Computational Biology: Genomes, Networks, Evolution
6.047/6.878 Lecture 09

Regulatory networks: Inference,
Analysis and Applications

Soheil Feizi



The multi-layered organization of
information in living systems
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Biological networks at all cellular levels
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Five major types of biological networks
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Network definitions: structural, probabilistic

* Two types of binary graphs: directed/undirected networks

* Graph theory: Nodes, edges, weights, paths
* Probabilistically: Bayesian Networks

— A model to represent “dependencies” among variables
— Unconnected nodes are conditionally independent

* Linear algebra: Matrices, powers, decomposition



Network applications and challenges
@ Element Identification @ ATTAAJGCTT 000

(motif finding lecture)

Regulators Regulatory Motifs || Target genes

Using networks to Predict expression levels

predict cellular activity

Predict gene ontology (GO)
functional annotation terms

@ Inferring networks X=f( A’B)
from functional data
) Y=g(B)
Activity patterns ,
Structure Function

Hubs (degree-distribution)
Network motifs
Functional modules

@ Network Structure
Analysis




Goals for today: Network analysis

1. Introduction to networks

2. Applications of regulatory networks

— Predicting expression of target genes: graphical
models, linear regression and regression trees

— Predicting functions of un-annotated genes, guilt by
association

3. Inferring "structure" of regulatory networks
— Likelihood approach, challenges
— Simplified approaches and their problems
— Integrated approaches

4. Structural properties of regulatory networks
— Scale free degree distribution
— Network motifs
— Spectral clustering and modular networks




Applications of regulatory networks

* Predicting expression of targets from
expression of regulators

* Predicting function of un-annotated genes
based on co-expression and co-regulation



Gene expression prediction



Regulatory network: Input / output

Trans input: TF levels (A) =

|

Output: mRBNA levels
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Experimental Condltlon

* Gene expression prediction:

glo¥o

= fi(G})

YiL=R 1 YT

nt—i

@ Intractable to compute joint distribution
=» Focus on marginal distributions.
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* Regulatory wc® Fovn B e

e Assume other

Very large number of regulators / targets
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Graphs represent variable dependencies

1
_> @ * X, and X, are dependent.
N @ 7z * X, and X; are dependent.

* X; and X; are conditionally independent

* If we know the value of X,, they are independent

* Butif the value of X, is not known, then:
1. Observing (or estimating) value of X1 ....
2. ... can influence our estimate of the value of X2...
3. ... which in turn can influence our estimate of value of X3
=» Some information does flow X, X, through X,: Dependent!

X, and X; are independent given X,: X 1L X3|X5
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Probability tables vs. graphical

models
P Equations * Network




Network structure =»sets of ind. variables

31 >2 33

Xg, 1L Xg,|Xsg,

* Variables S;={...} and S;={...} are conditionally
independent given S, if they become
disconnected by removing S,

e Graphical models represent “structure” of joint
probability distribution: reason about graph,
instead of reasoning about probability tables




Directed graphs =» Asymetry of conditional ind
VS. VS.
(%) (%) (%)
X1 1L Xo| X3 X7 1L Xo| X3 Xq AL X5| X3

 Parent nodes vs. children nodes [EXPLAIN]

S, ;, S,

Xg, 1L Xg,|Xsg,

* Given parents: children nodes independent from



Rules for conditional independence



Joint distribution =» node/edge potentials
(Markov Random Field

Bayes'rule ..........._. @ @
P(X17X27X3) P(Xl X2|X3) (

—P(X1|X3)P(Xa| X3)P(X3) @

* Conditionally independent variables appear in separate terms
Node potentlal Edge potential

P(X1,Xo,...,X»n) H

el
partition function For ever
(typically cancels out) network edge --
XL X2 [X3 |X4
X1 |x2 [x3 |xa | F() F() F()
F(.) F() F() F() F(.) F()  F()
F(.)  F()  F()

F(.)  F()  F()

What about the function F(.)?




Predicting gene expression

Edge potential functions
Gaussian functions
Linear regression
Regression trees



Types of potential functions F(.)

e General

* Exponential functions

e Gaussian functions

— General covariance

— Unit variance,
only correlations p

— No covariance (indpent)

© Source unknown. All rights reserved. This content is excluded from our Creative

20 Commons license. For more information, see Ii\ttp://ocw.mit.edu/help/faq-fair-use/.


http://ocw.mit.edu/help/faq-fair-use/

Gaussian edge potential functions
(Gaussian graphical models)

* If X;, X, and X, are jointly Gaussian with p=0 and o=1
=>» edge potential functions simplify to correlations P, ;

N_AN_A
P13  p23

correlations




Prediction problem =» calculate marginals

P(XMX?}

P(X;3) (x) ()

[ P(:I:lz ro, T3 )dro P13 p2.3
| P(xy, 22, 23)drodrs @

One more expansion, showing Z

P(X1|X3)

 Normalization term (Z) will
be canceled out!

1 | -
P(Xq,Xo,...,X,) = ~ H O(X;) H WX, Xj)
i€V (i.§)EE



Assume linear function from regulators to target
(Linear regression)

* Goal: X3 = f(X1,X2) @ @

 Probabilistic
approach: P(Xs3]X1, Xa) @

* Assume expression of a target is Gaussian
whose mean is a linear combination of the
expression level of regulators

P(Xg‘Xl,XQ) ~ N(Olel + an X2 + oy, 1)

* Use maximum likelihood to find parameters.



Predicting gene expressions using linear regression
(combine with prev)

P(X3| X1, X2) ~ N(a1 X1 + aa X2 + ap, 1) @ @
Data: D

Model: M @

P(M|D) = P(ﬁ'ff}jfé})}lﬂff)

* Take derivatives to find optimal model
parameters

* Problem of over-fitting => regularization
(DETAILS on regularization functions)
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Predicting expression using regression trees

Each path captures a
mode of regulation

Activating YES

regulation o
Activating

regulation

YES

Repressing
regulation

N(p31,031) N(M327032) N(MS?)»USB)
EEERN ERERE

Expression of target modeled using Gaussians at each leaf node

Assumes variables are continuous. Arranges regulators in a tree

Expression prediction follows a set of decision rules
- Can model combinatorics

Allows non-linear dependencies between regulators and target
Targets can share regulatory programs



Predicting gene function

Guilt by association
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Predicting functions of un-annotated
genes

e Goal: Predict function of unannotated genes
based on “guilt by association”

e Different types of “association”

Co-expression

Protein-interactions Co-regulation

[

Regulator

N

X X X X
w

B

Co-regulated genes

However most approaches work with “functional networks”

Deng et al 03, Sharan et al 07



Iterative classification algorithm

Unknown genes

Known genes !_abels of unknown genes
influence each other

Need to be inferred jointly

e Start with an initial assignment of labels
* Repeat iteratively

— Update relational attributes
— Re-infer the labels

Neville 03, Getoor 05

28



Approaches for “network-based”
function prediction

Neighborhood counting

— Add sentence

Markov Random Field Structure
— Add sentence

Relaxation Labeling
— Add sentence

Collective classification
— Add sentence

Most approaches work with functional networks
— Add sentence



Take away messages so far ...
(combine with outline slide)

e Use graphical models to represent
“dependencies” among variables

* Gene expression predictions are equivalent to
finding marginal distributions

— Linear regression, regression trees

* Use network structure to predict functions of
un-annotated genes



Goals for today: Network analysis

1. Introduction to networks

2. Applications of regulatory networks

— Predicting expression of target genes: graphical
models, linear regression and regression trees

— Predicting functions of un-annotated genes, guilt by
association

3. Inferring "structure" of regulatory networks
— Likelihood approach, challenges
— Simplified approaches and their problems
— Integrated approaches

4. Structural properties of regulatory networks
— Scale free degree distribution
— Network motifs
— Spectral clustering and modular networks

31
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Likelihood approach to infer “network
structure”

* Likelihood approach:
— Assign a likelihood score to each structure
— Pick the best one! @

-
~

P(ﬂtt*llctllr%) P(data|structure ).

P(structure|data) = P(d R




Structure Learning needs search

Score(G) = Likelihood(X; G, 6) = P(X]6,G)

o ¢ © & o o ¢ @
6o o0 o9 o
P O o e @
Score(Gy) Score(Gs) Score(Gs) Score(G,, )

AN

G = argmax max P(X|0,3G)

T

Best graph Maximum likelihood




Likelihood approach to infer network
structure: challenges

* Problems:
— Exponentially many structures!

— Unable to discriminate between direct vs
indirect links (Undistinguishable
structures!)



35

Solution 1: Correlation-based inference
methods

* Only consider structures whose “observed”
edge weights are high

* Perform maximum likelihood test among
fewer structures

p2.3 < min(p12, p1,3)



Issues of correlation-based inference
methods

* Problems:
— Many false positive and true negative edges

— Observed edge weights may be different than
true edge weights.

— Indirect effects and transitive edges:

’__—_\



Indirect information flows cause transitive
edges

* Transitive edges are due to information flows
over indirect paths

* ARACNE solution: Exclude edges with lowest
Information in a triplet => information inequality

(X4, X,) @ (X4, X5)

1(X,,X5)

1(X,,X3) < min(I(X,,X,),1(X1,X3))

e Network deconvolution!

37
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Solution 2: Use many data types to infer
regulatory networks (chip, motif, chromatin)

Post-transcriptonal Transcriptional Epigenetic
regulation regulation regulation

l l

Chromatin & histone g
binding proteins ’

"mvTF

§’>
A Nucleosomes /!
modifications ([ | f/ )

l CJL’»‘L o i1"!—:\f"f-.'”;\'f}""'Chromatin

l

Gene expression TF binding Chromatin marks
(RNAseq, microarrays) (ChlP-seq) (ChlIP-seq)

© American Association for the Advancement of Science. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq—fair—use/.
Source: Roy, Sushmita et al. “|[dentification of functional elements and regulatory circuits by Drosophila
|modENCODE.“ Science 330, no. 6012 (2010): 1787-1797.

et

Glue proteins to DNA, cut Use antibody to filter Sequence the pieces,
nto pieces for a specific protein map back to genome

©|IIIumina, Inc. All rights reserved. This content is excluded
from our Creative Commons license. For more information,
see |http://ocw.mit.edu/help/faq—fair—use/.
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http://ocw.mit.edu/help/faq-fair-use/
http://dx.doi.org/10.1126/science.1198374
http://dx.doi.org/10.1126/science.1198374
http://www.illumina.com/techniques/sequencing/dna-sequencing/chip-seq.html
http://ocw.mit.edu/help/faq-fair-use/

Integrated approach to infer regulatory networks
Solution 3: Solution 1+Solution 2

* Combine inferred regulatory networks from
many data types

Transcripts .9,0 rrelation of .9..’59.{.9.?19.'???“
TF M.‘ ----- A ﬁw ——
— o
.. e=r—===="" Conelation of chromatin states
\ Chromatin marks T T e 1‘
Motif Y TSS £ T RN .‘ .. S - S 1
O I" <> <> O I g - l I
i S o | Y T S O A P | T W WA 1
‘ Promoter region Gene TF gene Target gene
[conmed motifs of TFs] [ ChIP binding of TFs ] Chromatin marks [ Gene expression
- Evolutionary conservation - ChiP-seq & ChIP-chip - ChiP-seq & ChiIP-chip - RNA-seq & microarrays
across 12 Drosophila species -76 TFs - 6 marks, 12 dev. stages - 13k genes, 12 dev. stages
-138 TFs + 20 marks, 2 cell lines + 12k genes, 28 dev. stages
Physical features Functional features ’

© Cold Spring Harbor Laboratory Press. All rights reserved. This content is excluded from our
Creative Commons license. For more information,seelhttp://ocw.mit.edu/help/fag-fair-use/.
Source: Marbach, Daniel et al. "Predictive regulatory models in Drosophila melanogaster by

39 |ntegrative inference of transcriptional networks." Genome Research 22, no. 7 (2012): 1334-1349.


http://ocw.mit.edu/help/faq-fair-use/
http://dx.doi.org/10.1101/gr.127191.111
http://dx.doi.org/10.1101/gr.127191.111

Network integration: problem setup

 Can we simply add weights?

* Assumptions:
— Input networks are “independent”
— Weights represent log-likelihoods



M1

Likelihood approach to integrate

weighted networks
P((1,3) € EB‘“’},:;JW%,:;)
P((1,3) & Es ‘?1;}!3, -u:%ﬁ)

P((1,3)€Es ) P(w! 52 ,)|(1,3)€Es)

F("ﬂ:,,‘jﬂﬂl{.‘j} Bayesl rU|e
P ({'l,lijEE:-:.)P (W%_;a.-w%_:;H':L-:”gEﬁ)

P(wy gwi 3)

= log

 tog Plwtsuis)l(1,3) € By)
P(wj g, wi3)|(1,3) ¢ Es)

_ l[}g P(ib‘}d“l 3) = E‘S)P(ﬂ‘?jﬂ(lqg} - Eg) Independence
P(wi4|(1,3) & B3) P(wi3)I(1.3) € E3)  assumption



Take away messages so far ...
(combine with outline slide)

Maximum likelihood approach: inferring the
regulatory network structure by using gene
expressions is difficult => exponentially many
cases to score, some undistinguishable cases)

Limit search space => relevance networks

Use many data types => binding, motif,
chromatin, etc.

Integrated approaches work the best!
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Goals for today: Network analysis

1. Introduction to networks

2. Applications of regulatory networks

— Predicting expression of target genes: graphical
models, linear regression and regression trees

— Predicting functions of un-annotated genes, guilt by
association

3. Inferring "structure" of regulatory networks
— Likelihood approach, challenges
— Simplified approaches and their problems
— Integrated approaches

4. Structural properties of regulatory networks
— Scale free degree distribution
— Network motifs
— Spectral clustering and modular networks




Structural Properties of Regulatory
networks

Regulatory networks have scale-free
distribution

10000

* “Scale-free”: Graph is
self-similar at all scales

* Degree distribution G o
follows a power law E

S

— P(d) ~ dY
Z 10

* Implies the presence
of hubs

* Hub perturbations are Wiiabek:of inoulotoee Bound

Oﬂ'_en |etha| In degree distribution of E. coli regulatory
network

© American Association for the Advancement of Science. All rights reserved.
This content is excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq—fair—use/.

Source: Lee, Tong Ihn et al. "Transcriptional regulatory networks in
Adapted from Albert 05, Saccharomyces cerevisiae.” Science 298, no. 5594 (2002): 799-804.
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http://ocw.mit.edu/help/faq-fair-use/
http://dx.doi.org/10.1126/science.1075090
http://dx.doi.org/10.1126/science.1075090

Why are scale free distributions
important

Presence of hubs
Make the network robust to perturbations
Preserve overall connectivity

Perturbations to hubs is often lethal for an
organism
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Structural network motifs

Auto-regulation - Multi-component Feed-forward loop

Ny -«. ?

Single Input Multi Input

| LEU1 | I BAT1 | I vz l IRPLzal IRPL16A| Inpsmal lnps:azAl

Regulatory Chain

© American Association for the Advancement of Science. All rights reserved.
This content is excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

Source: Lee, Tong Ihn et al. "Transcriptional regulatory networks in
|Saccharomyces cerevisiae." Science 298, no. 5594 (2002): 799-804.

Feed-forward loops involved in speeding up in response of target gene

Lee et.al. 2002, Mangan & Alon, 2003


http://ocw.mit.edu/help/faq-fair-use/
http://dx.doi.org/10.1126/science.1075090
http://dx.doi.org/10.1126/science.1075090
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Modularity of regulatory networks

 Modular: Graph with dengg[y connected subgraphs
RN I/ \\

Ny \

&I

e Genes in modules involved in similar functions and co-
regulated

 Modules can be identified using graph partitioning
algorithms
— Markov Clustering Algorithm
— Girvan-Newman Algorithm
— Spectral partitioning

Newman PNAS 2007



An algebraic view to networks

* A matrix representation of a network:
— Unweighted network => binary adjacency matrix
— Weighted network => real-valued matrix

OO o0

A= 0O 0 P23

/01,3 p2)3
@ P13 P2,3 0
\\]\.\\\\\\O _1
* Laplacian Matrix L= | o™ 11

N
2
S
-1 -1+-2
N
=



An algebraic view to networks-

cooco W TTM
©cooo e,
co oo m--d
©Coo =S g
1._1._1__41._000
w=meOO0O0Oo

me-=-o0oo00O

0O O0O0O-H=wwO
0O OO0 -H-HO -
0O OO0 -HOH™
09O -HOHA™
-~ HO-dHoOoOO
- Ow-wOoOOooo
“O-d-Ooooo

Orrli«l sl O OOO

T

Laplacian Matrix

T

Adjacency Matrix
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Eigen decomposition principle-
introduction

* Suppose L is a square matrix:

_ —
L=UxU oo ..
i i 0 A
e U contains eigenvectors. »=
¥ is adiagonal matrix of 4 A

eigenvalues.

 For symmetric matrices, eigenvalues are real
* Why is it useful?

=/
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Eigen decomposition-example

U= /o. 3536\/-0 3825 /0. 2714\ -0.1628 -0.7783
/o, 3536/, -0. 3825/ 0.5580) -0.1628 0.6066

! o. 3536 0. 3825," -0.4495 | 0.6251 0.0930
. o. 3532 -0.2470 |-0.3799 -0.2995 0.0786
| 0.3536 /0.2470, |-0.3799 0.2995 0.0786
| o. 3ssé . 3825/ 0.3514 10.5572 -0.0727
\ 0. 3536\(/ 0. 3825}’ 0.0284 /-0.2577 -0.0059
\o 3536, 0. 3825’ 0. 0000/ 0.0000 0.0000

\ / \ / \ /

»

<)

<)

» O
©°88o0co0o0©°°

<)
~©S
°8ooco°°

©CcooopogoOo
o
(=}
o

=, S

\O

0.0495
0.0495

0.0495
-0.1485
-0.1485
-0.3466
-0.3466
0.8416

ocoooo©°

\
/

\

|
|

/
\

L=UxU"!

10.0064 £0.1426
-0.0064 / -0. 1426\
-0. 3231/ -0.1426 \
0. 335$ 0.6626 \
0.3358 -0.6626 |

0. 3860 0.1426 l
-0. 7218 0.1426 /
-0. 0000 0. 1426/

\
\

. Firsf’eigenvalue of Laplacian
matrix is always zero.

* What does second
eigenvector of Laplacian
matrix represent?
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Spectral Partitioning- problem setup

group 1 group 2

minimize # of edges between groups

# of edges between groups=(total # of edges)-(# edges within groups)

nodesiand jare connected => A;=1
node jin group 1 =>s.=1 nodes jandjin the same group => (s;5;+1)/2=1
node jin group 2 =>s.=-1 nodes i andj in different groups => (sisj+1)/2=0
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Laplacian matrix plays a major role

in network modularization
# of edges between groups=(total # of edges)-(# edges within groups)

- (% > Aij) - (% Z{%(l + sisj) Aij))
1]

ij
1 1
= _(ZA?J) o Z (5?5JA33)
4 4
i.] i,
] . 1 1,
= E(ZRJ) o —_l z (Si*r?‘,r 4?;) — :leLS
i 8,7
T{Z\l\ A )
nodejin group 1 =>s.=1 = | U
nodeiin group 2 =>s.=-1 l -Aij\\\ |<

Laplacian Matrix



Network modularization by using

decomposition of Laplacian matrix

mins’Ls
=

* Use eigen decomposition principles:
L — (vi, \) L= Z}*""V?

* Project s over elgenvectors of L: s= Z a;iV;

s'Ls = Z a? )\, i

 Challenges in finding optimal a/’s:
— Without other conditions, a trivial solution exists
— Second eigenvector characterizes partitioning
— Vector s should be integer-valued => projection



Network modularization
-revisit to example

T 2> Js/@ g L=UxXU"!

3 7
/// \
0.3536//-0.3825 0.2714 -0.1628 -0.7783 0.0495 -0.0064 -0.1426
0.3536// -0.3825) 0.5580 -0.1628 0.6066 0.0495 -0.0064 -0.1426
0.3536,! -0.3825 ‘\ -0.4495 0.6251 0.0930 0.0495 -0.3231 -0.1426
0.3536 -0.2470‘1-0.3799 -0.2995 0.0786 -0.1485 0.3358 0.6626
0.353é 0.2470 :-0.3799 -0.2995 0.0786 -0.1485 0.3358 -0.6626
0.353é 0.3825;’0.3514 0.5572 -0.0727 -0.3466 0.3860 0.1426
0.3536) 0.3825/ 0.0284 -0.2577 -0.0059 -0.3466 -0.7218 0.1426
0.3536\\\0.382/5/ 0.0000 0.0000 0.0000 0.8416 -0.0000 0.1426

\\\///

0 0_ o0 0 0 0 0 0
0 (0.3542 0 0 0 0 0 0
0 0 4.0000 O 0 0 0 0
0 0 0 4.0000 0 0 0 0
0 0 0 0 4.0000 0 0 0
0 0 0 0 0 4.0000 0 0
0 0 0 0 0 0 4.0000 0
0 0 0 0 0 0 0
5.6458
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Goals for today: Network analysis

1. Introduction to networks

2. Applications of regulatory networks

— Predicting expression of target genes: graphical
models, linear regression and regression trees

— Predicting functions of un-annotated genes, guilt by
association

3. Inferring "structure" of regulatory networks
— Likelihood approach, challenges
— Simplified approaches and their problems
— Integrated approaches

4. Structural properties of regulatory networks
— Scale free degree distribution
— Network motifs
— Spectral clustering and modular networks



Conclusions

* Regulatory networks are central to gaining a
systems-level understanding of living systems

e Structure and functional aspects of the
network is unknown

* Probabilistic models provide a mathematical
framework of representing and learning
regulatory networks



Open issues

Validation

— How do we know the network structure is right?
How do we know if the network function is
right?

Measuring and modeling protein expression

Understanding the evolution of regulatory
networks



Further reading

* Probabilistic graphical models
 Network structure analysis
* Function Prediction



Predicting expression

* Goal: Learn a parametric relationship between
regulators and a target gene

e Use the “regulation function” of every target
gene as a predictive model

* Predicting expression of multiple genes is
essentially equivalent to solving a bunch of
regression problems



Modeling the regulatory functions

e Conditional Gaussian models
— Linear regression model

* Regression Trees

— Non-linear regression
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Hierarchy of more
complex models

Figure removed due to copyright restrictions.

From Lei Zhang, RPI
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