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Module lll: Epigenomics and gene regulation

« Computational Foundations
— L10: Gibbs Sampling: between EM and Viterbi training
— L11: Rapid linear-time sub-string matching
— L11: Multivariate HMMs
— L12: Post-transcriptional regulation
 Biological frontiers:
— L10: Regulatory motif discovery, TF binding
— L11: Epigenomics, chromatin states, differentiation
— L12: Post-transcriptional regulation



Motif discovery overview

1. Introduction to regulatory motifs / gene regulation
— Two settings: co-regulated genes (EM,Gibbs), de novo

2. Expectation maximization: Motif matrix<& positions
— E step: Estimate motif positions Z; from motif matrix
— M step: Find max-likelihood motif from all positions Z;
3. Gibbs Sampling: Sample from joint (M,Z;) distribution
— Sampling motif positions based on the Z vector
— More likely to find global maximum, easy to implement
4. Evolutionary signatures for de novo motif discovery
— Genome-wide conservation scores, motif extension
— Validation of discovered motifs: functional datasets
5. Evolutionary signatures for instance identification
— Phylogenies, Branch length score =» Confidence score
— Foreground vs. background. Real vs. control motifs.
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Regulatory motif discovery

PO MPUCLTD
N B
CGG CCG CGG CCG

« Regulatory motifs
— Genes are turned on / off in response to changing environments
— No direct addressing: subroutines (genes) contain sequence tags (motifs)
— Specialized proteins (transcription factors) recognize these tags

« What makes motif discovery hard?
— Motifs are short (6-8 bp), sometimes degenerate
— Can contain any set of nucleotides (no ATG or other rules)
— Act at variable distances upstream (or downstream) of target gene



The regulatory code: All about regulatory motifs

_______________________________________

Enhancer regions Promoter motifs Splicing signals Motifs at RNA level
Where in the body? When in time? Which variants? Which subsets?
* The parts list: ~20-30k genes
— Protein-coding genes, RNA genes (tRNA, microRNA, snRNA)
« The circuitry: constructs controlling gene usage
— Enhancers, promoters, splicing, post-transcriptional motifs
» The regulatory code, complications:
— Combinatorial coding of ‘unique tags’
» Data-centric encoding of addresses
— Overlaid with ‘memory’ marks
» Large-scale on/off states

— Modulation of the large-scale coding
» Post-transcriptional and post-translational information

» Today: discovering motifs in co-regulated promoters and de novo
motif discovery & target identification



TFs use DNA-binding domains to recognize
specific DNA sequences in the genome

CAQFL

TF, TF, TF4

T T
$IAATTAAT A ATMA

“Logo” or “motif”

® | o

TAATTA CACGTG  AGATAAGA

®
DNA-binding domain of '

Engrailed Zz
®
' (— ‘!n\ﬁ

TCATTA

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Berger, Michael F. et al. "Variation in homeodomain DNA binding revealed by
high-resolution analysis of sequence preferences." Cell 133, no. 7 (2008): 1266-1276.
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Dlsrupted motif at the heart of FTO obesity locus
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IATATTGATT T TATAGTAGCAGTTCAGETCCTAAGGCATGATAT TGAT TAAGTGT CTGATGAGAAT TTGTAGGGTAGTCTCCCA
IATATTGATTT TACGGTAGCAGT TCGAGTCCTAAGGCATCGTAT TEGAT TAAGCGT CTAGT GAGAAT TTGTAGGGCAGCCTTCTG
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C-to-T disruption of AT-rich
regulatory motif

Thermogenic stimuli
(e.g. cold)
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Restoring motif restores thermogenesis

Courtesy of Manolis Kellis. Used with permission.



Regulator structure < recognized motifs

_ sugar phosphate
base pair backbone

* Proteins ‘feel’ DNA
— Read chemical properties of bases

— Do NOT open DNA (no base
complementarity)

« 3D Topology dictates specificity

— Fully constrained positions:
=>» every atom matters

— “Ambiguous / degenerate” positions
=» loosely contacted

« Other types of recognition
— MicroRNAs: complementarity
— Nucleosomes: GC content
— RNAs: structure/seqn combination

© Garland Publishing. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
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Motifs summarize TF sequence specificity

Fosition 1 2 3 q 5 G T 3 g 1m0 N 12 113 | 14
Fosition| & | 56 4 4 | 81 4 | 23 (15 | 27 | 31 | 31 89 | 23 4 | 58
Wielght z | 32 4 4 112 4 | 3 | 23 4 119 | 23 q 4 | 89 | 35
il atrix
(PN | C q 4 | &9 4 | 58 (12 123 [ 19 | 19 | 23 4 | 69 q 4

T 4 1 89 q 4 13 [ 35 139 [ 50 | 3 | 23 q 4 q 4
hiatif
C | A
T
COnsEnsus R T C 1] ¥ ] I H ] I A C G R

Summarize
information

Integrate many
positions

Measure of
information

Distinguish motif
vs. motif instance

Assumptions:
— Independence
— Fixed spacing



Experimental factor-centric discovery of mot

/
© E RuA Liray

P
G Incubate with specific target
Protein Target‘ (
of Interest &

Partition Bound from
Unbound RNA's

Amplify Selected
RNA's (RT/PCR)

Courtesy of the authors. Used with permission.

Source: Ray, Partha, and Rebekah R. White. "Aptamers
For targeted drug delivery." Pharmaceuticals 3, no. 6
(2010): 1761-1778.

SELEX (Systematic
Evolution of Ligands by
Exponential Enrichment;
Klug & Famulok, 1994)

Naked Genomic DNA,
Sheared (~600bp)
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© Cold Spring Harbor Laboratory Press. All rights
reserved. This content is excluded from our Creative
Commons license. For more information, see http://
ocw.mit.edu/help/fag-fair-use/.

Source: Liu, Xiao et al. "DIP-chip: rapid and accurate
determination of DNA-binding specificity." Genome
Research 15, no. 3 (2005): 421-427.

DIP-Chip (DNA-
immunoprecipitatio
n with microarray

detection; Liu et al.,
2005)
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© source unknown. All rights reserved.
This content is excluded from our
Creative Commons license. For more
information, see http://ocw.mit.edu/
help/fag-fair-use/.

PBMs (Protein binding
microarrays; Mukherijee,
2004)

Double stranded DNA
arrays
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Approaches to regulatory motif discovery

. Expectation Maximization (e.g. MEME)

— lteratively refine positions / motif profile
Region- | . Gibbs Sampling (e.g. AlignACE)

basﬁd < — lteratively sample positions / motif profile
moti . . .
discovery * Enumeration with wildcards (e.g. Weeder)

— Allows global enrichment/background score

» Peak-height correlation (e.g. MatrixREDUCE)
\ — Alternative to cutoff-based approach

Genome- | * Conservation-based discovery (e.g. MCS)
wide — Genome-wide score, up-/down-stream bias

Invitro/ | * Protein Domains (e.g. PBMs, SELEX)
trans — In vitro motif identification, seq-/array-based



Motifs are not limited to DNA sequences

« Splicing Signals at the RNA level
— Splice junctions
— Exonic Splicing Enhancers (ESE)
— Exonic Splicing Surpressors (ESS)

 Domains and epitopes at the Protein level
— Glycosylation sites
— Kinase targets
— Targetting signals
— MHC binding specificities

* Recurring patterns at the physiological level
— Expression patterns during the cell cycle

— Heart beat patterns predicting cardiac arrest
 Final project in previous year, now used in Boston hospitals!

— Any probabilistic recurring pattern

12



Challenges in regulatory genomics

TFs: Homology to TFs/domains
miRNAs: Evolutionary signatures
miRNAs: Experimental cloning

TFs: Selex, DIP-Chip, Protein-Binding-Microarrays
miRNAs: Evolutionary/structural signatures
miRNAs: Experimental cloning of 5’-ends

TFs/miRNAs: De novo
‘ TFs: Mass Spec (difficult)

comparative discovery**

Regulator = > Motif

TF/miRNA Sequence
specificity

Evolutionary footprints
DNase footprints
Chromatin ‘dips’

TFs: Enrichment in
co-regulated genes/

e
Ta rgets / bound regions **

Functional instances

Network analysis
(upcoming lecture)

TFs: ChIP-Chip/ChIP-Seq
TFs/miRs: Perturbation response

* = Covered in today’s lecture

TFs/miRNAs: Evolutionary signatures™*
miRNAs: Composition/folding

13



Motif discovery overview
1. Introduction to regulatory motifs / gene regulation
— Two settings: co-regulated genes (EM,Gibbs), de novo

2. Expectation maximization: Motif matrix<&positions
— E step: Estimate motif positions Z; from motif matrix
— M step: Find max-likelihood motif from all positions Z;

3. Gibbs Sampling: Sample from joint (M,Z;) distribution
— Sampling motif positions based on the Z vector
— More likely to find global maximum, easy to implement
4. Evolutionary signatures for de novo motif discovery
— Genome-wide conservation scores, motif extension
— Validation of discovered motifs: functional datasets
5. Evolutionary signatures for instance identification
— Phylogenies, Branch length score = Confidence score
— Foreground vs. background. Real vs. control motifs. y



Enrichment-based discovery methods

Given a set of co-regulated/functionally related genes,
find common motifs in their promoter regions

 Align the promoters to each other using local alignment

* Use expert knowledge for what motifs should look like

* Find ‘median’ string by enumeration (motif/sample driven)
 Start with conserved blocks in the upstream regions

15



Starting positions & Motif matrix

« given aligned sequences = easy to compute profile matrix

shared motif sequence positions

A

1 2 3 4 5 6 7 8

o N

0.1(03/01({02[02{04]0.3/0.1

0.5{0.20.1]0.10.6 (0.1 (0.2]0.7

0.2(0.20.6 {05]0.1{0.2]0.2 0.1

iy

0.2/03(0.2(0.2|0.1{03]0.3 0.1

given profile matrix

« easy to find starting position probabilities

Key idea: Iterative procedure for estimating both, given
uncertainty

(learning problem with hidden variables: the starting positions)

16



Basic Iterative Approach

Given: length parameter W, training set of sequences
set initial values for motif
do
=>» re-estimate starting-positions from motif
=> re-estimate motif from starting-positions
until convergence (change < g)

return: motif, starting-positions

17



Representing Motif M(k,c) and Background B(c)

 Assume motif has fixed width, W
* Motif represented by matrix of probabilities: M(k,c)
the probability of character ¢ in column k

1 2 3
A 0.1 0.5 0.2
M _C 0.4 0.2 0.1 (~CAG)
G 0.3 0.1 0.6
T O. 0.2 0.1
 Background represented by B(c), frequency of each
base
A 0.26
B — C 0.24 (near uniform)

G 0.23 (see also: di-nucleotide etc)
T 0.27

18



Representing the starting position probabilities (Z;)

 the element Zi' of the matrix / represents the
probability that the motif starts in position | in sequence |

1 2 3 4

seql 0.1 0.1 0.2 0.6
7 = seq2 0.4 0.2 0.1 0.3
seaq3 0.3 0.1 0.5 0.1
seaqéd 0.1 0.5 0.1 0.3

Some examples:
no clear

Z1 winner
N o
22 candidates
one bi
Z3 JL winnergl

Z4 uniform

19



Starting positions (£;) < Motif matrix M(k,c)

X — k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
1 T
—A|0.1] 0.3 0.1/ 0.2]/0.2(0.4]0.3 |0.
%2 M-step e=A|0.1] 0.3/ 0.1 0.2/ 0.2 0.4 (0.3 [0.1
3 A— e=C|0.510.210.1[0.10.6]0.1]0.2 0.7
W —— ~G|0.2]0.2]0.60.5]0.1]0.2 0.2 |0.1
xI Eotop 0.2]0.2(0.60.5]0.1]0.2 (0.2 |0
X R e=T[0.210.3]0.2]0.2 0.1 0.3]0.3]0.1
n
Starting positions: Z; Motif: M(k,c)

* Z;: Probability that on sequence i, motif start at position |
« M(k,c): Probability that k" character of motif is letter c

* Computing Z; matrix from M(k,c) is straightforward
— At each position, evaluate start probability by multiplying across the matrix

Three variations for re-computing motif M(k,c) from Z; matrix
— Expectation maximization = All starts weighted by Z; prob distribution
— Gibbs sampling = Single start for each seq X; by sampling Z;
— Greedy approach = Best start for each seq X; by maximum Z;




Motif discovery overview
1. Introduction to regulatory motifs / gene regulation
— Two settings: co-regulated genes (EM,Gibbs), de novo

2. Expectation maximization: Motif matrix<& positions

— E step: Estimate motif positions Z; from motif matrix

— M step: Find max-likelihood motif from all positions Z;
3. Gibbs Sampling: Sample from joint (M,Z;) distribution
— Sampling motif positions based on the Z vector
— More likely to find global maximum, easy to implement
4. Evolutionary signatures for de novo motif discovery
— (Genome-wide conservation scores, motif extension
— Validation of discovered motifs: functional datasets
5. Evolutionary signatures for instance identification
— Phylogenies, Branch length score =» Confidence score
— Foreground vs. background. Real vs. control motifs. 2



E-step:
Estimate Z; positions from matrix

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

X,

X2 c=A|0.1] 0.3]0.1{0.2{0.2]0.4]0.3]0.1

X3 e=C|[05]0.2(0.1]0.1]0.60.1]0.2(0.7

X. ' c=G|0.2(0.210.6]05(0.1]0.2]0.2]0.1
! E-step

nes c=T7(0.2]03(0.2]0.2]0.1(03]0.3]0.1

Xn

Starting positions: Z; Motif: M(k,c)

22



Three examples for Greedy, Gibbs Sampling, EM

Greedy always picks maximum

Gib mpllng picks one at random
Z1 candidates

\ (and)

EM uses both in estimating mot|f

7 J\Methods agree one big
2 winnher

Greedy ignores most of the probability

Gibbs sampling rapidly converges to some dvhoice
Z3 uniform

EM averages over the entire sequence (slow/no convergence)

23




Calculating P(X)) when motif position is known

Probability of training sequence X, given hypothesized start position |

J+W -1

Pr(X;|Z; =1,M,B) = HB(x,k)HM(k—Hl X,k)HB(X
Jk J+W

before motif motif after motif

Example: . ) 3
X A 0.25 A 0.1 0.5 0.2
.= cclrerTAac — C 0.25 —C 0.4 0.2 0.1
' B " G 0.25 M ¢ 0.3 [0.1] 0.6
T 0.25 T [0.2] 0.2 |0.1

Pr(X,|Z,=1,M,B) =
B(G)xB(C)xMA,T)xM2,G)xM@B,T)xB(A)xB(G) =
0.25%0.25%|0.2x0.1x0.1x0.25x0.25

24



Calculating the Z vector ( using M)

To estimate the starting positions in Z at step t

likelihood (t) prior
Pr(X. |Z; =1LM*)Pr(Z; =1
Zigt):Pr(Zij:HXi,M(t)): (X1 2, )Pr(Z; =1)
posterior Pr(X;) (Bayes’ rule)

evidence
- Atiteration t, calculate Z;Y based on M®
— We just saw how to calculate Pr(X; | Z;=1,M®)
— To obtain total probability Pr(X:), sum over all starting positions

Pr(X; | Z; =1,M ") PrZ=T)

L-W+1

> Pr(X;|Zy =1,M ") PeZ=T)
k=1

(0 _

- Assume uniform priors (motif eq likely to start at any position)

25



Calculating the Z vector: Example

X.=[c]c TIGIT A G

0 1 2 3
A 0.25 0.1 0.5 0.2
p= ¢ 0.25 [o.4]]o.2] 0.1
¢ 0.25 [0.3] 0.1 [0.6
T 0.25 0.2 [0.2]|[0.1

Z. =/0.3%x0.2x0.1x0.25x0.25%0.25% 0.25
Z., =0.25x0.4x0.2x0.6x0.25%0.25x0.25

| L-W+1
 then normalize so that Z ZIJ -1



Aside: Simplifying P(X.)

Probability of training sequence X, given hypothesized start position j

J+W -1
Pr(X;|Z; =1,M,B) = HB(X k)1‘[|\/|(k—1+1 Xix) HB(X
k=j+W
before motif motif after motif

Mk = J+1, X045
g TTOR S

k=] ke

~ J
4

can be stored in constant for
a matrix each sequence

27



Motif discovery overview
1. Introduction to regulatory motifs / gene regulation
— Two settings: co-regulated genes (EM,Gibbs), de novo
2. Expectation maximization: Motif matrix<& positions
— E step: Estimate motif positions Z; from motif matrix

— M step: Find max-likelihood motif from all positions Z;

3. Gibbs Sampling: Sample from joint (M,Z;) distribution
— Sampling motif positions based on the Z vector
— More likely to find global maximum, easy to implement
4. Evolutionary signatures for de novo motif discovery
— Genome-wide conservation scores, motif extension
— Validation of discovered motifs: functional datasets
5. Evolutionary signatures for instance identification
— Phylogenies, Branch length score = Confidence score
— Foreground vs. background. Real vs. control motifs. 2



M-step:

Max-likelih motif from Z; positions

X1

X2 c=A

X3 c=C

X ' =G
! M-step

. c=T

Xn

Starting positions: Z;

k=1

k=2

k=3 k=4 k=5 k=6 k=7 k=8

0.1

0.3

0.1{0.210.2]|0.4(0.3 0.1

0.5

0.2

0.1 (0.1{0.6/0.1{0.2]0.7

0.2

0.2

0.6 (0.5(0.1]0.2(0.2]0.1

0.2

0.3

0.2]0.2(0.110.3]0.3]0.1

Motif: M(k,c)
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The M-step: Estimating the motif M

recall M (K, C) represents the probability of character ¢ in
position k; B(C) stores values for the background

n . +d

Z (nk ,C T d)
where Za ZJZU

| {J|Xl,j+k I_C}

M (k,c) =

pseudo-counts

total # of ¢’s
in data set
mﬁ+d

Y W
S qy e, Sh-Sn,
C =1

30
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M-step example: Estimating M(k,c) from Z;

X.=ACA G CA EM: sum over full probability
R e (17 0.< — Ny 4= 0.140.140.4+0.1 = 0.7
1 — . . . .

— Ny c=0.7+0.4+0.6 = 1.7

— N, o= 0.140.1+0.1+0.1= 0.4
X2 =A G G C A G —_ n1’T: 02=02

Z,= 04010104 — Total: T=0.7+1.7+0.4+0.2 = 3.0

 Normalize and add pseudo-counts
X3'T CAGTC — M(1,A) = (0.7+1)/(T+4) = 1.7/7=0.24
— M(1,C) = (1.7+1)/(T+4) = 2.7/7=0.39
— M(1,G) = (0.4+1)/(T+4) = 1.4/7=0.2

Z,= 0.2 0.6 0.1 0.1

ZL1 + ZL3 + Zz,1 + Z3,3 +1

M(, A)= — M(1,T)=(0.2+1)/(T+4) =1.2/7=0.17
L +L,... +Ly+ 2, ,+4 ; - -
, A 0.24 0.39 0.21
Em approach: Avg’em all . Mk = T o3 Y 3
Gibbs sampling: Sample one ’ G| 02 0.24 0.44
Greedy: Select max T o7 0.16 0.16
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The EM Algorithm

« EM converges to a local maximum in the likelihood of the
data given the model:

| [Pr(X;|M,B)

* Deterministic iterations max direction of ascent
e Usually converges in a small number of iterations
* Sensitive to initial starting point (i.e. values in M)

32



P(Seq|Model) Landscape

EM searches for parameters to increase P(seqgs|parameters)

Useful to think of P
P(seqgs|parameters) g :

. -r v
as a function of parameters & g ;
£ i - .
S ¥ ! e
g o8- -~ : : ) : '
EM starts at an initial set of < e ST
parameters @ e -
g 0.4-1 .-
(7)) )
: - - S !
And then “climbs uphill” until it § #24--": .
. =] :
reaches a local maximum @ g ol
~
o

25

15

A 10
o2
a“‘e‘

.,
a,,,e’e 5
r7 0 o ? .\l

© source unknown. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

Where EM starts can make a big difference



http://ocw.mit.edu/help/faq-fair-use/

One solution: Search from Many Different Starts

To minimize the effects of local maxima, you should search
multiple times from different starting points

MEME uses this idea §

S ! |
) - ' .
£ : L
o 3 e
© O0&8-1--- h | !
Start at many points = B S
€ oo LT
© I
Run for one iteration 8 04l
g 0.2 F :
Choose starting point thatgot g | :
11 = 7 . o
the “highest” and continue B Dk T I
o

24

10

e
0 o ?a‘a
© source unknown. All rights reserved. This content is excluded

from our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.
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Motif discovery overview
1. Introduction to regulatory motifs / gene regulation
— Two settings: co-regulated genes (EM,Gibbs), de novo
2. Expectation maximization: Motif matrix<& positions
— E step: Estimate motif positions Z; from motif matrix
— M step: Find max-likelihood motif from all positions Z;

3. Gibbs Sampling: Sample from joint (M,Z;) distribution
— Sampling motif positions based on the Z vector
— More likely to find global maximum, easy to implement

4. Evolutionary signatures for de novo motif discovery
— (Genome-wide conservation scores, motif extension
— Validation of discovered motifs: functional datasets
5. Evolutionary signatures for instance identification
— Phylogenies, Branch length score = Confidence score
— Foreground vs. background. Real vs. control motifs. "



Three options for assigning points, and
their parallels across K-means, HMMs, Motifs

o | Update Algorithm implementing E step Update

= | assignments in each of the three settings model

% (E step) = _ ) parameters
T | Estimate hidden Expression HMM Motif (M step) 2
S | labels clustering learning discovery max

_ _ _ — likelihood

The hidden label is: Cluster labels State path Motif positions

+ | Assign each point | K-means: Viterbi Greedy: Find Average of
&S | to best label Assign each training: label | best motif match | those points
g point to nearest | sequence with | in each sequence | assigned to
E cluster best path label

= Assign each point | Fuzzy K- Baum-Weilch MEME: Use all Average of all
o | to alllabels, means: Assign | training: label | positions as a points,

g probabilistically to all clusters, sequence w all | motif occurrence | weighted by
< weighted by paths (posterior | weighed by motif | membership
< proximity decoding) match score

o Pick one label at N/A: Assignto | N/A: Sample a | Gibbs sampling: | Average of
O | random, based on | a random single label for | Use one position | those points
%_ their relative cluster, sample | each position, for the motif, by assigned to
% probability by proximity according to sampling from the | label(a

) posterior prob. | match scores sample)




Three examples of Greedy, Gibbs Sampling, EM

Greedy always picks maximum

Mhaﬁ) mpling picks one at random .
Z1 candidates

\ (and) /

EM uses both in estimating motif

Nmethods agree one big
22 winner

Greedy ignores most of the probability

Gibbs sampling rapidly converges to some dvhoice
Z3 uniform

L EM averages over the entire sequence (no preference)




Gibbs Sampling

A general procedure for sampling from the joint distribution of a set
of random variables Pr(U,...U_) by iteratively sampling from

foreachj Pr(U, |U,...U U, ..U,)

1 -
Useful when it’s hard to eprIicI:itIy Je;lpress means, stdevs,
covariances across the multiple dimensions

Useful for supervised, unsupervised, semi-supervised learning

— Specify variables that are known, sample over all other variables
Approximate:

— Joint distribution: the samples drawn

— Marginal distributions: examine samples for subset of variables

— Expected value: average over samples
Example of Markov-Chain Monte Carlo (MCMC)

— The sample approximates an unknown distribution

— Stationary distribution of sample (only start counting after burn-in)

— Assume independence of samples (only consider every 100)
Special case of Metropolis-Hastings

— In its basic implementation of sampling step

— But it's a more general sampling framework
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Gibbs Sampling for motif discovery

First application to motif finding: Lawrence et al 1993
« Can view as a stochastic analog of EM for motif discovery task
* Less susceptible to local minima than EM
EM maintains distribution Z; over the starting points for each seq
Gibbs sampling selects specific starting point a; for each seq
=>» but keeps resampling these starting points

given: length parameter W, training set of sequences
choose random positions for a
do
pick a sequence X;
estimate p given current motif positions a (update step)
(using all sequences but X;)
sample a new motif position a; for X; (sampling step)
until convergence
return: p, a
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Popular implementation: AlignACE, BioProspector

AlignACE: first statistical motif finder
BioProspector: improved version of AlignACE

Both use basic Gibbs Sampling algorithm:

1. Initialization:
a. Select random locations in sequences X,, ..., Xy
b. Compute an initial model M from these locations

2. Sampling lterations:
a. Remove one sequence X,
b. Recalculate model

c. Pick a new location of motif in X, according to probability
the location is a motif occurrence

In practice, run algorithm from multiple random initializations:
1. Initialize

2. Run until convergence

3. Repeat 1,2 several times, report common motifs

40



Gibbs Sampling (AlignACE)

— Xy, ooy Xy

— motif length W, LiJ 1 M (k X, a +k)
— background B, ZZ 08

i=1 k=1 (Xi,ai+k)
— Model M
— Locations a,,..., ay in X4, ..., Xy

Maximizing log-odds likelihood ratio

This is the same as the EM objective (notice log and notation
change)

41



Gibbs Sampling (AlignACE)

Predictive Update:

« Select a sequence x;

* Remove x;, recompute model: ——

d T Zs;ti (Xs,as+k — C)

Mk.0)= (N —1)+4d

where d is a pseudocount to avoid Os



Sampling New Motif Positions

for each possible starting position, a,=], compute a weight

MM (K= LX)

A= B(X; )

k=]

randomly select a new starting position a; according to these weights
(normalizing across the sequence, again like with MEME)

Note, this is equivalent to using the likelihood from MEME because:
A o Pr(X;|Z; =1, p)
Prob
ISR
0 x|
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Advantages / Disadvantages

« Very similar to EM

Advantages:

« Easier to implement

 Less dependent on initial parameters

 More versatile, easier to enhance with heuristics

Disadvantages:
 More dependent on all sequences to exhibit the motif
» Less systematic search of initial parameter space
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Gibbs Sampling and Climbing

Because gibbs sampling does always choose the best new location
it can move to another place not directly uphill

D.E'\-.. -
OG-y --

044 --

02 ---""

P(Sequences|params1,params2)

25
15

15
ere?

A 10

- 10
e’heferI g

1] ] ?a‘a
© source unknown. All rights reserved. This content is excluded

from our Creative Commons license. For more information, see
http://ocw.mit.edu/help/fag-fair-use/.

In theory, Gibbs Sampling less likely to get stuck a local maxima
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Motif discovery overview

1. Introduction to regulatory motifs / gene regulation

— Two settings: co-regulated genes (EM,Gibbs), de novo
2. Expectation maximization: Motif matrix<& positions

— E step: Estimate motif positions Z; from motif matrix

— M step: Find max-likelihood motif from all positions Z;
3. Gibbs Sampling: Sample from joint (M,Z;) distribution

— Sampling motif positions based on the Z vector

— More likely to find global maximum, easy to implement

4. Evolutionary signatures for de novo motif discovery
— (Genome-wide conservation scores, motif extension
— Validation of discovered motifs: functional datasets

5. Evolutionary signatures for instance identification
— Phylogenies, Branch length score =» Confidence score
— Foreground vs. background. Real vs. control motifs. "



Motivation for de novo genome-wide motif discovery

 Both TF and region centric approaches are not
comprehensive and are biased

* TF centric approaches generally require
transcription factor (or antibody to factor)

— Lots of time and money
— Also have computational challenges

* De novo discovery using conservation is unbiased
but can’t match motif to factor and require multiple

genomes

47



Evolutionary signatures for regulatory motifs

Known engrailed binding site

omel  —=1AR———EFEE————RAAAD— ) — AR

.mel CAGCT--AGCC-AACTCTCTAATTAGCGACTAAGTC-CAAGTC
.sim CAGCT--AGCC-AACTCTCTAATTAGCGACTAAGTC-CAAGTC
.sec CAGCT--AGCC-AACTCTCTAATTAGCGACTAAGTC-CAAGTC
.yak CAGC--TAGCC-AACTCTCTAATTAGCGACTAAGTC-CAAGTC
.ere CAGCGGTCGCCAAACTCTCTAATTAGCGACCAAGTC-CAAGTC

.ana CACTAGTTCCTAGGCACTCTAATTAGCAAGTTAGTCTCTAGAG
* * * * kkkkkkkkkkk * *kkk Kk kK

UUUUUU

e Start by looking at known motif instances
e Individual motif instances are preferentially conserved

e Can we just take conservation islands and call them
motifs?

— No. Many conservation islands are due to chance or perhaps due
to non-motif conservation ,
Kellis el al, Nature 2003
Xie et al. Nature 2005
Stark et al, Nature 2007 s



Conservation

Scer
Spar
Smik
Sbay

Scer
Spar
Smik
Sbay

Scer
Spar
Smik
Sbay

Scer
Spar
Smik
Sbay

Scer
Spar
Smik
Sbay

Scer
Spar
Smik
Sbay

GTTGT-GGAAAT-GTAAAGAGCCCCATTATCTTAGCCTAAAAAAACC--TTCTCTTTGGAACTTTCAGTAATACG
GTTGT-GAGAGT-GTTGATAACCCCAGTATCTTAACCCAAGAAAGCC--TT-TCTATGAAACTTGAACTG-TACG
GTTAC-GGGAATTGTTGGTAATCCCAGTCTCCCAGATCAAAAAAGGT--CTTTCTATGGAGCTTTG-CTA-TATG
ATTATAGAGAGATGCCAATAAACGTGCTACCTCGAACAAAAGAAGGGGATTTTCTGTAGGGCTTTCCCTATTTTG

*% * ok * * ok *  * *k  kk * kkk * *kk * ok *

TATCCATATCTAATCTTA
TATCCATATCTAGTCTTAQTTAT.
TACCGATGTCTAGTCTTA(QTTAT.

TAGATATTTCTGATCTTTCTTAT
*kkk  Nkkkk

CTTAACTGCTCATTGC----- TATATTGAAGT GCGTCCTCGTCT
CTAAACTGCTCATTGC----- AATATTGAAGT. GCGTCGCCGTCT
TTTAGCTGTTCAAG----———-— ATATTGAAAT GCGGCGTCCTCT
TCTTATTGTCCATTACTTCGCAATGTTGAAAT. GCGAAGTCGTCT
*k Kk ko dkkkk koMbkkkdkk kokkokkk kkk Ak * %k K * kkk

GAL4
TCACCGG-TCGCGTTCCTGAAACGCAGATGTGOCTCGCGCCGCACTGCTCCGAACAATRAAAGATTCTACAA-—-—— TACTAGCTTTT--ATGGTTATGAA

TCGTCGGGTTGTGTCCCTTAA-CATCGATGTAQCTCGCGCCGCCCTGCTCCGAACAATAAGGATTCTACAAGAAA-TACTTGTTTTTTTATGGTTATGAC
ACGTTGG-TCGCGTCCCTGAA-CATAGGTACGECTCGCACCACCGTGGTCCGAACTANAATACTGGCATAAAGAGGTACTAATTTCT--ACGGTGATGCC

GTG-CGGATCACGTCCCTGAT- TACTGAAGCG TCGCCCCGCCATACCCCGAACAA! GCAAATGCAAGAACAAA—TGCCTGTAGTG——GCAGTTATGGT
*k * *k kkk * Kok ok ok kok ok ok ok okkkk ok * k% *k kkk

-CAAATTAACGAATCAAATTAACAACCATA-GGATGATAATGCGA------— TTAG--T
CAAACTATTGAATCAAATTGGCCAGCATA-TGGTAATAGTACAG----—-— TTAG--G
-CAAATCGATGCGTAAAACTGGCTAGCATA-GAATTTTGGTAGCAA-AATATTAG--G

GTTCCGTGTACAGCACACTGGATAGAACAATGATGGGGTTGCGGTCAAGCCTACTCG
* * * * ok *

GAGGA-AAAATTGGCAGTAA----CCTG
AGGAACAAAATAAGCAGCCC----ACTG
CAACGCAAAATAAACAGTCC----CCCG

GAACGTGAAATGACAATTCCTTGCCCCT
*kk ok

MIG1 1BP

TTTTTAGCOIrTATTTCTGGG(

GTTTT--TQrTATTCCTGAGA

TTCTCA--CCTTTCTCTGTGA

TTTTCCGTTI' TACTTCTGTA(G
* % " k ok

AATTCATCCGCAAAAAATAATGGTTTTT-GGTCTATTAGCAAACATATAMATGCAAAAGTTGCATAGCCAC-—-—-—— TT

AATTCATCACCGAAATG--ATGGTTTA--GGACTATTAGCAAACA A

GGCTCAT--GCAGAAAGTAATGGTTTTCTGTTCCTTTTGCAAACATATANATATGAAAGTAAGATCGCCTCAATTGTA
* kK *  * Eak *  k  kk kkx * * *kkk *

TAACTAATACTTTCAACATTTTCAGT--TTGTATTACTT-CTTATTCAAAT----GTCATAAAAGTATCAACA-AAAAATTGTTAATATAC

TAAATAC-ATTTGCTCCTCCAAGATT--TTTAATTTCGT-TTTGTTTTATT----GTCATGGAAATATTAACA-ACAAGTAGTTAATATAC (iALI

TCATTCC-ATTCGAACCTTTGAGACTAATTATATTTAGTACTAGTTTTCTTTGGAGTTATAGAAATACCAAAA-AAAAATAGTCAGTATCT

TAGTTTTTCTTTATTCCGTTTGTACTTCTTAGATTTGTTATTTCCGGTTTTACTTTGTCTCCAATTATCAAAACATCAATAACAAGTA TCATGACTA
* kkk

GAL4
Transcription factor binding Conservation island

islands overlap known motifs

Increase power by testing conservation in many regions
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Genome-wide conservation

Scer

Spar

Smik
Shay
Evaluate conservation within: Gal4 Controls
(1) All intergenic regions 13% 2%
(2) Intergenic : coding 13%:3% | 2%:7%
(3) Upstream : downstream 12:0 1:1

A signature for regulatory motifs
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Test 1: Intergenic conservation

Conserved count

900
700
500
300

200

100

v

2,000 4,000 6,000 8,000 10,000 12,000

Total count

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
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Test 2: Intergenic vs. Coding

Intergenic Conservation

50
40
30
20

10

- ' CGG-11-CCG

/" I ’ngher'COnsérvét ion in:Genes

5

10

15

v

Coding Conservation

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
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Test 3: Upstream vs. Downstream

Upstream Conservation

60
40
20

10

. ] CGG-11-CCG

Downstream motifs?

12

Downstream Conservation

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
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Conservation for TF motif discovery

1. Enumerate motif seeds

T |G|C ——99p — T A|G

* Six non-degenerate characters with variable size gap in the
middle
2. Score seed motifs
* Use a conservation ratio corrected for composition and
small counts to rank seed motifs
3. Expand seed motifs

S RIT/IG|[C|Y|—99° — W|TAGR

* Use expanded nucleotide IUPAC alphabet to fill unspecified
bases around seed using hill climbing
4. Cluster to remove redundancy
* Using sequence similarity

Kellis, Nature 2003 -



Learning motif degeneracy
using evolution

» Record frequency with . l}/ SN R
which one sequence is S : R

“replaced” by another in = ; . A

evolution %g\gﬁ B = R
. . EsR1 . 7 e S 4 ‘o S
 Use this to find clusters 0 G %

of k-mers that B ecficd AN

correspond to a single = NS N o
motif 145 ;Q g_;rg\"

o (o] o
(o] fe) \
o o
(o]

© Cold Spring Harbor Laboratory Press. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Tanay, Amos et al. "A global view of the selection forces in the evolution of yeast
cis-regulation." Genome Research 14, no. 5 (2004): 829-834.

Tanay, Genome Research 2004 .,
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Motif discovery overview

1. Introduction to regulatory motifs / gene regulation

— Two settings: co-regulated genes (EM,Gibbs), de novo
2. Expectation maximization: Motif matrix<& positions

— E step: Estimate motif positions Z; from motif matrix

— M step: Find max-likelihood motif from all positions Z;
3. Gibbs Sampling: Sample from joint (M,Z;) distribution

— Sampling motif positions based on the Z vector

— More likely to find global maximum, easy to implement
4. Evolutionary signatures for de novo motif discovery

— Genome-wide conservation scores, motif extension

— Validation of discovered motifs: functional datasets

5. Evolutionary signatures for instance identification
— Phylogenies, Branch length score =» Confidence score
— Foreground vs. background. Real vs. control motifs. 55



Validation of the discovered motifs

« Because genome-wide motif discovery is de novo, we
can use functional datasets for validation

— Enrichment in co-regulated genes

— Overlap with TF binding experiments

— Enrichment in genes from the same complex

— Positional biases with respect to transcription start
— Upstream vs. downstream / inter vs. intra-genic bias
— Similarity to known transcription factor motifs

« Each of these metrics can also be used for discovery
— In general, split metrics into discovery vs. validation
— As long as they are independent !

— Strategies that combine them all lose ability to validate
» Directed experimental validation approaches are then needed
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Similarity to known motifs

* |f discovered motifs are real, we

expect them to match motifs in large

databases of known motifs

* We find this (significantly higher than

with random motifs)

* Why not perfect agreement? 70/174 mammalian

— Many known motifs are not
conserved

— Known motifs are biased; may have | =

missed real motifs

35/145 fly motifs

. . Known

MCS Discovered motif Factor x
46.8 GGGCGGR SP-1 f_D.
34.7 GCCATNnTT YY1 b
327 CACGTG MYC  |=>
31.2 GATTGGY NFY |y
30.8 TGANnTCA AP-1 | emp
29.7 GGGAGGR maz |
295 TGACGTMR CREB ?D
26.0 CGGCCATYK | NF-MUE1

25.0 TGACCTTG err |IND
226 CCGGAARY ekt |
19.8 SCGGAAG GABP 8
17.9 CATTTCCK STAT1

motifs
. . Known
MCS Discovered motif Factor g
656 CTAATTAAA en Q)
57.3 TTKCAATTAA repo | ™%
54.9 WATTRATTK ara F
54.4 AAATTRATGC prd
GCAATAAA wl Z

46.7 DTAAR TRYN Ubx ?_"..
457 TGATTAAT ap c
43.1 YMATTAAAA abd-A |™%
41.2 AAACNNGTT ®

40 RATTKAATT N
39.5 GCACGTGT ftz o
38.8 AACASCTG br-z3 3

[¢)]
(9]



Positional bias of motif matches

* Motifs are involved in initiation of transcription
-> Motif matches biased versus TSS
— 10% of fly motifs
— 34% of mammalian motifs
- Depletion of TF motifs in coding sequence
— 57% of fly motifs
- Clustering of motif matches
— 19% of fly motifs
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Motifs have functional enrichments

Tissues

For both fly (top) and
mammals (bottom),
motifs are enriched in
genes expressed in
specific tissues

Reveals modules of
cooperating motifs

Motifs

1. Most motifs avoided in
ubiquitously expressed genes

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
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TF2 microRNA1
“
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L

Motif instance identification

How do we determine the functional
binding sites of regulators?

Kheradpour, Stark, Roy, Kellis, Genome Research 2007 -



Experimental target
identification:
ChIP-chip/seq

Limitations :
* Antibody availability

» Restricted to specific
stages/tissues

 Biological functionality of

most binding sites
unknown

Resolution can be limited
(can’t usually identify the
precise base pairs)

Ren et al., 2000; lyer et al., 2001 (ChIP-chip)
Robertson et al., 2007 (ChIP-seq)

Cells with proteins
cross-linked to DNA

|

o
);;:'ﬂcr m Isolate and fragment
% Ww DNA with proteins
*BQO( %;"ﬁ:‘;& attached
% L

v

%:%W Use antibody to select

SRR only DNA with desired

WMW proteins bound

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
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Computational target identification

« Single genome approaches using motif
clustering (e.g. Berman 2002; Schroeder 2004;
Philippakis 2006)

— Requires set of specific factors that act
together

— Miss instances of motifs that may occur alone

« Multi-genome approaches (phylogentic
footprinting) (e.g. Moses 2004; Blanchette and
Tompa 2002; Etwiller 2005; Lewis 2003)

— Tend to either require absolute conservation
or have a strict model of evolution



Challenges in target identification

Motif instance

Humaniizé-e-: i;é-é-: E= -

_—
Mouse < fmm mr —mmo O e ww Cmm (mm I
——

Rat — e r—w ——— fa wwr®
Dogizé-%ﬁ I:%j E; -

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

« Simple case
— Instance fully conserved in orthologous position near genes

* Motif turn-around/movement

— Motif instance is not found in orthologous place due to birth/death or
alignment errors

« Distal/missing matches
— Due to sequencing/assembly errors or turnover
— Distal instances can be difficult to assign to gene


http://dx.doi.org/10.1101/gr.2064404

Computing Branch Length Score (BLS)

------------ human ctgge-gttoccTOCCCCOGAGAGGGEGCCCtcttocctoct
____[{ ------------ chimp ctgge-gttecTGLCCCOGLAGAGGGLGLCCtecttocctect
- = rhesus ctgge- gttccTRCCCCGGCAGAGGGEGCCCtcttocctact

---------- bushbaby  cttgc- gotcla- clcBGCAGARNGGCGCRCtctecctecg
---------- tree shrew cgggc-gocTRGE- - CCGGCAGRGGGCGCCCtcteccctoe-
ctggcgttc ]Gl - - GGCGC.Cgctccctgcc

-hedgehog  -------- WTGC- GRAGHMAGGCGOECtctecttecc

missing short | chrew e

branches |.clephant  caget-gteccfioccccpgadicaoccdicgttecttece

------ tenrec atgac-gtcccgacocg@ggta- - gggeogetggtecccectgea

............ armadillo gggce- ttcTHE- MccaaoaGaGGGCGaiicoctecctece
Allows for:

>BLS =2.23sps (78%) | 4

Mutations permitted by motif
degeneracy

.. CTCF c 2. Misalignment/movement of motifs within
ACCA Csc window (up to hundreds of nucleotides)

3. Missing motif in dense species tree

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
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Branch Length Score = Confidence

1. Evaluate chance likelihood of a given score

« Sequence could also be conserved due to overlap
with un-annotated element (e.g. non-coding RNA)

2. Account for differences in motif composition and
length

« For example, short motif more likely to be
conserved by chance
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Branch Length Score = Confidence

10000 - -1
9000 - - 09
confidence

8000 - - 08

7000 - - 07
wvi
Q
2
S 6000 - - 06 o
e o
£ =
w 5000 - - 05 o
5] o
5 2
£ 4000 - - 04 ®
3
2

3000 - - 03

2000 - - 0.2

1000 - - 0.1

0 e e e 0
00 02 05 07 09 11 14 16 1.8 21 23 25
Branch length score (BLS)

1. Use motif-specific shuffled control motifs determine the expected
number of instances at each BLS by chance alone or due to non-
motif conservation

2. Compute Confidence Score as fraction of instances over noise at a
given BLS (=1 — false discovery rate)



Producing control motifs

, When evaluating the conservation,
] C A enrichment, etc, of motifs, it is useful
UUUUU :__(_;ug?? AVXGWCsS to have a set of “control motifs”
Original motif O Produce 100 shuffles of our original motif
[WPLY “TCCCAACAC
z ﬂ v L s Izll... |~ ]
T AC’ ' i A‘-CCAACTACC
5 T SR
cCccA C e oosin 000cl0e

Filter motifs, requiring they match the genome
with about (+/- 20%) of our original motif

O Sort potential control motifs based on their

Genome sequence

Knownpotis similarity to other known motifs

Cluster potential control motifs and take at
most one from each cluster, in increasing
order of similarity to known motifs

Gt ach Aol ol B n o s st S el A S S

ol e - i

68



Computing enrichments: background vs. foreground

Background (e.g. Intergenic):

Foreground (e.g. TF bound):

#in foreground | sizeof foreground
#in background ~ size of background

#in foreground | # control in foreground
#in background ~ # control in background

binomial confidence interval °

0.0 1.0
fraction

use this

Background vs. forgeround
— co-regulated promoters vs. all genes
— Bound by TF vs. other intergenic regions

Enrichment: fraction of motif
instances in foreground vs. fraction
of bases in foreground

Correct for composition/conservation
level: compute enrichmt w/control motifs
— Fraction of motif instances can be

compared to fraction of control motif
instances in foreground

— A hypergeometric p-value can be
computed (similar to x?, but better for
small numbers)

Fractions can b_e made_ more
conservative using a binomial
confidence interval
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Confidence selects for functional instances

80%;{

60%;{

H
(=}
°

Number of cons. Instances

20%:

0%+
0

Transcription factor motifs

01 02 03 04 05 06 07 08 0.9 1

confidence

Number of cons. Instances

MicroRNA motifs

40%

0 0.1 02 03 04 05 06 07 08 0.9
confidence

1. Confidence selects for transcription factor motif
instances in promoters and miRNA motifs in 3’ UTRs
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Validation of discovered motif instances

Use independent experimental evidence
Look for functional biases / enrichments
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Confidence selects for functional instances
Strand Bias

miRNA motifs

100,

O
o

w
(=]

~J
o

(o))
o

o \gi.'%’(dql‘.umo.‘“ﬁmb,ﬁ V\ ﬂt
‘ M’Jﬁ . TF motifs
§

40
30+

20
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104

0

0 01 02 03 04 05 0.6 0.7 08 09 1

confidence
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1. Confidence selects for transcription factor motif
instances in promoters and miRNA motifs in 3’ UTRs

2. miRNA motifs are found preferentially on the plus strand,
whereas no such preference is found for TF motifs "
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Increased sensitivity using BLS

Figure 3 B removed due to copyright restrictions.
Source: Kheradpour, Pouya et al. "Reliable prediction of regulator targets using
12 Drosophila genomes." Genome Research 17, no. 12 (2007): 1919-1931.
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Intersection with CTCF ChIP-Seq regions

Enrichment grows with confiden . .
16 0 ChIP-Seq and ChIP-Chip technologies
g v /§./ allow for identifying binding sites of a
@ - . .
o £ motif experimentally
S 1 £ > . .
£ | | — e Conserved CTCF motif instances highly
< = 4 . . .
£ ( : enriched in ChIP-Seq sites
2,0 I R . . .
|.|C.| 4 : .................................................. : ................... ° ngh enrlchment does nOt I"eCILHre |OW
2 0 e, 0 o
o ; J— sensitivity
©oo0r 0r 0 0s 08 menfience | @ Many motif instances are verified
Confidence cutoff 0% confidence
o " | Verification by ChIP follows confidence
' Little loss in sensitivity with higher = 09
confidence Q os
- 0.4 ﬁ 0.7
o R
% T 0 50% motifs verified
o o3 > 05 "
- ! S
S > 50% of regions with a motif s % x
W 0.2 b7 (=]
E \ ...E N g_" control motifs .
E =S OSSP B
=0 | B backround
. ChIP data from Barski, et al., Cell (2007) ’ o o1 02 03 o4  o0s  0s o7  os oo
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Enrichment increases in conserved bound regions

Enrichmentin ChIP regions
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Confidence cutoff

1. ChIP bound regions may not be conserved
2. For CTCF we also have binding data in mouse

3. Enrichment in intersection is dramatically higher
Human: Barski, et al., Cell (2007)

Mouse: Bernstein, unpublished 76



Human: Barski, et al., Cell (2007)

Mouse: Bernstein, unpublished

More enrichment when binding

Enrichmentin ChIP regions
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ChIP bound regions may not be conserved
For CTCF we also have binding data in mouse
Enrichment in intersection is dramatically higher

Trend persists for other factors where we have
multi-species ChIP data 77



Comparing ChiIP to Conservation

m Motifs

Motifs outside ChIP
m ChIP

m ChIP
ChIP without motif
B Motifs inside ChIP

Mef-2 Mef-2

0.25 05 1 2 4 0.25 0.5 1 2 4 8

Enrichment in muscle gene promoters Enrichment in muscle gene promoters

1. Motifs at 60% confidence and ChIP have similar enrichments
(depletion for the repressor Snail) in the functional promoters

2. Enrichments persist even when you look at non-overlapping subsets
3. Intersection of two regions has strongest signal

4. Evolutionary and experimental evidence is complementary
« ChIP includes species specific regions and differentiate tissues
« Conserved instances include binding sites not seen in tissues surveyed

ChIP data from: Zeitlinger, et al., G&D (2007); Sandmann, et al,. G&D (2007); Sandmann, et al., Dev Cell (2006) 78



Fly regulatory network at 60% confidence

UsP

Development 111. 601-609 (1991)
Printed in Grea Britain © The Company of Biologists Limited 1991

Spatial regulation of the gap gene giant during Drosophila development

RACHEL KRAUT and MICHAEL LEVINE*

gcm and pointed synergistically control glial transcription of the

Drosophila gene loco

Sebastian Granderath, Ingrid Bunse, Christian Klimbt™

foR st

£YG

ADF)

Suppressor of Hairless directly
activates transcription of Enhancer
of split Complex genes in response
to Notch receptor activity

Adi

d James W. Posakony'
ter for Molecular Genetics, University of California San Diego, La Jolla, California

AC)

Zz

activity: hairy is a direct
transcriptional repressor of achaete

Mark Van Doren,' Adina M. Bailey, Joan Esnayra, Kekoa Ede, and James W. Posakony”*

Department of Biology and Center for Molecular Genetics, University of California San Diego,
La Jolla, California 92093-0322 USA

Negative regulation of proneural gene

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Several connections confirmed by literature (directly or indirectly)

Global view of instances allows us to make network level observations:

Dep n of Biological Sciences, Fairchild Center, Columbia Universitv, New York, NY 10027, USA
N *Present address: Department of Biology, Bonner Hall, University of California at San Diego, La Jolla, CA 92093-0346
IRA ;
0y
TFs:
NEE2 SRP - °
b, 2
v DSX
o & ISREF 6 Of 8 3 8 1 (y
6% 7 (o]
EIPT4EF (H o
v . - 46k instances
BeD
KR
BX: CREBA
ZEN

mMiRNAs:
49 of 67 (86%)
4k instances

« 46% of targets were co-expressed with their factor in at least one tissue (P <2 x 10-3)
« TFs were more targeted by TFs (P < 10-2%) and by miRNAs (P <5 x 10%)
 TF in-degree associated with miRNA in-degree (high-high: P < 104; low-low P < 10°¢)
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Motif discovery overview

1. Introduction to regulatory motifs / gene regulation
— Two settings: co-regulated genes (EM,Gibbs), de novo

2. Expectation maximization: Motif matrix<& positions
— E step: Estimate motif positions Z; from motif matrix
— M step: Find max-likelihood motif from all positions Z;
3. Gibbs Sampling: Sample from joint (M,Z;) distribution
— Sampling motif positions based on the Z vector
— More likely to find global maximum, easy to implement
4. Evolutionary signatures for de novo motif discovery
— Genome-wide conservation scores, motif extension
— Validation of discovered motifs: functional datasets
5. Evolutionary signatures for instance identification
— Phylogenies, Branch length score =» Confidence score
— Foreground vs. background. Real vs. control motifs. "



Challenges in regulatory genomics

TFs: Homology to TFs/domains
miRNAs: Evolutionary signatures
miRNAs: Experimental cloning

TFs: Selex, DIP-Chip, Protein-Binding-Microarrays
miRNAs: Evolutionary/structural signatures
miRNAs: Experimental cloning of 5’-ends

TFs/miRNAs: De novo
‘ TFs: Mass Spec (difficult)

comparative discovery**

Regulator = > Motif

TF/miRNA Sequence
specificity

TFs: Enrichment in
co-regulated genes/

e
Ta rgets / bound regions **

Functional instances

Network analysis
(next lecture)

TFs: ChIP-Chip/ChIP-Seq
TFs/miRs: Perturbation response

TFs/miRNAs: Evolutionary signatures™*
miRNAs: Composition/folding

* = Covered in today’s lecture
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Recitation tomorrow: in vitro motif identification
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Courtesy of the authors. Used with permission. © source unknown. All rights reserved.

Source: Ray, Partha, and Rebekah R. White.

"Aptamers for targeted drug delivery."

Pharmaceuticals 3, no. 6 (2010): 1761-1778.

SELEX (Systematic
Evolution of
Ligands by
Exponential
Enrichment; Klug
& Famulok, 1994)

This content is excluded from our Creative
Commons license. For more information,
see http://ocw.mit.edu/help/fag-fair-use/. ®

PBMs (Protein
binding
microarrays;
Mukherjee, 2004)
Double stranded
DNA arrays

PBMs: Protein binding
microarrays

SELEX: Selection-
based motif
identiifcation

De Bruijn graphs to
generate PBM probes
From k-mers to motifs
Gapped motifs

Degenerate motifs and
DNA bending (DNA
shape)

Relaxing
independence
assumptions in PWMs
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Motif discovery overview

1. Introduction to regulatory motifs / gene regulation

— Two settings: co-regulated genes (EM,Gibbs), de novo
2. Expectation maximization: Motif matrix<& positions

— E step: Estimate motif positions Z; from motif matrix

— M step: Find max-likelihood motif from all positions Z;
3. Gibbs Sampling: Sample from joint (M,Z;) distribution

— Sampling motif positions based on the Z vector

— More likely to find global maximum, easy to implement
4. Evolutionary signatures for de novo motif discovery

— Genome-wide conservation scores, motif extension

— Validation of discovered motifs: functional datasets
5. Evolutionary signatures for instance identification

— Phylogenies, Branch length score = Confidence score

— Foreground vs. background. Real vs. control motifs. "
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