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Module III: Epigenomics and gene regulation 

• Computational Foundations 
– L10: Gibbs Sampling: between EM and Viterbi training 
– L11: Rapid linear-time sub-string matching 
– L11: Multivariate HMMs 
– L12: Post-transcriptional regulation 

• Biological frontiers: 
– L10: Regulatory motif discovery, TF binding 
– L11: Epigenomics, chromatin states, differentiation 
– L12: Post-transcriptional regulation 
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Motif discovery overview 
1. Introduction to regulatory motifs / gene regulation 

– Two settings: co-regulated genes (EM,Gibbs), de novo 
2. Expectation maximization: Motif matrixpositions 

– E step: Estimate motif positions Zij from motif matrix 
– M step: Find max-likelihood motif from all positions Zij 

3. Gibbs Sampling: Sample from joint (M,Zij) distribution 
– Sampling motif positions based on the Z vector 
– More likely to find global maximum, easy to implement 

4. Evolutionary signatures for de novo motif discovery 
– Genome-wide conservation scores, motif extension 
– Validation of discovered motifs: functional datasets 

5. Evolutionary signatures for instance identification 
– Phylogenies, Branch length score  Confidence score 
– Foreground vs. background. Real vs. control motifs.  

 
3



ATGACTAAATCTCATTCAGAAGAAGTGA 

Regulatory motif discovery 

GAL1 

CCCCW CGG CCG 

Gal4 Mig1 

CGG CCG 

Gal4 

• Regulatory motifs 
– Genes are turned on / off in response to changing environments 
– No direct addressing:  subroutines (genes) contain sequence tags (motifs) 
– Specialized proteins (transcription factors) recognize these tags 

 
•  What makes motif discovery hard? 

– Motifs are short (6-8 bp), sometimes degenerate 
– Can contain any set of nucleotides (no ATG or other rules) 
– Act at variable distances upstream (or downstream) of target gene 
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The regulatory code: All about regulatory motifs 

• The parts list:  ~20-30k genes 
– Protein-coding genes, RNA genes (tRNA, microRNA, snRNA) 

• The circuitry:  constructs controlling gene usage 
– Enhancers, promoters, splicing, post-transcriptional motifs 

• The regulatory code, complications:  
– Combinatorial coding of ‘unique tags’ 

• Data-centric encoding of addresses 
– Overlaid with ‘memory’ marks 

• Large-scale on/off states 
– Modulation of the large-scale coding 

• Post-transcriptional and post-translational information 
• Today: discovering motifs in co-regulated promoters and de novo 

motif discovery & target identification 

Enhancer regions 
5’-UTR 

Promoter motifs 
3’-UTR 

Where in the body? When in time? Which variants? 
Splicing signals 

Which subsets? 
Motifs at RNA level 
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TFs use DNA-binding domains to recognize 
specific DNA sequences in the genome 

DNA-binding domain of 
Engrailed 

“Logo” or  “motif” 

TAATTA CACGTG AGATAAGA 

TCATTA 
Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Berger, Michael F. et al. "Variation in homeodomain DNA binding revealed by
high-resolution analysis of sequence preferences." Cell 133, no. 7 (2008): 1266-1276. 6

http://dx.doi.org/10.1016/j.cell.2008.05.024
http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.cell.2008.05.024


Disrupted motif at the heart of FTO obesity locus 

Obese 

Lean 

Strongest association  

with obesity 

C-to-T disruption of AT-rich 

regulatory motif 

Restoring motif restores thermogenesis 
Courtesy of Manolis Kellis. Used with permission. 7



Regulator structure  recognized motifs 

• Proteins ‘feel’ DNA 
– Read chemical properties of bases 
– Do NOT open DNA (no base 

complementarity) 
 

• 3D Topology dictates specificity 
– Fully constrained positions:  
 every atom matters 

– “Ambiguous / degenerate” positions 
 loosely contacted 

 
• Other types of recognition 

– MicroRNAs: complementarity 
– Nucleosomes: GC content 
– RNAs: structure/seqn combination 

© Garland Publishing. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Motifs summarize TF sequence specificity 

• Summarize 
information 
 

• Integrate many 
positions 

 

• Measure of 
information 
 

• Distinguish motif  
vs. motif instance 
 

• Assumptions: 
– Independence 
– Fixed spacing 
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Experimental factor-centric discovery of motifs 

SELEX (Systematic 
Evolution of Ligands by 
Exponential Enrichment; 
Klug & Famulok, 1994) 

DIP-Chip (DNA-
immunoprecipitatio
n with microarray 
detection; Liu et al., 
2005) 

PBMs (Protein binding 
microarrays; Mukherjee, 
2004) 
Double stranded DNA 
arrays 

Courtesy of the authors. Used with permission.
Source: Ray, Partha, and Rebekah R. White. "Aptamers
For targeted drug delivery." Pharmaceuticals 3, no. 6
(2010): 1761-1778.

 

© Cold Spring Harbor Laboratory Press. All rights
reserved. This content is excluded from our Creative
Commons license. For more information, see http://
ocw.mit.edu/help/faq-fair-use/. 
Source: Liu, Xiao et al. "DIP-chip: rapid and accurate
determination of DNA-binding specificity." Genome
Research 15, no. 3 (2005): 421-427.

 

© source unknown. All rights reserved.
This content is excluded from our
Creative Commons license. For more
information, see http://ocw.mit.edu/
help/faq-fair-use/.
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Approaches to regulatory motif discovery 

• Expectation Maximization (e.g. MEME) 
– Iteratively refine positions / motif profile 

• Gibbs Sampling (e.g. AlignACE) 
– Iteratively sample positions / motif profile 

• Enumeration with wildcards (e.g. Weeder) 
– Allows global enrichment/background score 

• Peak-height correlation (e.g. MatrixREDUCE) 
– Alternative to cutoff-based approach 

 

• Conservation-based discovery (e.g. MCS) 
– Genome-wide score, up-/down-stream bias 

 

• Protein Domains (e.g. PBMs, SELEX) 
– In vitro motif identification, seq-/array-based 

Region-
based 
motif 
discovery 

Genome-
wide  

In vitro / 
trans 
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Motifs are not limited to DNA sequences 

• Splicing Signals at the RNA level 
– Splice junctions 
– Exonic Splicing Enhancers (ESE) 
– Exonic Splicing Surpressors (ESS) 

• Domains and epitopes at the Protein level 
– Glycosylation sites 
– Kinase targets 
– Targetting signals 
– MHC binding specificities 

• Recurring patterns at the physiological level 
– Expression patterns during the cell cycle 
– Heart beat patterns predicting cardiac arrest 

• Final project in previous year, now used in Boston hospitals! 
– Any probabilistic recurring pattern 
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Regulator 
TF/miRNA 

Motif 
Sequence 
specificity 

TFs: Selex, DIP-Chip, Protein-Binding-Microarrays 
miRNAs: Evolutionary/structural signatures 
miRNAs: Experimental cloning of 5’-ends 

TFs: Mass Spec (difficult) 

TFs: ChIP-Chip/ChIP-Seq 
TFs/miRs: Perturbation response TFs/miRNAs: Evolutionary signatures** 

miRNAs: Composition/folding 

TFs: Enrichment in  
co-regulated genes/ 

bound regions ** 

TFs: Homology to TFs/domains 
miRNAs: Evolutionary signatures 
miRNAs: Experimental cloning 

TFs/miRNAs: De novo  
comparative discovery** 

* = Covered in today’s lecture 

Network analysis 
(upcoming lecture) 

Challenges in regulatory genomics 

Targets 
Functional instances 

Evolutionary footprints 
DNase footprints 
Chromatin ‘dips’ 
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Motif discovery overview 
1. Introduction to regulatory motifs / gene regulation 

– Two settings: co-regulated genes (EM,Gibbs), de novo 
2. Expectation maximization: Motif matrixpositions 

– E step: Estimate motif positions Zij from motif matrix 
– M step: Find max-likelihood motif from all positions Zij 

3. Gibbs Sampling: Sample from joint (M,Zij) distribution 
– Sampling motif positions based on the Z vector 
– More likely to find global maximum, easy to implement 

4. Evolutionary signatures for de novo motif discovery 
– Genome-wide conservation scores, motif extension 
– Validation of discovered motifs: functional datasets 

5. Evolutionary signatures for instance identification 
– Phylogenies, Branch length score  Confidence score 
– Foreground vs. background. Real vs. control motifs.  

 
14



Enrichment-based discovery methods 
Given a set of co-regulated/functionally related genes,  

find common motifs in their promoter regions 

• Align the promoters to each other using local alignment 
• Use expert knowledge for what motifs should look like 
• Find ‘median’ string by enumeration (motif/sample driven) 
• Start with conserved blocks in the upstream regions 15



Starting positions  Motif matrix 

sequence positions 

A 
C 
G 
T 

1 2 3 4 5 6 7 8 

0.1 

0.1 

0.6 

0.2 

• given aligned sequences  easy to compute profile matrix 

0.1 

0.5 

0.2 

0.2 0.3 

0.2 

0.2 

0.3 0.2 

0.1 

0.5 

0.2 0.1 

0.1 

0.6 

0.2 

0.3 

0.2 

0.1 

0.4 

0.1 

0.1 

0.7 

0.1 

0.3 

0.2 

0.2 

0.3 

shared motif 

   given profile matrix 
      • easy to find starting position probabilities 

Key idea:  Iterative procedure for estimating both, given 
uncertainty 

(learning problem with hidden variables:  the starting positions) 
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Basic Iterative Approach 

Given: length parameter W, training set of sequences 
set initial values for motif 
do 
 re-estimate starting-positions from motif  

 re-estimate motif from starting-positions 
until convergence (change < ε) 

return: motif, starting-positions 
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Representing Motif M(k,c) and Background B(c) 

• Assume motif has fixed width, W 
• Motif represented by matrix of probabilities: M(k,c) 

 the probability of character c in column k 

          1    2    3 
A  0.1  0.5  0.2 

C  0.4  0.2  0.1 

G  0.3  0.1  0.6 

T  0.2  0.2  0.1 

M

         
A  0.26 

C  0.24 

G  0.23   

T  0.27 

B

• Background represented by B(c), frequency of each 
base 

(near uniform) 

(~CAG) 

(see also: di-nucleotide etc) 
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Representing the starting position probabilities (Zij) 

• the element        of the matrix       represents the 
probability that the motif starts in position j in sequence i 

Z

                 1    2    3    4 
seq1  0.1  0.1  0.2  0.6 

seq2  0.4  0.2  0.1  0.3 

seq3  0.3  0.1  0.5  0.1 

seq4  0.1  0.5  0.1  0.3 

Z

ijZ

Z1 

uniform 

one big  
winner 

two 
candidates 

no clear 
winner 

Z2 

Z3 

Z4 

Some examples:  
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Starting positions (Zij)  Motif matrix M(k,c) 

• Zij:  Probability that on sequence i, motif start at position j 
• M(k,c): Probability that kth character of motif is letter c 

c=A 

c=C 

c=G 

c=T 

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 

0.1 

0.1 

0.6 

0.2 

0.1 

0.5 

0.2 

0.2 0.3 

0.2 

0.2 

0.3 0.2 

0.1 

0.5 

0.2 0.1 

0.1 

0.6 

0.2 

0.3 

0.2 

0.1 

0.4 

0.1 

0.1 

0.7 

0.1 

0.3 

0.2 

0.2 

0.3 

• Three variations for re-computing motif M(k,c) from Zij matrix 
– Expectation maximization  All starts weighted by Zij prob distribution 
– Gibbs sampling   Single start for each seq Xi by sampling Zij 

– Greedy approach   Best start for each seq Xi by maximum Zij 

M-step 

E-step 

X1 X2 X3 … Xi … Xn 
Motif:  M(k,c) Starting positions:  Zij 

• Computing Zij matrix from M(k,c) is straightforward 
– At each position, evaluate start probability by multiplying across the matrix 
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Motif discovery overview 
1. Introduction to regulatory motifs / gene regulation 

– Two settings: co-regulated genes (EM,Gibbs), de novo 
2. Expectation maximization: Motif matrixpositions 

– E step: Estimate motif positions Zij from motif matrix 
– M step: Find max-likelihood motif from all positions Zij 

3. Gibbs Sampling: Sample from joint (M,Zij) distribution 
– Sampling motif positions based on the Z vector 
– More likely to find global maximum, easy to implement 

4. Evolutionary signatures for de novo motif discovery 
– Genome-wide conservation scores, motif extension 
– Validation of discovered motifs: functional datasets 

5. Evolutionary signatures for instance identification 
– Phylogenies, Branch length score  Confidence score 
– Foreground vs. background. Real vs. control motifs.  
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E-step:   
Estimate Zij positions from matrix 

c=A 

c=C 

c=G 

c=T 

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 

0.1 

0.1 

0.6 

0.2 

0.1 

0.5 

0.2 

0.2 0.3 

0.2 

0.2 

0.3 0.2 

0.1 

0.5 

0.2 0.1 

0.1 

0.6 

0.2 

0.3 

0.2 

0.1 

0.4 

0.1 

0.1 

0.7 

0.1 

0.3 

0.2 

0.2 

0.3 

E-step 

X1 
X2 
X3 
… 
Xi 
… 
Xn 

Motif:  M(k,c) Starting positions:  Zij 
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Three examples for Greedy, Gibbs Sampling, EM 

uniform 

one big  
winner 

two 
candidates Z1 

Z2 

Z3 

All methods agree 

Greedy always picks maximum 
Gibbs sampling picks one at random (or) 

EM uses both in estimating motif 
(and) 

Greedy ignores most of the probability 

EM averages over the entire sequence (slow/no convergence) 

Gibbs sampling rapidly converges to some choice 
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Calculating P(Xi) when motif position is known 

• Probability of training sequence Xi, given hypothesized start position j 













L

Wjk

ki

Wj

jk

ki

j

k

kiiji XBXjkMXBBMZX )(),1()(),,1|Pr( ,

1

,

1

1
,

before motif motif after motif 

  

A  0.25 

C  0.25 

G  0.25 

T  0.25 

MG C T G T A G iX

• Example:  

B

0.25 0.251.01.02.00.25 0.25        
)()(),3(),2(),1()(B(G)        

),,1|Pr( 3







GBABTMGMTMCB

BMZX ii

    1    2    3 

A  0.1  0.5  0.2 

C  0.4  0.2  0.1 

G  0.3  0.1  0.6 

T  0.2  0.2  0.1 
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Calculating the Z vector   ( using M ) 

• At iteration t, calculate Zij
(t) based on M(t) 

– We just saw how to calculate Pr(Xi | Zij=1,M(t)) 
– To obtain total probability Pr(Xi), sum over all starting positions 









 1

1

)(

)(
)(

)1Pr(),1|Pr(

)1Pr(),1|Pr(
WL

k

ik

t

iki

ij

t

ijit

ij

ZMZX

ZMZX
Z

• To estimate the starting positions in Z at step t 

(Bayes’ rule) 

- Assume uniform priors (motif eq likely to start at any position) 

posterior 
evidence 

likelihood prior 

)Pr(
)1Pr(),1|Pr(

),|1Pr(
)(

)()(

i

ij

t

ijit

iij

t

ij
X

ZMZX
MXZZ



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Calculating the Z vector:  Example 

25.025.025.025.01.02.03.01 iZ

25.025.025.06.02.04.025.02 iZ

• then normalize so that 1
1

1






WL

j

ijZ
... 

      0     1    2    3 

A  0.25   0.1  0.5  0.2 

C  0.25   0.4  0.2  0.1 

G  0.25   0.3  0.1  0.6 

T  0.25   0.2  0.2  0.1 

p

G C T G T A G iX
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Aside: Simplifying P(Xi) 

• Probability of training sequence Xi, given hypothesized start position j 











L

k

ki

Wj

jk ki

ki
XB

XB

XjkM

1
,

1

,

, )(
)(

),1(

constant for 
each sequence 

can be stored in  
a matrix 













L

Wjk

ki

Wj

jk

ki

j

k

kiiji XBXjkMXBBMZX )(),1()(),,1|Pr( ,

1

,

1

1
,

before motif motif after motif 
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Motif discovery overview 
1. Introduction to regulatory motifs / gene regulation 

– Two settings: co-regulated genes (EM,Gibbs), de novo 
2. Expectation maximization: Motif matrixpositions 

– E step: Estimate motif positions Zij from motif matrix 
– M step: Find max-likelihood motif from all positions Zij 

3. Gibbs Sampling: Sample from joint (M,Zij) distribution 
– Sampling motif positions based on the Z vector 
– More likely to find global maximum, easy to implement 

4. Evolutionary signatures for de novo motif discovery 
– Genome-wide conservation scores, motif extension 
– Validation of discovered motifs: functional datasets 

5. Evolutionary signatures for instance identification 
– Phylogenies, Branch length score  Confidence score 
– Foreground vs. background. Real vs. control motifs.  
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M-step:   
Max-likelih motif from Zij positions 

c=A 

c=C 

c=G 

c=T 

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 

0.1 

0.1 

0.6 

0.2 

0.1 

0.5 

0.2 

0.2 0.3 

0.2 

0.2 

0.3 0.2 

0.1 

0.5 

0.2 0.1 

0.1 

0.6 

0.2 

0.3 

0.2 

0.1 

0.4 

0.1 

0.1 

0.7 

0.1 

0.3 

0.2 

0.2 

0.3 

M-step 

X1 
X2 
X3 
… 
Xi 
… 
Xn 

Motif: M(k,c) Starting positions:  Zij 
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The M-step: Estimating the motif M 

 




c

ck

ckt

dn

dn
ckM

)(
),(

,

,)1(

 



i cXj

ijkc

kji

Zn
}|{

,
1,

pseudo-counts 

total # of c’s 
in data set 

• recall                  represents the probability of  character c in 
position k ;             stores values for the background 

),( ckM

where 

)(cB





W

j

cjcc nnn
1

,,0 




c

c

ct

dn

dn
cB

)(
)(

,0

,0)1(
where 
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M-step example: Estimating M(k,c) from Zij 

A G G C A G 

A C A G C A 

T C A G T C 

4  ... 
1

),1(
4,33,32,11,1

3,31,23,11,1






ZZZZ

ZZZZ
AM

Z1 =  0.1  0.7  0.1  0.1 

Z2 =  0.4  0.1  0.1 0.4 

Z3 =  0.2  0.6  0.1  0.1 

X1 = 

X2 = 

X3 = 

• EM: sum over full probability 
– n1,A= 0.1+0.1+0.4+0.1 = 0.7 
– n1,C= 0.7+0.4+0.6 = 1.7 
– n1,G= 0.1+0.1+0.1+0.1= 0.4 
– n1,T= 0.2 = 0.2 
– Total:  T=0.7+1.7+0.4+0.2 = 3.0 

 
• Normalize and add pseudo-counts 

– M(1,A) = (0.7+1)/(T+4) = 1.7/7=0.24 
– M(1,C) = (1.7+1)/(T+4) = 2.7/7=0.39 
– M(1,G) = (0.4+1)/(T+4) = 1.4/7=0.2 
– M(1,T) = (0.2+1)/(T+4) = 1.2/7=0.17 

 
 

• M(k,c) =  

1 2 3 

A 0.24 0.39 0.21 

C 0.39 0.21 0.18 

G 0.2 0.24 0.44 

T 0.17 0.16 0.16 

Em approach:  Avg’em all 
Gibbs sampling: Sample one 
Greedy:  Select max 31



The EM Algorithm 

• EM converges to a local maximum in the likelihood of the 
data given the model: 


i

i BMX ),|Pr(

• Deterministic iterations max direction of ascent 
• Usually converges in a small number of iterations 
• Sensitive to initial starting point (i.e. values in M) 
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P(Seq|Model) Landscape 

P(
Se

qu
en

ce
s|

pa
ra

m
s1

,p
ar

am
s2

) 

EM searches for parameters to increase P(seqs|parameters) 

Useful to think of 
P(seqs|parameters) 

as a function of parameters  

EM starts at an initial set of 
parameters   

And then “climbs uphill” until it 
reaches a local maximum 

Where EM starts can make a big difference 

© source unknown. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.
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One solution: Search from Many Different Starts 

P(
Se

qu
en

ce
s|

pa
ra

m
s1

,p
ar

am
s2

) 

To minimize the effects of local maxima, you should search 
multiple times from different starting points 

MEME uses this idea 
 
 

Start at many points 
 

Run for one iteration 
 

Choose starting point that got 
the “highest” and continue 

© source unknown. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.
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Motif discovery overview 
1. Introduction to regulatory motifs / gene regulation 

– Two settings: co-regulated genes (EM,Gibbs), de novo 
2. Expectation maximization: Motif matrixpositions 

– E step: Estimate motif positions Zij from motif matrix 
– M step: Find max-likelihood motif from all positions Zij 

3. Gibbs Sampling: Sample from joint (M,Zij) distribution 
– Sampling motif positions based on the Z vector 
– More likely to find global maximum, easy to implement 

4. Evolutionary signatures for de novo motif discovery 
– Genome-wide conservation scores, motif extension 
– Validation of discovered motifs: functional datasets 

5. Evolutionary signatures for instance identification 
– Phylogenies, Branch length score  Confidence score 
– Foreground vs. background. Real vs. control motifs.  
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Three options for assigning points, and  
their parallels across K-means, HMMs, Motifs 

Update 
assignments 
(E step)  
Estimate hidden 
labels 

Algorithm implementing E step  
in each of the three settings 

Update 
model 
parameters 
(M step)  
max 
likelihood 

Expression 
clustering 

HMM 
learning 

Motif 
discovery 

The hidden label is: Cluster labels State path π Motif positions 

Assign each point 
to best label  

K-means:  
Assign each 
point to nearest 
cluster 

Viterbi 
training: label 
sequence with 
best path 

Greedy: Find 
best motif match 
in each sequence 

Average of 
those points 
assigned to 
label 

Assign each point 
to all labels, 
probabilistically 

Fuzzy K-
means: Assign 
to all clusters, 
weighted by 
proximity 

Baum-Welch 
training: label 
sequence w all 
paths (posterior 
decoding) 

MEME: Use all 
positions as a 
motif occurrence 
weighed by motif 
match score 

Average of all 
points, 
weighted by 
membership 

Pick one label at 
random, based on 
their relative 
probability 

N/A: Assign to 
a random 
cluster, sample 
by proximity 

N/A: Sample a 
single label for 
each position, 
according to 
posterior prob. 

Gibbs sampling: 
Use one position 
for the motif, by 
sampling from the 
match scores 

Average of 
those points 
assigned to 
label(a 
sample) 

U
pd

at
e 

ru
le

 
P

ic
k 

a 
be

st
 

Av
er

ag
e 

al
l 

S
am

pl
e 

on
e 
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Three examples of Greedy, Gibbs Sampling, EM 

uniform 

one big  
winner 

two 
candidates Z1 

Z2 

Z3 

All methods agree 

Greedy always picks maximum 
Gibbs sampling picks one at random (or) 

EM uses both in estimating motif 
(and) 

Greedy ignores most of the probability 

EM averages over the entire sequence (no preference) 

Gibbs sampling rapidly converges to some choice 
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Gibbs Sampling 
• A general procedure for sampling from the joint distribution of a set 

of random variables                              by iteratively sampling from                                             
for each j 

• Useful when it’s hard to explicitly express means, stdevs, 
covariances across the multiple dimensions 

• Useful for supervised, unsupervised, semi-supervised learning 
– Specify variables that are known, sample over all other variables 

• Approximate: 
– Joint distribution: the samples drawn 
– Marginal distributions: examine samples for subset of variables 
– Expected value: average over samples 

• Example of Markov-Chain Monte Carlo (MCMC) 
– The sample approximates an unknown distribution 
– Stationary distribution of sample (only start counting after burn-in) 
– Assume independence of samples (only consider every 100) 

• Special case of Metropolis-Hastings 
– In its basic implementation of sampling step 
– But it’s a more general sampling framework 

) ..., ...|Pr( 111 njjj UUUUU 

) ...Pr( 1 nUU
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Gibbs Sampling for motif discovery 

given: length parameter W, training set of sequences 
choose random positions for a 

do 
    pick a sequence Xi 

     estimate p given current motif positions a (update step) 
           (using all sequences but Xi) 
      sample a new motif position ai for Xi (sampling step) 
until convergence 

return: p, a 

• First application to motif finding: Lawrence et al 1993 
• Can view as a stochastic analog of EM for motif discovery task 
• Less susceptible to local minima than EM 

• EM maintains distribution Zi over the starting points for each seq 
• Gibbs sampling selects specific starting point ai for each seq 
 but keeps resampling these starting points 
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Popular implementation: AlignACE, BioProspector 
AlignACE: first statistical motif finder 
BioProspector: improved version of AlignACE 

 
Both use basic Gibbs Sampling algorithm: 
1. Initialization: 

a. Select random locations in sequences X1, …, XN  
b. Compute an initial model M from these locations 

2. Sampling Iterations: 
a. Remove one sequence Xi 
b. Recalculate model 
c. Pick a new location of motif in Xi  according to probability 

the location is a motif occurrence 
 

In practice, run algorithm from multiple random initializations: 
1. Initialize 
2. Run until convergence 
3. Repeat 1,2 several times, report common motifs 
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Gibbs Sampling (AlignACE) 
• Given:  

– X1, …, XN,  
– motif length W, 
– background B, 

 
• Find: 

– Model M 
– Locations a1,…, aN in X1, …, XN 

 
 Maximizing log-odds likelihood ratio 
 This is the same as the EM objective (notice log and notation 

change) 
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log
,

,
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kai
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Gibbs Sampling (AlignACE) 
Predictive Update: 

 
• Select a sequence xi 
• Remove xi, recompute model: 
 

dN

cXd
ckM is kas s

4)1(
)(

),( ,






  

where d is a pseudocount  to avoid 0s 

M 
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Sampling New Motif Positions 

• for each possible starting position, ai=j, compute a weight 
 
 
 
 
 

• randomly select a new starting position ai according to these weights 
(normalizing across the sequence, again like with MEME) 
 

• Note, this is equivalent to using the likelihood from MEME because:  
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Advantages / Disadvantages 
• Very similar to EM 

 
Advantages: 
• Easier to implement 
• Less dependent on initial parameters 
• More versatile, easier to enhance with heuristics 

 
Disadvantages: 
• More dependent on all sequences to exhibit the motif 
• Less systematic search of initial parameter space 
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Gibbs Sampling and Climbing 
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Because gibbs sampling does always choose the best new location 
it can move to another place not directly uphill 

In theory, Gibbs Sampling less likely to get stuck a local maxima 

© source unknown. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.
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Motif discovery overview 
1. Introduction to regulatory motifs / gene regulation 

– Two settings: co-regulated genes (EM,Gibbs), de novo 
2. Expectation maximization: Motif matrixpositions 

– E step: Estimate motif positions Zij from motif matrix 
– M step: Find max-likelihood motif from all positions Zij 

3. Gibbs Sampling: Sample from joint (M,Zij) distribution 
– Sampling motif positions based on the Z vector 
– More likely to find global maximum, easy to implement 

4. Evolutionary signatures for de novo motif discovery 
– Genome-wide conservation scores, motif extension 
– Validation of discovered motifs: functional datasets 

5. Evolutionary signatures for instance identification 
– Phylogenies, Branch length score  Confidence score 
– Foreground vs. background. Real vs. control motifs.  
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Motivation for de novo genome-wide motif discovery 

• Both TF and region centric approaches are not 
comprehensive and are biased  

• TF centric approaches generally require 
transcription factor (or antibody to factor) 
– Lots of time and money 
– Also have computational challenges 

• De novo discovery using conservation is unbiased 
but can’t match motif to factor and require multiple 
genomes 
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Evolutionary signatures for regulatory motifs 

• Start by looking at known motif instances  

• Individual motif instances are preferentially conserved 

• Can we just take conservation islands and call them 
motifs? 

– No. Many conservation islands are due to chance or perhaps due 
to non-motif conservation 

Kellis el al, Nature 2003 
Xie et al. Nature 2005 

Stark et al, Nature 2007 

D.mel  CAGCT--AGCC-AACTCTCTAATTAGCGACTAAGTC-CAAGTC 
D.sim  CAGCT--AGCC-AACTCTCTAATTAGCGACTAAGTC-CAAGTC 
D.sec  CAGCT--AGCC-AACTCTCTAATTAGCGACTAAGTC-CAAGTC 
D.yak  CAGC--TAGCC-AACTCTCTAATTAGCGACTAAGTC-CAAGTC 
D.ere  CAGCGGTCGCCAAACTCTCTAATTAGCGACCAAGTC-CAAGTC 
D.ana  CACTAGTTCCTAGGCACTCTAATTAGCAAGTTAGTCTCTAGAG 
       **       *    * *********** *   **** * ** 

D.mel 

Known engrailed binding site 
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Conservation islands overlap known motifs 
Scer   TATCCATATCTAATCTTACTTATATGTTGT-GGAAAT-GTAAAGAGCCCCATTATCTTAGCCTAAAAAAACC--TTCTCTTTGGAACTTTCAGTAATACG 
Spar   TATCCATATCTAGTCTTACTTATATGTTGT-GAGAGT-GTTGATAACCCCAGTATCTTAACCCAAGAAAGCC--TT-TCTATGAAACTTGAACTG-TACG 
Smik   TACCGATGTCTAGTCTTACTTATATGTTAC-GGGAATTGTTGGTAATCCCAGTCTCCCAGATCAAAAAAGGT--CTTTCTATGGAGCTTTG-CTA-TATG 
Sbay   TAGATATTTCTGATCTTTCTTATATATTATAGAGAGATGCCAATAAACGTGCTACCTCGAACAAAAGAAGGGGATTTTCTGTAGGGCTTTCCCTATTTTG 
       **   ** ***  **** ******* **   *  *   *     *  *    *  *       **  **      * *** *    ***    *  *  * 
 
 
Scer   CTTAACTGCTCATTGC-----TATATTGAAGTACGGATTAGAAGCCGCCGAGCGGGCGACAGCCCTCCGACGGAAGACTCTCCTCCGTGCGTCCTCGTCT 
Spar   CTAAACTGCTCATTGC-----AATATTGAAGTACGGATCAGAAGCCGCCGAGCGGACGACAGCCCTCCGACGGAATATTCCCCTCCGTGCGTCGCCGTCT 
Smik   TTTAGCTGTTCAAG--------ATATTGAAATACGGATGAGAAGCCGCCGAACGGACGACAATTCCCCGACGGAACATTCTCCTCCGCGCGGCGTCCTCT 
Sbay   TCTTATTGTCCATTACTTCGCAATGTTGAAATACGGATCAGAAGCTGCCGACCGGATGACAGTACTCCGGCGGAAAACTGTCCTCCGTGCGAAGTCGTCT 
             **  **          ** ***** ******* ****** ***** ***  ****   * *** ***** * *  ****** ***    * *** 
 
 
 
Scer   TCACCGG-TCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAA-----TACTAGCTTTT--ATGGTTATGAA 
Spar   TCGTCGGGTTGTGTCCCTTAA-CATCGATGTACCTCGCGCCGCCCTGCTCCGAACAATAAGGATTCTACAAGAAA-TACTTGTTTTTTTATGGTTATGAC 
Smik   ACGTTGG-TCGCGTCCCTGAA-CATAGGTACGGCTCGCACCACCGTGGTCCGAACTATAATACTGGCATAAAGAGGTACTAATTTCT--ACGGTGATGCC 
Sbay   GTG-CGGATCACGTCCCTGAT-TACTGAAGCGTCTCGCCCCGCCATACCCCGAACAATGCAAATGCAAGAACAAA-TGCCTGTAGTG--GCAGTTATGGT 
            ** *   ** *** *      *      ***** ** *  *   ****** **     *   * **     * *             ** ***   
 
 
 
Scer   GAGGA-AAAATTGGCAGTAA----CCTGGCCCCACAAACCTT-CAAATTAACGAATCAAATTAACAACCATA-GGATGATAATGCGA------TTAG--T 
Spar   AGGAACAAAATAAGCAGCCC----ACTGACCCCATATACCTTTCAAACTATTGAATCAAATTGGCCAGCATA-TGGTAATAGTACAG------TTAG--G 
Smik   CAACGCAAAATAAACAGTCC----CCCGGCCCCACATACCTT-CAAATCGATGCGTAAAACTGGCTAGCATA-GAATTTTGGTAGCAA-AATATTAG--G 
Sbay   GAACGTGAAATGACAATTCCTTGCCCCT-CCCCAATATACTTTGTTCCGTGTACAGCACACTGGATAGAACAATGATGGGGTTGCGGTCAAGCCTACTCG 
              ****    *         *   *****     ***              * * *    *  * *    *     *           **     
 
 
Scer   TTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCG--ATGATTTTT-GATCTATTAACAGATATATAAATGGAAAAGCTGCATAACCAC-----TT 
Spar   GTTTT--TCTTATTCCTGAGACAATTCATCCGCAAAAAATAATGGTTTTT-GGTCTATTAGCAAACATATAAATGCAAAAGTTGCATAGCCAC-----TT 
Smik   TTCTCA--CCTTTCTCTGTGATAATTCATCACCGAAATG--ATGGTTTA--GGACTATTAGCAAACATATAAATGCAAAAGTCGCAGAGATCA-----AT 
Sbay   TTTTCCGTTTTACTTCTGTAGTGGCTCAT--GCAGAAAGTAATGGTTTTCTGTTCCTTTTGCAAACATATAAATATGAAAGTAAGATCGCCTCAATTGTA 
        * *      *    ***       * **   *  *     *** ***   *  *  **  ** * ********   ****    *               
 
Scer   TAACTAATACTTTCAACATTTTCAGT--TTGTATTACTT-CTTATTCAAAT----GTCATAAAAGTATCAACA-AAAAATTGTTAATATAC 
Spar   TAAATAC-ATTTGCTCCTCCAAGATT--TTTAATTTCGT-TTTGTTTTATT----GTCATGGAAATATTAACA-ACAAGTAGTTAATATAC 
Smik   TCATTCC-ATTCGAACCTTTGAGACTAATTATATTTAGTACTAGTTTTCTTTGGAGTTATAGAAATACCAAAA-AAAAATAGTCAGTATCT 
Sbay   TAGTTTTTCTTTATTCCGTTTGTACTTCTTAGATTTGTTATTTCCGGTTTTACTTTGTCTCCAATTATCAAAACATCAATAACAAGTATTC 
       *   *     *     *      * *  **  ***   *  *        *        *  ** **  ** * *  * *    * *** 
 

GAL1 

TBP 

GAL4 GAL4 GAL4 

GAL4 

MIG1 

TBP MIG1 

Transcription factor binding Conservation island 
GAL4 

Increase power by testing conservation in many regions 

ATGACTA 
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Genome-wide conservation 

Evaluate conservation within: Gal4 Controls 

13% : 3% 2% : 7%  (2) Intergenic : coding 

12:0 1:1  (3) Upstream : downstream 

A signature for regulatory motifs 

13% 2%  (1) All intergenic regions 

Spar 

Smik 

Sbay 

Scer 
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Test 1: Intergenic conservation 

Total count 
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CGG-11-CCG 
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Test 2: Intergenic vs. Coding 

Coding Conservation 
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e

n
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CGG-11-CCG 

Higher Conservation in Genes 
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Test 3: Upstream vs. Downstream 

CGG-11-CCG 

Downstream motifs? 

Most 
Patterns 

Downstream Conservation 
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Conservation for TF motif discovery 

 
1. Enumerate motif seeds 

 
 
• Six non-degenerate characters with variable size gap in the 

middle 
2. Score seed motifs 

• Use a conservation ratio corrected for composition and 
small counts to rank seed motifs 

3. Expand seed motifs 
 
 

• Use expanded nucleotide IUPAC alphabet to fill unspecified 
bases around seed using hill climbing  

4. Cluster to remove redundancy 
• Using sequence similarity 

G T C A G T R R Y gap S W 

G T C A G T gap 

Kellis, Nature 2003 54



Learning motif degeneracy  
using evolution 

• Record frequency with 
which one sequence  is 
“replaced” by another in 
evolution 

• Use this to find clusters 
of k-mers that 
correspond to a single 
motif 

Tanay, Genome Research 2004 

© Cold Spring Harbor Laboratory Press. All rights reserved. This content is excluded from our

Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Tanay, Amos et al. "A global view of the selection forces in the evolution of yeast

cis-regulation." Genome Research 14, no. 5 (2004): 829-834.
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Motif discovery overview 
1. Introduction to regulatory motifs / gene regulation 

– Two settings: co-regulated genes (EM,Gibbs), de novo 
2. Expectation maximization: Motif matrixpositions 

– E step: Estimate motif positions Zij from motif matrix 
– M step: Find max-likelihood motif from all positions Zij 

3. Gibbs Sampling: Sample from joint (M,Zij) distribution 
– Sampling motif positions based on the Z vector 
– More likely to find global maximum, easy to implement 

4. Evolutionary signatures for de novo motif discovery 
– Genome-wide conservation scores, motif extension 
– Validation of discovered motifs: functional datasets 

5. Evolutionary signatures for instance identification 
– Phylogenies, Branch length score  Confidence score 
– Foreground vs. background. Real vs. control motifs.  
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Validation of the discovered motifs 

• Because genome-wide motif discovery is de novo, we 
can use functional datasets for validation 
– Enrichment in co-regulated genes 
– Overlap with TF binding experiments 
– Enrichment in genes from the same complex 
– Positional biases with respect to transcription start 
– Upstream vs. downstream / inter vs. intra-genic bias 
– Similarity to known transcription factor motifs 

• Each of these metrics can also be used for discovery 
– In general, split metrics into discovery vs. validation 
– As long as they are independent ! 
– Strategies that combine them all lose ability to validate 

• Directed experimental validation approaches are then needed 
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Similarity to known motifs 

• If discovered motifs are real, we 
expect them to match motifs in large 
databases of known motifs 

• We find this (significantly higher than 
with random motifs) 

• Why not perfect agreement? 
– Many known motifs are not 

conserved 
– Known motifs are biased; may have 

missed real motifs 

MCS Discovered motif Known 
Factor 

46.8 GGGCGGR SP-1 
34.7 GCCATnTTg YY1 
32.7 CACGTG MYC 
31.2 GATTGGY NF-Y 
30.8 TGAnTCA AP-1 
29.7 GGGAGGRR MAZ 
29.5 TGACGTMR CREB 
26.0 CGGCCATYK NF-MUE1 
25.0 TGACCTTG ERR  
22.6 CCGGAARY ELK-1 
19.8 SCGGAAGY GABP 
17.9 CATTTCCK STAT1 

MCS Discovered motif Known 
Factor 

65.6 CTAATTAAA en 
57.3 TTKCAATTAA repo   
54.9 WATTRATTK ara 
54.4 AAATTTATGCK prd 
51 GCAATAAA vvl 

46.7 DTAATTTRYNR Ubx 
45.7 TGATTAAT ap 
43.1 YMATTAAAA abd-A 
41.2 AAACNNGTT     
40 RATTKAATT     

39.5 GCACGTGT ftz 
38.8 AACASCTG br-Z3 

70/174 mammalian motifs 

35/145 fly motifs 

Stark, N
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0
0

7 
X
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Positional bias of motif matches 

• Motifs are involved in initiation of transcription 
Motif matches biased versus TSS 

– 10% of fly motifs 
– 34% of mammalian motifs 

Depletion of TF motifs in coding sequence 
– 57% of fly motifs 

Clustering of motif matches 
– 19% of fly motifs 
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Motifs have functional enrichments 

For both fly (top) and 
mammals (bottom), 
motifs are enriched in 
genes expressed in 
specific tissues 
 
Reveals modules of 
cooperating motifs 

Tissues 

M
o

ti
fs

 
1. Most motifs avoided in 

ubiquitously expressed genes 

2. Functional clusters emerge 

© source unknown. All rights reserved. This content is excluded from our Creative
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Motif instance identification 
How do we determine the functional 
binding sites of regulators? 

Kheradpour, Stark, Roy, Kellis, Genome Research 2007 

TF1 microRNA1 TF2 
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Experimental target 
identification:  
ChIP-chip/seq 

Limitations :  
• Antibody availability 
• Restricted to specific 

stages/tissues 
• Biological functionality of 

most binding sites 
unknown 

• Resolution can be limited 
(can’t usually identify the 
precise base pairs) 

Ren et al., 2000; Iyer et al., 2001 (ChIP-chip) 
Robertson et al., 2007  (ChIP-seq) © source unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 62
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Computational target identification 

• Single genome approaches using motif 
clustering (e.g. Berman 2002; Schroeder 2004; 
Philippakis 2006) 
– Requires set of specific factors that act 

together 
– Miss instances of motifs that may occur alone 

• Multi-genome approaches (phylogentic 
footprinting) (e.g. Moses 2004; Blanchette and 
Tompa 2002; Etwiller 2005; Lewis 2003) 
– Tend to either require absolute conservation 

or have a strict model of evolution 
63



Challenges in target identification 

• Simple case 
– Instance fully conserved in orthologous position near genes 

• Motif turn-around/movement 
– Motif instance is not found in orthologous place due to birth/death or 

alignment errors 

• Distal/missing matches 
– Due to sequencing/assembly errors or turnover  
– Distal instances can be difficult to assign to gene 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Computing Branch Length Score (BLS) 

CTCF 

BLS = 2.23sps (78%) 
Allows for: 
1. Mutations permitted by motif 

degeneracy 
2. Misalignment/movement of motifs within 

window (up to hundreds of nucleotides) 
3. Missing motif in dense species tree 

mutations 

missing short  
branches 

movement 

© source unknown. All rights reserved. This content is excluded from our Creative
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Branch Length Score  Confidence 

1. Evaluate chance likelihood of a given score 
• Sequence could also be conserved due to overlap 

with un-annotated element (e.g. non-coding RNA) 
2. Account for differences in motif composition and 

length 
• For example, short motif more likely to be 

conserved by chance 
 

 
 

66



Branch Length Score  Confidence 

1. Use motif-specific shuffled control motifs determine the expected 
number of instances at each BLS by chance alone or due to non-
motif conservation 

2. Compute Confidence Score as fraction of instances over noise at a 
given BLS (=1 – false discovery rate) 67



Producing control motifs 
When evaluating the conservation, 

enrichment, etc, of motifs, it is useful 
to have a set of “control motifs” 

1 Produce 100 shuffles of our original motif  

2 Filter motifs, requiring they match the genome 
with about (+/- 20%) of our original motif 

3 Sort potential control motifs based on their  
similarity to other known motifs 

4 
Cluster potential control motifs and take at  
most one from each cluster, in increasing  
order of similarity to known motifs 

Original motif 

Genome sequence 

Known motifs 
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Computing enrichments: background vs. foreground 
• Background vs. forgeround 

– co-regulated promoters vs. all genes 
– Bound by TF vs. other intergenic regions 

• Enrichment: fraction of motif 
instances in foreground vs. fraction 
of bases in foreground 

 
• Correct for composition/conservation 

level: compute enrichmt w/control motifs 
– Fraction of motif instances can be 

compared to fraction of control motif 
instances in foreground 

– A hypergeometric p-value can be 
computed (similar to χ2, but better for 
small numbers) 

 
• Fractions can be made more 

conservative using a binomial 
confidence interval 

 

Foreground (e.g. TF bound): 

Background (e.g. Intergenic): 

background of size
foreground of size

backgroundin  #
foregroundin#



backgroundin  control #
foregroundin  control #

backgroundin  #
foregroundin#



0.0 1.0 
fraction 

binomial confidence interval 

use this 
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Confidence selects for functional instances 

Transcription factor motifs 

Promoter 

5’UTR 

CDS 

Intron 

3’UTR 

MicroRNA motifs 

Promoter 

5’UTR 

CDS 

Intron 

3’UTR 

1. Confidence selects for transcription factor motif 
instances in promoters and miRNA motifs in 3’ UTRs 
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Validation of discovered motif instances 

Use independent experimental evidence 
Look for functional biases / enrichments 
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Confidence selects for functional instances 

1. Confidence selects for transcription factor motif 
instances in promoters and miRNA motifs in 3’ UTRs 

2. miRNA motifs are found preferentially on the plus strand, 
whereas no such preference is found for TF motifs 

Strand Bias 

© source unknown. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 
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Increased sensitivity using BLS 

73

Figure 3 B removed due to copyright restrictions.
Source: Kheradpour, Pouya et al. "Reliable prediction of regulator targets using
12 Drosophila genomes." Genome Research 17, no. 12 (2007): 1919-1931.

http://dx.doi.org/10.1101/gr.7090407
http://dx.doi.org/10.1101/gr.7090407


Intersection with CTCF ChIP-Seq regions 
ChIP-Seq and ChIP-Chip technologies 
allow for identifying binding sites of a 
motif experimentally 

• Conserved CTCF motif instances highly 
enriched in ChIP-Seq sites 

• High enrichment does not require low 
sensitivity 

• Many motif instances are verified 

≥ 50% of regions with a motif 

50% motifs verified 

5
0

%
 co

n
fid

en
ce

 

ChIP data from Barski, et al., Cell (2007) 
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Enrichment found for many factors 
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Enrichment increases in conserved bound regions 

Human: Barski, et al., Cell (2007) 
Mouse: Bernstein, unpublished 

1. ChIP bound regions may not be conserved 
2. For CTCF we also have binding data in mouse  
3. Enrichment in intersection is dramatically higher 
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More enrichment when binding 
conserved 
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1. ChIP bound regions may not be conserved 
2. For CTCF we also have binding data in mouse  
3. Enrichment in intersection is dramatically higher 
4. Trend persists for other factors where we have 

multi-species ChIP data 
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1. Motifs at 60% confidence and ChIP have similar enrichments 
(depletion for the repressor Snail) in the functional promoters 

2. Enrichments persist even when you look at non-overlapping subsets 
3. Intersection of two regions has strongest signal 
4. Evolutionary and experimental evidence is complementary 

• ChIP includes species specific regions and differentiate tissues 
• Conserved instances include binding sites not seen in tissues surveyed  

 
 
 
 
 

ChIP data from: Zeitlinger, et al., G&D (2007); Sandmann, et al,. G&D (2007); Sandmann, et al., Dev Cell  (2006) 

Comparing ChIP to Conservation 
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TFs:  
67 of 83 (81%)  
46k instances 
 
miRNAs:  
49 of 67 (86%)  
4k instances 
 

Several connections confirmed by literature (directly or indirectly) 
Global view of instances allows us to make network level observations: 
• 46% of targets were co-expressed with their factor in at least one tissue (P < 2 x 10-3) 
• TFs were more targeted by TFs (P < 10-20) and by miRNAs (P < 5 x 10-5) 

• TF in-degree associated with miRNA in-degree (high-high: P < 10-4; low-low P < 10-6) 
 
 

 

Fly regulatory network at 60% confidence 

© source unknown. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 
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Motif discovery overview 
1. Introduction to regulatory motifs / gene regulation 

– Two settings: co-regulated genes (EM,Gibbs), de novo 
2. Expectation maximization: Motif matrixpositions 

– E step: Estimate motif positions Zij from motif matrix 
– M step: Find max-likelihood motif from all positions Zij 

3. Gibbs Sampling: Sample from joint (M,Zij) distribution 
– Sampling motif positions based on the Z vector 
– More likely to find global maximum, easy to implement 

4. Evolutionary signatures for de novo motif discovery 
– Genome-wide conservation scores, motif extension 
– Validation of discovered motifs: functional datasets 

5. Evolutionary signatures for instance identification 
– Phylogenies, Branch length score  Confidence score 
– Foreground vs. background. Real vs. control motifs.  
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Regulator 
TF/miRNA 

Motif 
Sequence 
specificity 

TFs: Selex, DIP-Chip, Protein-Binding-Microarrays 
miRNAs: Evolutionary/structural signatures 
miRNAs: Experimental cloning of 5’-ends 

TFs: Mass Spec (difficult) 

TFs: ChIP-Chip/ChIP-Seq 
TFs/miRs: Perturbation response TFs/miRNAs: Evolutionary signatures** 

miRNAs: Composition/folding 

TFs: Enrichment in  
co-regulated genes/ 

bound regions ** 

TFs: Homology to TFs/domains 
miRNAs: Evolutionary signatures 
miRNAs: Experimental cloning 

TFs/miRNAs: De novo  
comparative discovery** 

* = Covered in today’s lecture 

Network analysis 
(next lecture) 

Challenges in regulatory genomics 

Targets 
Functional instances 
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Recitation tomorrow: in vitro motif identification 

SELEX (Systematic 
Evolution of 
Ligands by 
Exponential 
Enrichment; Klug 
& Famulok, 1994) 

PBMs (Protein 
binding 
microarrays; 
Mukherjee, 2004) 
Double stranded 
DNA arrays 

• PBMs: Protein binding 
microarrays 

• SELEX: Selection-
based motif 
identiifcation 
 

• De Bruijn graphs to 
generate PBM probes 

• From k-mers to motifs 
• Gapped motifs 

 
• Degenerate motifs and 

DNA bending (DNA 
shape) 
 

• Relaxing 
independence 
assumptions in PWMs 

Courtesy of the authors. Used with permission. © s
Source: Ray, Partha, and Rebekah R. White. This

"Aptamers for targeted drug delivery.“ 

ource unknown. All rights reserved.
 content is excluded from our Creative

Commons license. For more information,
see http://ocw.mit.edu/help/faq-fair-use/.Pharmaceuticals 3, no. 6 (2010): 1761-1778.
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Motif discovery overview 
1. Introduction to regulatory motifs / gene regulation 

– Two settings: co-regulated genes (EM,Gibbs), de novo 
2. Expectation maximization: Motif matrixpositions 

– E step: Estimate motif positions Zij from motif matrix 
– M step: Find max-likelihood motif from all positions Zij 

3. Gibbs Sampling: Sample from joint (M,Zij) distribution 
– Sampling motif positions based on the Z vector 
– More likely to find global maximum, easy to implement 

4. Evolutionary signatures for de novo motif discovery 
– Genome-wide conservation scores, motif extension 
– Validation of discovered motifs: functional datasets 

5. Evolutionary signatures for instance identification 
– Phylogenies, Branch length score  Confidence score 
– Foreground vs. background. Real vs. control motifs.  
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