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Module II: Gene expression analysis and networks 

• Computational foundations:  
– Unsupervised Learning: Expectation Maximization 
– Supervised learning: generative/discriminative models 
– Read mapping, significance testing, splice graphs 
– Folding: DP self-alignment, Context Free grammars 

• Biological frontiers: 
– L6: RNA-Seq analysis, quantifying transcripts, isoforms 
– L7: Gene expression analysis: cluster genes/conditions 
– L8: Networks I: Bayesian Inference, deep learning 
– L9: Networks II: Network structure, spectral methods 
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Today: Gene Expression Clustering & Classification 
1. Introduction to gene expression analysis 

– Technology: microarrays vs. RNAseq. Resulting data matrices 
– Supervised (Clustering) vs. unsupervised (classification) learning 

 

2. K-means clustering (clustering by partitioning) 
– Algorithmic formulation: Update rule, optimality criterion. Fuzzy k-means.  
– Machine learning formulation: Generative models, Expectation Maximization.  

 

3. Hierarchical Clustering (clustering by agglomeration) 
– Basic algorithm, Distance measures. Evaluating clustering results 

 

4. Naïve Bayes classification (generative approach to classification) 
– Discriminant function: class priors, and class-conditional distributions 
– Training and testing, Combine mult features, Classification in practice 

 

5. (optional) Support Vector Machines (discriminative approach) 
– SVM formulation, Margin maximization, Finding the support vectors 
– Non-linear discrimination, Kernel functions, SVMs in practice 
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RNA-Seq: De novo tx reconstruction / quantification 

RNA-Seq technology:  
• Sequence short reads from mRNA, 

map to genome 
• Variations:  

• Count reads mapping to each 
known gene 

• Reconstruct transcriptome de 

novo in each experiment 
• Advantage: 

• Digital measurements, de novo 

Count 

Microarray technology 
• Synthesize DNA probe array, 

complementary hybridization 
• Variations:  

• One long probe per gene 
• Many short probes per gene 
• Tiled k-mers across genome 

• Advantage:  
• Can focus on small regions, 

even if few molecules / cell 

© sources unknown. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Expression Analysis Data Matrix 
• Measure 20,000 genes in 100s of conditions 

 
 
 
 
 
 
 
 

• Study resulting matrix 
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Expression profile of a gene 

Each experiment measures 
expression of thousands 
of ‘spots’, typically genes 
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 Clustering vs. Classification 

• Supervised learning 

Conditions 


G

en
es

 

Alizadeh, Nature 2000 

Conditions 
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Proliferation genes  
in transformed cell lines 

B-cell genes in  
blood cell lines 

Alizadeh, Nature 2000 

Lymph node genes in  
diffuse large B-cell  
lymphoma (DLBCL) 

Chronic 
lymphocytic  
leukemia 

Goal of Clustering: Group similar items 
that likely come from the same category, 
and in doing so reveal hidden structure  

Goal of Classification: Extract features 
from the data that best assign new 
elements to ≥1 of well-defined classes 

• Unsupervised learning 

Known 
classes: 

Independent validation 
of groups that emerge: 
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Proteins 

Clustering vs Classification 
• Objects characterized by one or more 

features 
• Classification (supervised learning) 

– Have labels for some points 
– Want a “rule” that will accurately assign 

labels to new points 
– Sub-problem: Feature selection 
– Metric: Classification accuracy 

 
• Clustering (unsupervised learning) 

– No labels 
– Group points into clusters based on how 

“near” they are to one another 
– Identify structure in data 
– Metric: independent validation features 

 

Genes 

Feature X (brain expression) 
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Feature X (brain expression) 7



Two approaches to clustering 

• Partitioning (e.g. k-means) 
– Divides objects into non-overlapping clusters 

such that each data object is in exactly one 
subset 
 

• Agglomerative (e.g. hierarchical clustering) 
– A set of nested clusters organized as a 

hierarchy 
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1. Introduction to gene expression analysis 

– Technology: microarrays vs. RNAseq. Resulting data matrices 
– Supervised (Clustering) vs. unsupervised (classification) learning 
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K-Means Clustering 
The Basic Idea 
• Assume a fixed number K of clusters 
• Partition points into K compact clusters 
The Algorithm 
• Initialize K cluster centers randomly 
• Repeatedly: 

– Assign points to nearest center 
– Move centers to center of gravity of their points 

• Stop at convergence (no more reassignments) 
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K-Means Algorithm Example 

• Randomly 
Initialize Clusters 

• Assign data 
points to nearest 
clusters  

• Recalculate 
cluster centers 

• Repeat… until 
convergence 
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K-Means Algorithm Example 
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K-means update rules 

Re-assign each point xi  
to nearest center k 
 Minimize distance from xi to μk: 
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Update center μk to the  
mean of the points assigned to it:  
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K-means Optimality Criterion 
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We can think of K-means as trying to create clusters that 
minimize a cost criterion associated with the size of the 

cluster 

m1 

m2 

m3 

To achieve this, minimize each cluster term separately: 
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However: Some points can be almost halfway 
between two centers  Assign partial weights 

Fuzzy 
K-means 
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Fuzzy K-means update rule 

Re-assign each point xi  
to all centers, weighted by distance 
 For each point calculate the  

probability of membership  
for each category K: 

Update center μk to the weighted 
mean of the points assigned to it:  

iP(label K | , )kx μ

i i

i i i

x  with label j x  with label j

( 1)  P( | ) P( | )
bb

k k kn    μ x μ x μ x

i

i

1 if  is closest to 
P(label K | , )

0

k
k


 



x μ
x μ

otherwise

Regular K-Means is a special case of fuzzy 
k-means where: 
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K-Means as a Generative Model 
Model of P(X,Labels) 

Samples drawn from normal distributions  
with unit variance - a Gaussian Mixture Model 

xi 

m1 

m2 
Generate 

Observations 

 
 

2

1
| exp

22
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x u
x u

Given only samples, how do we estimate max lik model 
params: (1) centroid definitions, (2) point assignments? 

Estimate 
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EM solution: iteratively estimate one from the other 

xi 
m1 ? 

m2? 

Choose μk and labels that maximize P(data|model) 

Labeled 
points 

Max lik 
centers 

Assign 
points 

Known 
centers E 

M 

E step: If centers are known  Estimate memberships 
M step: If assignments known  Compute centroids 

Labels? 

Solution is exactly the k-means algorithm! 
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M step: assignments known  compute centroids 

xi 
m1 ? 

m2? 

Choose μk and labels that maximize P(data|model) 
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Labeled 
points 

Max lik 
centers M 

Seeking the max likelihood 
estimate of the cluster mean Solution is the  

centroid of the xi 

EM solution K-means solution 
Equivalent 
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E step: centers known  Estimate memberships 

xi 
m1 ? 

m2? 

Choose μk and labels that maximize P(data|model) 
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Assign 
points 

Known 
centers E 

Solution is the  
nearest center 

Seeking the label k that 
maximizes likelihood of point 

EM solution K-means solution 
Equivalent 
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Algorithmic vs. machine learning formulations 
K-means Fuzzy K-means 

algorithmic 
formulation 

probabilistic 
interpretation 

algorithmic 
formulation 

probabilistic 
interpretation 

Initialization Initialize K 
centers μk 

Initialize model 
parameters 

Initialize K 
centers μk 

Initialize model 
parameters 

E-step: 
Estimate prob 
of hidden labels 
(point 
assignments to 
classes) 

Assign xi label 
of nearest 
center 
distance 
 

Estimate most 
likely missing 
label given 
previous 
parameters 

Calculate 
probability of 
membership for 
each point to 
each class 
 

Estimate 
probability over 
missing labels 
given previous 
parameters 

M-step: Update 
params to max 
likelihood 
estimates given 
assignments 

Move μk to 
centroid of all 
points with that 
label 

Choose new 
max likelihood 
params given 
points in label 

Move μk to 
weighted 
centroid of all 
points, each 
weighted by 
P(label) 

Choose new 
params to 
maximize 
expected 
likelihood given 
label estimates 

Iteration Iterate Iterate Iterate Iterate 

 
2

,i k i kd  x μ

iP(label K | , )kx μ

P(x|Model) guaranteed to increase each iteration of EM algo 
25



K-means solution EM generalization 
Cluster sizes Uniform priors Class priors P(classi) 
Spread of points Unit distance function Gaussian (μi, σi) 
Cluster shape Symmetric, x-y indpt Co-variance matrix 

 

Label 
assignment 

K-means: Pick max 
Fuzzy: Full density 

EM: Full density 
Gibbs: sample posterior 

EM is much more general than fuzzy K-means 

Original Data K-means solution Full EM model 

σblue>σgreen 
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Three options for assigning points, and  
their parallels across K-means, HMMs, Motifs 

Update 
assignments 
(E step)  
Estimate hidden 
labels 

Algorithm implementing E step  
in each of the three settings 

Update 
model 
parameters 
(M step)  
max 
likelihood 

Expression 
clustering 

HMM 
learning 

Motif 
discovery 

The hidden label is: Cluster labels State path π Motif positions 

Assign each point 
to best label  

K-means:  
Assign each 
point to nearest 
cluster 

Viterbi 
training: label 
sequence with 
best path 

Greedy: Find 
best motif match 
in each sequence 

Average of 
those points 
assigned to 
label 

Assign each point 
to all labels, 
probabilistically 

Fuzzy K-
means: Assign 
to all clusters, 
weighted by 
proximity 

Baum-Welch 
training: label 
sequence w all 
paths (posterior 
decoding) 

MEME: Use all 
positions as a 
motif occurrence 
weighed by motif 
match score 

Average of all 
points, 
weighted by 
membership 

Pick one label at 
random, based on 
their relative 
probability 

N/A: Assign to 
a random 
cluster, sample 
by proximity 

N/A: Sample a 
single label for 
each position, 
according to 
posterior prob. 

Gibbs sampling: 
Use one position 
for the motif, by 
sampling from the 
match scores 

Average of 
those points 
assigned to 
label(a 
sample) 
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Today: Gene Expression Clustering & Classification 
1. Introduction to gene expression analysis 

– Technology: microarrays vs. RNAseq. Resulting data matrices 
– Supervised (Clustering) vs. unsupervised (classification) learning 

 

2. K-means clustering (clustering by partitioning) 
– Algorithmic formulation: Update rule, optimality criterion. Fuzzy k-means.  
– Machine learning formulation: Generative models, Expectation Maximization.  

 

3. Hierarchical Clustering (clustering by agglomeration) 
– Basic algorithm, Distance measures. Evaluating clustering results 

 

4. Naïve Bayes classification (generative approach to classification) 
– Discriminant function: class priors, and class-conditional distributions 
– Training and testing, Combine mult features, Classification in practice 

 

5. (optional) Support Vector Machines (discriminative approach) 
– SVM formulation, Margin maximization, Finding the support vectors 
– Non-linear discrimination, Kernel functions, SVMs in practice 
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Challenge of K-means: picking K 

• How do we select K? 
– We can always make clusters “more compact” 

by increasing K 
– e.g. What happens is if K=number of data 

points? 
– What is a meaningful improvement? 

• Hierarchical clustering side-steps this issue 
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Hierarchical clustering 

• Start with each point in a separate 
cluster 

• At each step: 
– Choose the pair of closest clusters 
– Merge 

 
 
 

b 
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c 
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Phylogeny (UPGMA) 

Most widely used algorithm for 
expression data 

Unweighted Pair Group Method 
with Arithmetic-mean 

Select a “cut level” to create 
disjoint clusters 
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Distance between clusters 

Cluster distance affects both results and runtime 

• CD(X,Y)=minx X, y Y D(x,y) 

      Single-link method 

 

 
• CD(X,Y)=maxx X, y Y D(x,y) 
    Complete-link method 

 
 
• CD(X,Y)=avgx X, y Y D(x,y) 
    Average-link method 

 
 
• CD(X,Y)=D( avg(X) , avg(Y) ) 
    Centroid method 
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Point-to-point (Dis)Similarity Measures 

D’haeseleer (2005) Nat Biotech 

Cluster-to-cluster distance as a function of point-to-point 
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Evaluating Cluster Performance 

• Robustness 
– Select random samples from data set and cluster 
– Repeat 
– Robust clusters show up in all clusters 

 
• Category Enrichment 

– Look for categories of genes “over-represented” in 
particular clusters 

– Also used in Motif Discovery 
 

In general, it depends on your goals in clustering 
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Evaluating clusters – Hypergeometric Distribution 
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• N experiments, p labeled +, (N-p) – 
• Cluster: k elements, m labeled +, 

k-m labeled - 
• P-value of single cluster containing k 

elements of which at least r are + 
Prob that a randomly chosen 
set of k experiments would 
result in m positive and k-m 
negative 

P-value of uniformity 
in computed cluster 

Select k elements 
(at random) 

m happen 
to be + 
(out of p +’s) 

k-m happen 
to be - 
(out of N-p -’s) 
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Evaluation using functional enrichment 

(Eisen (1998) PNAS) 

(A) Cholesterol biosynthesis 
(B) Cell cycle 
(C) Immediate early response 
(D) Signalling and angiogenesis 
(E) Wound healing 

Clustered 8600 human genes 
using expression time course in 

fibroblasts 

Eisen, Michael et al. "Cluster Analysis and Display of Genome-wide
Expression Patterns." PNAS 95, no. 25 (1998): 14863-14868.
Copyright (1998) National Academy of Sciences, U.S.A. 36



Evaluation based on motif content 

Expression from 
15 time points 
during yeast 

cell cycle 
 
 

Tavazoie & Church (1999) 

Courtesy of Nature Publishing Group. Used with permission.
Source: Tavazoie, Saeed et al. "Systematic determination of genetic
network architecture." Nature Genetics 22, no. 3 (1999): 281-285.
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Two Approaches to Classification 
• Generative 

– Bayesian Classification (e.g. Naïve Bayes) 
– Pose classification problem in prob terms 
– Model feature distribution in different classes 
– Use probability calculus for making decisions 

• Discriminative 
– E.g. Support Vector Machines  
– No modeling of underlying distributions 
– Make decisions using distance from boundary 

• Example: Gene finding: HMMs vs. CRFs 
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Bayesian classification with a single feature 

1. If you know both distributions, how to classify a new example 
– Picking a cutoff. Minimizing classification error. Maximizing posterior prob.  

2. If you have many classified examples, how to estimate model params.  
– Parametric vs. non-parametric models. Class-conditional distributions. Priors 

3. Bayes’ Rule:  
– P(C|F) from P(F|C) 
– Take probability ratios 

Ex 1: DNA repair genes 
show higher expression 
during stress 
Ex 2: Protein-coding regions 
show higher conservation 
levels 
Ex 3: Regulatory regions 
show higher GC-content 
 
In general: foreground 
signal vs. background 

Posterior 

Prior Likelihood 

Evidence 

( | ) ( )
( | )

( )

P Feature Class P ClassP Class Feature
P Feature



P(Feature | Class) 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Classification problem: Max Probability Class 

Maximum-A-Posteriori (MAP) estimates 

Select the class that maximizes posterior: 

Posterior 

Prior Likelihood 

Evidence 

( | ) ( )
( | )

( )

P Feature Class P ClassP Class Feature
P Feature



BestClass = argmaxC P(Class|Feature) 
 

 = argmaxC P(Feature|Class) P(Class) 
Scaling the above distribution based on class priors 

© source unknown. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.
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Likelihood:  
Features for each class drawn from  
conditional probability distributions  

(conditional on the class) 

P(X|Class1) P(X|Class2) 

Our first goal will be to model these  
class-conditional probability distributions (CCPD) 

X 

( | ) ( )
( | )

( )

P Feature Class P ClassP Class Feature
P Feature


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Class Priors: 
We model prior probabilities to quantify the expected a 

priori chance of seeing a class 
 
 

P(mito) = how likely is the next protein to be a mitochondrial protein before I 

see any features to help me decide 
 

We expect ~1500 mitochondrial genes out of ~21000 total, so 
P(mito)=1500/21000 

P(~mito)=19500/21000 

P(Class2)   &   P(Class1) 
 
 

( | ) ( )
( | )

( )

P Feature Class P ClassP Class Feature
P Feature


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Evidence 

If we observe an object with feature X, how do decide if the object is 
from Class 1?  

The Bayes Decision Rule is simply choose Class1 if: 

( 1| ) ( 2 | )

( | 1) ( 1) ( | 2) ( 2)

(

( | 1) ( 1) ( | 2) (

) )

)

(

2

P Class X P Class X

P X Class P L P X Class

P X Class P Class P X

P L
P X P X

Class P Class







same 

( | ) ( )
( | )

( )

P Feature Class P ClassP Class Feature
P Feature



 P(Feature) does not need to be computed for classification 

Total evidence is P(Feature)=Σi P(Feature|Classi)P(Classi) 
But it does not need to be known for classification 
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Discriminant Function for selecting Class1 
We can create a convenient representation of the 

Bayes Decision Rule 

( | 1) ( 1) ( | 2) ( 2)

( | 1) ( 1)
1

( | 2) ( 2)

( | 1) ( 1)
( ) log 0

( | 2) ( 2)

P X Class P Class P X Class P Class

P X Class P Class
P X Class P Class

P X Class P ClassG X
P X Class P Class





 

If G(X) > 0, we classify as Class 1 
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2. K-means clustering (clustering by partitioning) 
– Algorithmic formulation: Update rule, optimality criterion. Fuzzy k-means.  
– Machine learning formulation: Generative models, Expectation Maximization.  

 

3. Hierarchical Clustering (clustering by agglomeration) 
– Basic algorithm, Distance measures. Evaluating clustering results 

 

4. Naïve Bayes classification (generative approach to classification) 
– Discriminant function: class priors, and class-conditional distributions 
– Training and testing, Combine mult features, Classification in practice 

 

5. (optional) Support Vector Machines (discriminative approach) 
– SVM formulation, Margin maximization, Finding the support vectors 
– Non-linear discrimination, Kernel functions, SVMs in practice 

46



Training and Testing Datasets 

The Rule 
We must test our classifier on a different 
set from the training set: the labeled test 

set 
 

The Task 
We will classify each object in the test set 

and count the number of each type of 
error 
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Getting P(X|Class) from Training Set 
P(X|Class1) 

How do we get this  
from these? 

In general, and especially for continuous distributions, 

this can be a complicated problem: Density Estimation 

One Simple Approach 
 

Divide X values into bins 
 

And then we simply count 
frequencies 

 
 

<1 1-3 3-5 5-7 >7 

2/13 

0 

7/13 

3/13 

1/13 

There are 13 data  
points 

X 

48



Distributions Over Many Features 

• Assume each feature binned into 5 
possible values  

• We have 58 combinations of values we 
need to count the frequency for 
 

• Generally will not 
have enough data 

– We will have lots of 
nasty zeros 

Estimating P(X1,X2,X3,…,X8|Class1) can be difficult 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 49
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Getting Priors 

1. Estimate priors by counting 
fraction of classes in training 
set 
 
 
 
 
 

2. Estimate from “expert” 
knowledge 
 

3. We have no idea – use equal 
(uninformative) priors 

Three general approaches 

13 Class1  10 Class2  

P(Class1)=13/23 

P(Class2)=10/23 

But sometimes fractions in training set are not 

representative of world 

Example 
P(mito)=1500/21000 

P(~mito)=19500/21000 

P(Class1)=P(Class2) 
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Today: Gene Expression Clustering & Classification 
1. Introduction to gene expression analysis 

– Technology: microarrays vs. RNAseq. Resulting data matrices 
– Supervised (Clustering) vs. unsupervised (classification) learning 

 

2. K-means clustering (clustering by partitioning) 
– Algorithmic formulation: Update rule, optimality criterion. Fuzzy k-means.  
– Machine learning formulation: Generative models, Expectation Maximization.  

 

3. Hierarchical Clustering (clustering by agglomeration) 
– Basic algorithm, Distance measures. Evaluating clustering results 

 

4. Naïve Bayes classification (generative approach to classification) 
– Discriminant function: class priors, and class-conditional distributions 
– Training and testing, Combine mult features, Classification in practice 

 

5. (optional) Support Vector Machines (discriminative approach) 
– SVM formulation, Margin maximization, Finding the support vectors 
– Non-linear discrimination, Kernel functions, SVMs in practice 
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Combining Multiple Features 

• We have focused on a single 
feature for an object 

• But mitochondrial protein 
prediction (for example) has 
7 features 

Targeting signal  

Protein domains 

Mass Spec 
Co-expression 

Homology 
Induction 

Motifs 

So P(X|Class) become P(X1,X2,X3,…,X8|Class) 
and our discriminant function becomes 

1 2 7

1 2 7

( , ,..., | ) ( )
( ) log 0

( , ,. 2.., | ) ( )

1 1

2Class
Class ClasP X X X

Cla
s

s
PG X

P X X sX P
 
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Naïve Bayes Classifier 
We are going to make the following assumption: 

 
All features are independent given the class 

1 2 1 2

1

( , ,..., | ) ( | ) ( | )... ( | )

( | )

n n
n

i
i

P X X X Class P X Class P X Class P X Class

P X Class




 

We can thus estimate individual distributions for each 
feature and just multiply them together! 
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Naïve Bayes Discriminant Function 

1 2 7
1 7

1 2 7

( , ,..., | ) ( )1
( ,..., ) log 0

( , ,..., |

1

(2 2) )

P X X X PG X X
P X

Class
Class ClasX sX

ss
P

Cla
 

1 7

( | ) ( )
( ,..., ) log 0

( | ) (2 2)

1 1i

i

P X PG X X
P X

Class
Class ClasP

Class
s

 



Thus, with the Naïve Bayes assumption, we can  now 
rewrite, this: 

As this: 

Which can be simply computed as the sum of log scores 
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Binary Classification Errors 

• Sensitivity 
– Fraction of all Class1 (True) that we correctly predicted at Class 1 
– How good are we at finding what we are looking for 

 
• Specificity 

– Fraction of all Class 2 (False) called Class 2 
– How many of the Class 2 do we filter out of our Class 1 predictions 

True (Mito) False (~Mito) 

Predicted True TP FP 

Predicted False FN TN 

Sensitivity = TP/(TP+FN) Specificity = TN/(TN+FP) 
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Today: Gene Expression Clustering & Classification 
1. Introduction to gene expression analysis 

– Technology: microarrays vs. RNAseq. Resulting data matrices 
– Supervised (Clustering) vs. unsupervised (classification) learning 

 

2. K-means clustering (clustering by partitioning) 
– Algorithmic formulation: Update rule, optimality criterion. Fuzzy k-means.  
– Machine learning formulation: Generative models, Expectation Maximization.  

 

3. Hierarchical Clustering (clustering by agglomeration) 
– Basic algorithm, Distance measures. Evaluating clustering results 

 

4. Naïve Bayes classification (generative approach to classification) 
– Discriminant function: class priors, and class-conditional distributions 
– Training and testing, Combine mult features, Classification in practice 

 

5. (optional) Support Vector Machines (discriminative approach) 
– SVM formulation, Margin maximization, Finding the support vectors 
– Non-linear discrimination, Kernel functions, SVMs in practice 
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Classifying Mitochondrial Proteins 

Targeting signal  

Protein domains 

Mass Spec 
Co-expression 

Homology 
Induction 

Motifs 

Derive 7 features for all 
human proteins 

Predict nuclear encoded 
mitochondrial genes 

Maestro 

First page of article removed due to copyright restrictions.
Source: Calvo, Sarah et al. "Systematic identification of human mitochondrial disease
genes through integrative genomics." Nature Genetics 38, no. 5 (2006): 576-582.
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Individual Feature Distributions 

Targeting signal  

Protein domains 

Mass Spec 
Co-expression 

Homology 
Induction 

Motifs 

P(Target|Mito) P(Target|~Mito) 

Instead of a single big distribution, we have a smaller  
one for each feature (and class) 

P(Domain|Mito) 

P(CE|Mito) 

P(Mass|Mito) 

P(Homology|Mito) 

P(Induc|Mito) 

P(Motif|Mito) 

P(Domain|~Mito) 

P(CE|~Mito) 

P(Mass|~Mito) 

P(Homology|~Mito) 

P(Induc|~Mito) 

P(Motif|~Mito) 
<1 1-3 3-5 5-7 >7 

2/13 

0 

7/13 

3/13 

1/13 

Target 

Courtesy of Nature Publishing Group. Used with permission. 
Source: Calvo, Sarah et al. "Systematic identification of human mitochondrial disease 
genes through integrative genomics." Nature Genetics 38, no. 5 (2006): 576-582.  
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Classifying A New Protein 

1 7

( | ) ( )
( ,..., ) log 0

( | )~ )~(

i

i

Mito MitoP X PG X X
P Mito P oX Mit

 



Plug these and priors into the discriminant function 

IF G>0, we predict that the protein is from class Mito  

Targeting signal  

Protein domains 

Mass Spec 
Co-expression 

Homology 
Induction 

Motifs 

P(Xi|Mito) 

P(Xi|~Mito) 

(for all 8 features) 

Xi 

Courtesy of AzaToth; image in the public domain.
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* 

Apply to human proteome: 1,451 predictions  
(of which 490 are novel predictions) 

Slide Credit: S. Calvo 

* 
(99%, 71%) 

Naïve Bayes 
(Maestro) 

Problem in genomics: not everything novel is false 
Courtesy of Sarah Calvo. Used with permission.
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Today: Gene Expression Clustering & Classification 
1. Introduction to gene expression analysis 

– Technology: microarrays vs. RNAseq. Resulting data matrices 
– Supervised (Clustering) vs. unsupervised (classification) learning 

 

2. K-means clustering (clustering by partitioning) 
– Algorithmic formulation: Update rule, optimality criterion. Fuzzy k-means.  
– Machine learning formulation: Generative models, Expectation Maximization.  

 

3. Hierarchical Clustering (clustering by agglomeration) 
– Basic algorithm, Distance measures. Evaluating clustering results 

 

4. Naïve Bayes classification (generative approach to classification) 
– Discriminant function: class priors, and class-conditional distributions 
– Training and testing, Combine mult features, Classification in practice 

 

5. (optional) Support Vector Machines (discriminative approach) 
– SVM formulation, Margin maximization, Finding the support vectors 
– Non-linear discrimination, Kernel functions, SVMs in practice 
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Support Vector Machines (SVMs) 

Easy to select a 
line 

 
But many lines will 

separate these 
training data 

 
What line should 

we choose? 
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Support Vector Machines (SVMs) 

Support 
Vectors 

A sensible choice 
is to select a line 
that maximizes 

the margin 
between classes 
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SVM Formulation 
Labels 
   Y=+1 
   Y=-1 

w 

b 

We define a vector w 
normal to the separating 

line  
 

Assume all data satisfy 
the following: 

 

i

i

i

b 1  for y =+1

b 1  for y =-1

y b 1

   

   

  

i

i

i

x w
x w

x w

xi•w 

 
 

We want to find the separator with the largest margin 
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An Optimization Problem 
For full derivation, see Burges (1998) 

  

D

,

1
Minimize L

2

subject to 0  and 0

1 0

i i j i j
i i j

i i j
i

i i

i i
i

y y

y

y b

y

  

 





  

 

   



 





i j

i

i

x x

x w

w x

Quadratic 
Programming 

Only some i 
are non-zero 

xi with ai >0 are the support vectors 

w is determined by these data points! 

Solving 
for  

Only need dot 
product of input 

data! 
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Using an SVM 

Given a new data 
point we simply 

assign it the label: 
 
 

Labels 
   Y=+1 
   Y=-1 

w 

b/|w| 

xnew 

 new

new

i

sign

sign 

  

 
   

 


i

i i

y b

y bi

w x

x x

Again, only dot product 
of input data! 
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Today: Gene Expression Clustering & Classification 
1. Introduction to gene expression analysis 

– Technology: microarrays vs. RNAseq. Resulting data matrices 
– Supervised (Clustering) vs. unsupervised (classification) learning 

 

2. K-means clustering (clustering by partitioning) 
– Algorithmic formulation: Update rule, optimality criterion. Fuzzy k-means.  
– Machine learning formulation: Generative models, Expectation Maximization.  

 

3. Hierarchical Clustering (clustering by agglomeration) 
– Basic algorithm, Distance measures. Evaluating clustering results 

 

4. Naïve Bayes classification (generative approach to classification) 
– Discriminant function: class priors, and class-conditional distributions 
– Training and testing, Combine mult features, Classification in practice 

 

5. (optional) Support Vector Machines (discriminative approach) 
– SVM formulation, Margin maximization, Finding the support vectors 
– Non-linear discrimination, Kernel functions, SVMs in practice 
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2 dimensional data 
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Non-linear Classifier 
• Some data not linearly separable in low dimensions 
• What if we transform it to a higher dimension? 

 

Noble, 2006.  NATURE BIOTECHNOLOGY 24:1565. 

1 dimensional data 

Kernel function 

© sources unknown. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

68

http://ocw.mit.edu/help/faq-fair-use/


Kernel Mapping 

But F(X) can be a mapping to an infinite dimensional space 
i.e. d points become an infinite number of points 

 
X=(x1,x2)                      F(X)=(f1,f2,f3,….f∞) 

 
Rather difficult to work with! 

F(x): Rd -> H 

Want a mapping from input space,  
Rd, to other euclidean space, H 
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Kernel Mapping 
Want a mapping from input space,  

Rd, to other euclidean space, H 
From previous slide, SVMs only 

depend on dot product 

Here is trick: if we have a kernel function such that 

We can just use K and never 
know F(x) explicitly! 

F(x): Rd -> H Xi • Xj becomes F(Xi) • F(Xj) 

K(Xi,Xj) = F(Xi) • F(Xj) 

F(X) is high dimensional 
K is a scalar 
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Kernels 

1 

2 

N 

1 2 N 

K(Xi,Xj) 

xi=(1,2) 2 

1 

F(xi) • F(xj) = scalar! 

So the key step is to take your input data and transform it into a 
kernel matrix 

We have then done two very useful things: 
1. Transformed X into a high (possibly infinite) dimensional 

space (where we hope are data are separable) 
2. Taken dot products in this space to create scalars 
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Example Kernels 

What K(Xi,Xj) are valid kernels?   
Answer given by Mercer’s Condition (see Burgess 1998) 

 

   

   
   

T

i j i j

T

i j i j

2

i j i j

T

i j i j

K ,

K , r

K , exp

K , tanh r

d








 

  

 

x x x x

x x x x

x x x x

x x x x

Linear 

Polynomial 

Radial Basis Function 

Sigmoid 
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Step 2 – Train SVM on transformed data – get support vectors 

Using (Non-Linear) SVMs 

 D

, ,

1 1
Minimize L

2
K ,

2
i i j i j i i j i j

i i j i i j
y y y y             i ji j x xx x

Step 1 – Transform data to Kernel Matrix K 

Step 2 – Test/Classify on new samples 

1 
2 

N 

1 2 N 

K(Xi,Xj) 

   new new ne

i i

wsign sign sign K ,new i i i iy y y 
   

       
   
 i ix x xw x x
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Today: Gene Expression Clustering & Classification 
1. Introduction to gene expression analysis 

– Technology: microarrays vs. RNAseq. Resulting data matrices 
– Supervised (Clustering) vs. unsupervised (classification) learning 

 

2. K-means clustering (clustering by partitioning) 
– Algorithmic formulation: Update rule, optimality criterion. Fuzzy k-means.  
– Machine learning formulation: Generative models, Expectation Maximization.  

 

3. Hierarchical Clustering (clustering by agglomeration) 
– Basic algorithm, Distance measures. Evaluating clustering results 

 

4. Naïve Bayes classification (generative approach to classification) 
– Discriminant function: class priors, and class-conditional distributions 
– Training and testing, Combine mult features, Classification in practice 

 

5. (optional) Support Vector Machines (discriminative approach) 
– SVM formulation, Margin maximization, Finding the support vectors 
– Non-linear discrimination, Kernel functions, SVMs in practice 
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Classifying Tumors with Array Data 

• Primary samples: 
– 38 bone marrow 

samples  
– 27 ALL, 11 AML 
– obtained from acute 

leukemia patients at 
the time of diagnosis; 

 
• Independent samples:  

– 34 leukemia samples  
– 24 bone marrow 
– 10 peripheral blood 

samples 
 

• Assay ~6800 Genes 
 

Excerpt of article removed due to copyright restrictions.
Source: Golub, Todd R. et al. "Molecular classification of cancer: Class discovery and
class prediction by gene expression monitoring." Science 286, no. 5439 (1999): 531-537.
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Weighted Voting Classfication 

– Choosing a set of informative genes based on 
their correlation with the class distinction 

– Each informative gene casts a weighted vote for 
one of the classes 

– Summing up the votes to determine the winning 
class and the prediction strength 

 

General approach of Golub et al (1999) paper: 
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Results 

Initial Samples 
•  36 of the 38 samples as either AML or ALL.  

All 36 samples agree with clinical diagnosis 
• 2 not predicted 
 

Independent Samples 
•  29 of 34 samples are strongly predicted with 

100% accuracy. 
• 5 not predicted 
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Training Set 

Figure 3 B and caption removed due to copyright restrictions.
Source: Golub, Todd R. et al. "Molecular classification of cancer: Class
discovery and class prediction by gene expression monitoring." Science
286, no. 5439 (1999): 531-537.
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Supplementary Figure 2 and caption removed due to copyright restrictions.
Source: Golub, Todd R. et al. "Molecular classification of cancer: Class
discovery and class prediction by gene expression monitoring." Science
286, no. 5439 (1999): 531-537.
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SVM Approach 

80

Text and table removed removed due to copyright restrictions.
Source: Mukherjee, Sayan et al. "Support vector machine classification of microarray data." CBCL Paper #182/AI Memo #1677(1999).
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Methods 

• Generate 4 classifiers using different 
numbers of genes 
– 7129, 999, 99, 49 most informative 

 
• Linear SVM 

 
• Distance from hyperplane (i.e. margin) 

provides confidence level 
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Results 
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Results 

Figure 9.6 removed due to copyright restrictions.
Source: Mukherjee, Sayan. "Classifying Microarray Data Using Support Vector Machines."
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Bringing Clustering and Classification Together 

Semi-Supervised Learning 

Common Scenario 
• Few labeled 
• Many unlabeled 
• Structured data 
 

What if we cluster first? 
 
Then clusters can help 
us classify 
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Today: Gene Expression Clustering & Classification 
1. Introduction to gene expression analysis 

– Technology: microarrays vs. RNAseq. Resulting data matrices 
– Supervised (Clustering) vs. unsupervised (classification) learning 

 

2. K-means clustering (clustering by partitioning) 
– Algorithmic formulation: Update rule, optimality criterion. Fuzzy k-means.  
– Machine learning formulation: Generative models, Expectation Maximization.  

 

3. Hierarchical Clustering (clustering by agglomeration) 
– Basic algorithm, Distance measures. Evaluating clustering results 

 

4. Naïve Bayes classification (generative approach to classification) 
– Discriminant function: class priors, and class-conditional distributions 
– Training and testing, Combine mult features, Classification in practice 

 

5. (optional) Support Vector Machines (discriminative approach) 
– SVM formulation, Margin maximization, Finding the support vectors 
– Non-linear discrimination, Kernel functions, SVMs in practice 
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