 

1 2 

3 

4 
53
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Character-based phylogenetic inference 

• Really about tree scoring techniques, not tree 
finding techniques 
– Couple them with tree proposal and update and you 

have an algorithm (part 4 of the lecture) 
• Two approaches exist, all use same architecture:  

– Minimize events: Parsimony (union/intersection) 
– Probabilistic: Max Likelihood / MAP 
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Parsimony scoring (a): Union and intersection 

A B A B 

{A, B} 
C+=1 

{A, B} 
C+=1 

{A} 

{A} {B} {A} {B} 

Given a tree, and an alignment column 
 Label internal nodes to minimize the 

number of required substitutions 
 
Initialization: 
 Set cost C = 0; k = 2N – 1 
 
Iteration: 
 If k is a leaf, set Rk = { xk[u] } 
  
 If k is not a leaf, 
  Let i, j be the daughter nodes; 
  Set Rk = Ri  Rj if intersection is 

nonempty 
  Set Rk = Ri  Rj, and C += 1, if 

intersection is empty 
 
Termination: 
 Minimal cost of tree for column u, = C 
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Parsimony traceback to find ancestral nucleotides 

A B A B 

{A, B} 

{A, B} 

{A} 

{A} {B} {A} {B} A B A B 

A 

A 

 A 
x 

x 
A B A B 

A 

B 

 A 

x 

x 
A B A B 

B 

B 

 B 

x 
x 

Accessible to traceback 
Still optimal, but  

not found by traceback 

Traceback: 
1. Choose an arbitrary nucleotide from R2N – 1 for the root  

 
2. Having chosen nucleotide r for parent k,  

If r  Ri choose r for daughter i 
Else, choose arbitrary nucleotide from Ri 

 
Easy to see that this traceback produces some assignment of cost C 
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Parsimony Scoring (b): Dynamic programming 

M R B1 H B2 D B3 
A 0 1 1 0 1 1 2 
C 1 1 2 1 3 1 4 
G 1 0 1 1 2 0 2 
T 1 1 2 1 3 1 4 

• Each cell (N,C) represents the 
min cost of the subtree rooted at 
N, if the label at N is C. 

• Update table by walking up the 
tree from the leaves to the root, 
remembering max choices.  

• Traceback from root to leaves to 
construct a min cost assignment 

A G A G 
Mouse Rat Human Dog 

B1 

B2 

B3 
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Goals for today: Phylogenetics 
• Basics of phylogeny: Introduction and definitions 

– Characters, traits, nodes, branches, lineages, topology, lengths 
– Gene trees, species trees, cladograms, chronograms, phylograms 

1. From alignments to distances: Modeling sequence evolution 
– Turning pairwise sequence alignment data into pairwise distances 
– Probabilistic models of divergence: Jukes Cantor/Kimura/hierarchy 

2. From distances to trees: Tree-building algorithms 
– Tree types: Ultrametric, Additive, General Distances 
– Algorithms: UPGMA, Neighbor Joining, guarantees and limitations 
– Optimality: Least-squared error, minimum evolution (require search) 

3. From alignments to trees: Alignment scoring given a tree 
– Parsimony: greedy (union/intersection) vs. DP (summing cost) 
– ML/MAP (includes back-mutations, lengths): peeling algorithm (DP) 

4. Tree of Life in Genomic Era 
– The prokaryotic problem (no real taxa and HGT) 
– Interpreting the forest of life 
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Compute 
recursively 
using DP 

Scoring (c) Maximum Likelihood & Max-a-Posteriori 
Input:  Sequence alignment 
Output: tree with maximum likelihood / max a posteriori prob. 
Search: Heuristic search for max likelihood tree. 
   

 
 
 
 

 
 

P(D|B,T) is the likelihood of data given model 
 Use seq evolution model: JC,K2P,HKY. 
P(B,T) is a prior on trees/branch lengths 
 Use Yule process, Birth-Death process to model 

Maximum Likelihood (ML) 
B^,T^ = argmaxB,T P(D|B,T) 

Maximum a Posteriori (MAP) 
B^,T^ = argmaxB,T P(B,T|D) 
          = argmaxB,T P(B,T,D) / P(D) 
          = argmaxB,T P(B,T,D) 
          = argmaxB,T P(D|B,T)P(B,T) 

D = seq. alignment data  
B = branch lengths 
T = topology 

likelihood likelihood 
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‘Peeling’ algorithm for P(D|B,T) term 

1. Assume sites j evolve independently. 
 Treat each column of the alignment in isolation 

2. Assume branch independence, conditioned on parent 
 Expand total joint probability into prod of P(xi|xparent,ti) 
 Only P(x2n-1) remains, root prior, background nucl. freq. 

3. We know how to compute P(xi|xparent(i),ti) for fixed pair 
Defined by our sequence model (JC, K2P, HKY, etc) 
Easily calculate for any given assignment of internal nodes 

4. As internal node values are not known  marginalize 
Sum over all possible values of all internal/root nodes 
Let xn+1,…,x2n-1 represent seqs of n-1 internal nodes 60



1. Site evolution over single branch 

A G 

C T 

 

  

 

 

 

JC is a Continuous-Time 
Markov Chain (CTMC) 

• Defines instantaneous 
rates of transition between 
states (bases) 

Use JC to define single site evolution: “A” 

“C” 

t P(a=“C”|b=“A”, t) = S(t)ba 

Remember: Jukes-Cantor (JC) 
Discrete MC version 

• Given time t, we define a discrete MC with transition 
matrix is S(t), also called a substitution probability matrix.   

• Gives the probability of seeing base a given initial base b 
after duration time t. 
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2. Sequence evolution over single branch 

• Assume site independence 

– P(xi|xk, ti) = Πj P(b=xij|a=xkj, ti) 

Use product to define sequence evolution: 

xk = “AAACTG” 

xi = “CAAGTC” 

ti P(xi|xk, ti)  
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3. Sequence evolution over entire tree 

• Assume branch independence 
– P(x1, …xn, …, x2n-1|T, t) = P(x2n-1)Πi P(xi|xparent(i), ti) 

• Assume prior on root sequence, e.g. 
– P(x2n-1) = P(x2n-1,j) = (1/4)^m  for sequence length m 

Use product and prior to define sequence evolution over tree: 
x9 = “AAACTG” 

x1 x2 x3 x4 x5 

x7 x6 

x8 

t1 

t2 t3 

t6 t7 

t4 t5 

t8 

P(x1, …xn, …, x2n-1|T, t)  
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4. Integrate (marginalize) over hidden ancestral seqs! 

• Notice, all sequences are needed, both internal nodes and leaves 
– P(x1, …xn, …, x2n-1|T, t) 

• But, only leaves are given: x1, …xn 

• Therefore, need to marginalize (sum) over unknowns: xn+1, …, x2n-1 

 

• This looks expensive! 
– P(x1, …xn|T, t) = Σxn+1, …, Σ x2n-1 P(x1, …xn, …, x2n-1|T, t) 

• Don’t worry, dynamic programming  
can do it efficiently. 

  

x9 = “AAACTG” 

x1 x2 x3 x4 x5 

x7 x6 

x8 

t1 

t2 t3 

t6 t7 

t4 t5 

t8 
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Basic trick to efficient marginalization 

P(x1,x2,x3,x4|T, t) = Σx5Σx6Σx7 P(x1,x2,x3,x4,x5,x6,x7|T, t) 

 = Σx5Σx6Σx7 P(x1|x5,t1) P(x2|x5,t1)  

  P(x3|x6,t3) P(x4|x6,t4)  

  P(x5|x7,t5) P(x6|x7,t6) P(x7) 

= Σx7 P(x7)  

   [Σx5 P(x5|x7,t5) P(x1|x5,t1) P(x2|x5,t1)] 

   [Σx6 P(x6|x7,t6) P(x3|x6,t3) P(x4|x6,t4)] 

x5 

x1 x2 

t1 t2 

x6 

x3 x4 

t3 t4 

x7 

t5 t6 

Apply factorization trick to every internal node in the tree. 

• L(i,j,a) is the DP table.   
• Each entry contains the probability  

of seeing the leaf data below node i,  
given that node i has base a at site j. 

• The leaves of the table are initialized  
based on the observed sequence.   
Entries populated in post-order traversal. 

• Runtime: O(2n * k^2) 

Peeling algorithm 
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Use DP to compute argmax P(D|B,T) efficiently 

• If we know the branch lengths tleft & tright. 
• And we already have the likelihood tables 

Lj&Lk of left and right subtrees 
(for each possible ending character at b, c) 

 Fill in likelihood table Li for each char a at i 

Lj[b] 

Li Lj Lk 

A 

C P(.|‘C
’) 

G 
T 

Li[a] = Σb{ACGT} Σc{ACGT} (  P(b|a,tleft)*Lleft[b] * P(c|a,tright)*Lright[c]  ) 

Char a at node i 

b at j 

Prob(ab) 

tleft tright 

Lk[c] 

Li[a] 

Prob(ac) 

c at j 
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Initialization and Termination 

• Characters at the leaves are already known 
– Their likelihood is 1 or 0, indicating the known char 

• Fill in internal node likelihood vectors iteratively 
• Once we reach the root, multiply by the base freqs 
• Maximization over Topologies and Lengths 
 Numerical: gradient descent, Newton’s method 

2n-1 … … … i j k … n+1 n … 3 2 1 
A 0 0 1 0 0 
C 1 0 0 0 1 
G 0 0 0 0 0 
T 0 1 0 1 0 

Root Leaves Internal Nodes 
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Advantages/disadvantages of ML/MAP methods 
• Advantages: 

– Inherently statistical and evolutionary model-based. 
– Usually the most ‘consistent’ of the methods available. 
– Used for both character and rate analyses 
– Can be used to infer the sequences of the extinct ancestors. 
– Account for branch-length effects in unbalanced trees. 
– Nucleotide or amino acid sequences, other types of data. 

 
• Disadvantages: 

– Not as intuitive as parsimony (e.g. may choose more events 
if they’re more likely in our probabilistic model) 

– Computationally intense (Iimits num taxa, sequence length). 
– Like parsimony, can be fooled by high levels of homoplasy. 
– Violations of model assumptions can lead to incorrect trees. 
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Tree reliability: Bootstrapping 

1. Re-sample alignments:  
– Randomly sample alignment columns  

with replacement 
– Create many alignments of equal size. 

2. Build a phylogenetic tree  
for each sample 

3. Repeat (1) and (2) many times  
– 1000s of times 

4. Output summary tree 
– Tree constructed most frequently 
– Consensus tree (even if not most freq) 
– Other options 

5. Report observation frequency  
of each branch 

– Each branch is a binary split 
© Source unknown. All rights reserved. This content is excluded from our Creative
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Goals for today: Phylogenetics 
• Basics of phylogeny: Introduction and definitions 

– Characters, traits, nodes, branches, lineages, topology, lengths 
– Gene trees, species trees, cladograms, chronograms, phylograms 

1. From alignments to distances: Modeling sequence evolution 
– Turning pairwise sequence alignment data into pairwise distances 
– Probabilistic models of divergence: Jukes Cantor/Kimura/hierarchy 

2. From distances to trees: Tree-building algorithms 
– Tree types: Ultrametric, Additive, General Distances 
– Algorithms: UPGMA, Neighbor Joining, guarantees and limitations 
– Optimality: Least-squared error, minimum evolution (require search) 

3. From alignments to trees: Alignment scoring given a tree 
– Parsimony: greedy (union/intersection) vs. DP (summing cost) 
– ML/MAP (includes back-mutations, lengths): peeling algorithm (DP) 

4. Tree of Life in Genomic Era 
– The prokaryotic problem (no real taxa and HGT) 
– Interpreting the forest of life 

 

1 

2 

3 

4 
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Genomic era – growing frustration with discrepancies between the trees 
reconstructed for individual genes and heroic efforts to overcome the 
noise. Role of horizontal gene transfer in the evolution of prokaryotic 
genomes is established. 
 
Major lines of approach: 
 

• gene repertoire and gene order 
• distribution of distances between orthologs 
• concatenated alignments of "non-transferable" gene cores 
• consensus trees and supertrees 

Ciccarelli 2006. Towards automatic reconstruction of a highly 

resolved tree of life. Science 311, 1283-1287 [Figure 2] 

Tree of Life in Genomic Era 

Taken from Yuri Wolf, Lecture Slides, Feb. 2014 
Image in the public domain.

Courtesy of Yuri Wolf; slide in the public domain.
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Doolittle 2000. Uprooting the tree of life. Sci. Am. 282, 90-95 [modified] 

Tree of Life, Rejected 

Bacteria Archaea 

Eukaryotes 

Bacteria Archaea 

Eukaryotes 

Troubled times – "uprooting" of TOL for prokaryotes. 
 

• horizontal gene transfer is rampant; no gene is exempt 
• histories of individual genes are non-coherent with each other 
• vertical signal is completely lost (or never existed at all) 
• there are no species (or other taxa) in prokaryotes 
• a consistent signal we observe is created by biases in HGT 

"Standard Model" "Net of Life" 

Taken from Yuri Wolf, Lecture Slides, Feb. 2014 

© Scientific American, Inc. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Source: Doolittle, W. Ford. "Uprooting the tree of life." Scientific American 282, no. 2 (2000): 90.
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Forest of Life – Methods 

Source data and basic analysis methods: 
 

• 100 hand-picked microbial genomes (41 archaea and 59 bacteria) 
representing a "fair" sample of prokaryote diversity (as known in 2008) 

• clusters of orthologous genes (NCBI COGs and EMBL EggNOGs) 
• multiple protein sequence alignments → index orthologs → ML 

phylogenetic trees 
• 6901 trees cover 4-100 species; of them 102 cover 90-100 species 

(Nearly Universal Trees) 
• direct tree comparison (distances between trees) 
• quartet decomposition; analysis of quartet spectra 
• simulation evolutionary models 

Taken from Yuri Wolf, Lecture Slides, Feb. 2014 
Courtesy of Yuri Wolf; slide in the public domain.
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Forest of Life – Analysis 
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NUTs 

NUTs are much closer to each 
other than expected by chance 

random 

NUTs form a tightly connected 
network when clustered by similarity 

NUTs don’t form clusters 
(random scatter around center) 

NUTs are connected to the rest of 
the forest 

Taken from Yuri Wolf, Lecture Slides, Feb. 2014 

© Source unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of Yuri Wolf; slide in the public domain. 74
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Forest of Life – Analysis 

NUTs are dominated by tree-like 
descent 

NUTs FOL 
0.63 +/- 0.35 0.39 +/- 0.31 

“Tree-like” vs “Net-like” components of the trees  (how many quartets 
agree/disagree with the consensus tree). 

Overall the forest of life is 
dominated by network-like 
relationships (HGT) 

Taken from Yuri Wolf, Lecture Slides, Feb. 2014 

© Source unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of Yuri Wolf; slide in the public domain.
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Forest of Life – Analysis 

Simulated example of 16 trees for 10 organisms: 

No two trees are the same; each contains 2 random deviations from the 
consensus tree. Common statistical trend is visible. 

Taken from Yuri Wolf, Lecture Slides, Feb. 2014 
Courtesy of Yuri Wolf; slide in the public domain.
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Module V: Evolution/phylogeny/populations 

• Phylogenetics / Phylogenomics 
– Phylogenetics: Evolutionary models, Tree building, Phylo inference 
– Phylogenomics: gene/species trees, reconciliation, coalescent, pops 

• Population genomics:  
– Learning population history from genetic data  
– Assembling and getting information on genomes  
– Recitation about suffix arrays used in genome mapping and 

assembly 
• Next Pset due on Nov 1st 

– Don’t wait until the last week to start it! 
77



MIT OpenCourseWare
http://ocw.mit.edu

6.047 / 6.878 / HST.507 Computational Biology
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu/terms



