6.047/6.878/HST.507
Computational Biology: Genomes, Networks, Evolution

Lecture 05

Hidden Markov Models
Part |l

Module 1: Alighing and modeling genomes

* Module 1: Computational foundations
— Dynamic programming: exploring exponential spaces in poly-time
— Introduce Hidden Markov Models (HMMs): Central tool in CS
— HMM algorithms: Decoding, evaluation, parsing, likelihood, scoring

« This week: Sequence alignment / comparative genomics
— Local/global alignment: infer nucleotide-level evolutionary events
— Database search: scan for regions that may have common ancestry
* Next week: Modeling genomes / exon / CpG island finding
— Modeling class of elements, recognizing members of a class
— Application to gene finding, conservation islands, CpG islands

Goals for today: HMMs, part Il

1. Review: Basics and three algorithms from last time
— Markov Chains and Hidden Markov Models
— Calculating likelihoods P(x,tr) (algorithm 1)
— Viterbi algorithm: Find " = argmax., P(x,1) (alg 3)
— Forward algorithm: Find P(x), over all paths (alg 2)
2. Increasing the ‘state’ space / adding memory
— Finding GC-rich regions vs. finding CpG islands
— Gene structures (GENSCAN), chromatin (ChromHMM)
3. Posterior decoding: Another way of ‘parsing’
— Find most likely state 11;, sum over all possible paths
4. Learning (ML training, Baum-Welch, Viterbi training)
— Supervised: Find g(.) and a; given labeled sequence
— Unsupervised: given only x = annotation + params

Markov chains and Hidden Markov Models (HMMs)

Rain

o

Clouds

ions

7))
c
=
4\
-
Q
-
]
H

v

Show
All observed
 Markov Chain
— Q: states
— p: Initial state probabilities
— A: transition probabilities

« What you see is what you get:
next state only depends on
current state (no memory)

Summer | | Fall || Winter || Spring
hidden
qbserved

Emlssiﬁms
\ % " v " " " " "
e HMM

— Q: states, p: initial, A: transitions
— V: observations
— E: emission probabilities

 Hidden state of the world determines
emission probabilities

e State transitions are a Markov chain |

HMM nomenclature for this course

7N NN

m= | Summer Fall Winter ([Spring| Transitions: a,=P(mr;=l|m._,=k)

IT; Transition probability
from state k to state /
X; Emissions: e, (x;)=P(x;|m;=k)
\L \ 4 v v v v v A

Emission probability of
symbol x; from state k

-
X= - - -~ - A - - -

e Vector x = Sequence of observations

e Vector 7 = Hidden path (sequence of hidden states)

e Transition matrix A=a,=probability of k£ =/ state transition

e Emission vector E=e,(x,) = prob. of observing x. from state k
e Bayes’s rule: Use P(x;|r,=k) to estimate P(w=k|x,)

Example: The Dishonest Casino

A casino has two dice:

« Fairdie
P(1)=P((2)=P(3)=P(5) =P(6) =1/6
 Loaded die
P(1)=P2)=P(3)=P4)=P(5)=1/10
P(6) = 1/2

Casino player switches between fair and loaded
die on average once every 20 turns

Game:
1. You bet $1
You roll (always with a fair die)

Casino player rolls (maybe with fair die,
maybe with loaded die)

Highest number wins $2

e

B

Slide credit: Serafim Batzoglou

Examples of HMMs for genome annotation

Application | Detection Detection Detection Detection Detection Detection
of GC-rich of of protein- | of protein- | of protein- | of
regions conserved | coding coding coding chromatin
regions exons conservatio | gene states
n structures
Topology / | 2 states, 2 states, 2 states, 2 states, ~20 states, 40 states,
Transitions | different different different tri- | different different different
nucleotide conservation | nucleotide evolutionary | composition/ | chromatin
composition | levels composition | signatures conservation | mark
, specific combination
structure S
Hidden GC-rich / AT- | Conserved / | Coding exon | Coding exon | First/last/mid | Enhancer/
States / rich non- / non-coding | / non-coding | dle coding promoter /
Annotation conserved (intron or (intron or exon,UTRs, | transcribed /
intergenic) intergenic) intron1/2/3, | repressed /
intergenic, repetitive
*(+/- strand)
Emissions / | Nucleotides | Level of Triplets of Nucleotide Codons, Vector of
Observatio conservation | nucleotides | triplets, nucleotides, | chromatin
ns conservation | splice sites, | mark
levels start/stop frequencies

codons

The main questions on HMMs

1. Scoring x, one path = Joint probability of a sequence and a path, given the model
- GIVEN aHMM M, a path r, and a sequence X,
— FIND Prob[x, = | M]
= “Running the model”, simply multiply emission and transition probabilities
= Application: “all promoter” vs. “all backgorund” comparisons
2. Scoring x, all paths = total probability of a sequence, summed across all paths
— GIVEN a HMM M, a sequence x
— FIND the total probability P[x | M] summed across all paths
=>» Forward algorithm, sum score over all paths (same result as backward)

SCORING

3. Viterbi decoding = parsing a sequence into the optimal series of hidden states

— GIVEN aHMM M, and a sequence X,
— FIND the sequence n* of states that maximizes P[x, n | M]
=>» Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path

4. Posterior decoding = total prob that emission x; came from state k, across all paths
— GIVEN a HMM M, a sequence x
— FIND the total probability P[x, = k | X, M)
=» Posterior decoding: run forward & backward algorithms to & from state =, =k

PARSING

5. Supervised learning = optimize parameters of a model given training data

— GIVEN aHMM M, with unspecified transition/emission probs., labeled sequence x,
— FIND parameters 6 = (e;, a;) that maximize P[x | 0]
= Simply count frequency of each emission and transition observed in the training data
6. Unsupervised learning = optimize parameters of a model given training data
— GIVEN aHMM M, with unspecified transition/emission probs., unlabeled sequence x,
— FIND parameters 0 = (e;, a;) that maximize P[x | 0]
= Viterbi training: guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate
= Baum-Welch training: guess, sum over all emissions/transitions (#4), update (#5), iterate

- LEARNING

One path

1. Scoring x, one path

All paths
2. Scoring x, all paths

c

= PXx.m) P(x) = Z, P(x,1)

O

ﬁ Prob of a path, emissions Prob of emissions, over all paths
3. Viterbi decoding 4. Posterior decoding

()

=

N o) " = argmax,, P(x,T) = {1, | m=argmax, 2 P(1m=k]|x)}

O

o

8 Most likely path Path containing the most likely

state at any time point.

5. Supervised learning, given 1
N* =argmax, P(x,TT|A)
6. Unsupervised learning.
* = argmax, maxP(x,1|A\)
Viterbi training, best path

Learning

6. Unsupervised learning
N* = argmax, 2 P(x,1|A)

Baum-Welch training, over all paths

10

Probability of given path p, emissions x

T is the
(hidden) path

X is the
(observed)
sequence

es(x;)

!

X4

!

X

2 /@
®

! !

X3 Xk

Courtesy of Serafim Batzoglou. Used with permission.

PO 4)

start

emission transition

11

Example: One particular P vs. B assignment

P=P(G|B)P(B,|B,)P(C|B)P(B,|B)P(A|B)P(F;|B,)..P(C|B;)
= (0.85)° x (0.25)° x (0.75)* x (0.42)° x 0.30x 0.15
=6.7x10""

12

One path

1. Scoring x, one path

All paths
2. Scoring x, all paths

c

= PXxm) P(x) = 2, P(x,T)

O

ﬁ Prob of a path, emissions Prob of emissions, over all paths
3. Viterbi decoding 4. Posterior decoding

o)

=

N o) " = argmax,, P(x,m) = {1, | m=argmax, 2 P(1m=k]|x)}

O

o

8 Most likely path Path containing the most likely

state at any time point.

5. Supervised learning, given 1
N* = argmax, P(x,mT|A)
6. Unsupervised learning.
* = argmax, maxP(x,1|A\)
Viterbi training, best path

Learning

6. Unsupervised learning
N* = argmax, 2 P(x,1|A)

Baum-Welch training, over all paths

13

Finding the most likely path

@\ o /@
00®/ ®

X4 X X3 Xk

* Find path ©* that maximizes total joint probability P[x, «]

» argmax.P(x,n) =argmax* |_|i X

start emission transition

14

Calculate maximum P(x,n) recursively

Viterbi algortithm
Define V(i) = Probability of the most likely path through state w,=k
Compute V,(i+1) recursively, as a function of max,. { V,.(i) }

F W

hidden) W Vidi
states Yl

() -

v

~

observations Xi_1 X;

Assume we know V, for the previous time step (i-1)

Calculate 1 max; ()

current max this emission max ending Transition
in state jat stepi from state j

all possible previous states j

The Viterbi Algorithm

State 1

Traceback:
Follow max pointers back

Input: x =x1...... XN

Initialization:
V,(0)=1, V,(0) = 0, for all k > 0 In practice:
Iteration: Use log scores for computation

Running time and space:
Termination: Time: O(K2N)

P(x, ©*) = max, V,(N) Space: O(KN)

16

One path

1. Scoring x, one path

All paths
2. Scoring x, all paths

c

= PXxm) P(x) = 2, P(x,T)

O

ﬁ Prob of a path, emissions Prob of emissions, over all paths
3. Viterbi decoding 4. Posterior decoding

o)

=

N o) " = argmax,, P(x,m) = {1, | m=argmax, 2 P(1m=k]|x)}

O

o

8 Most likely path Path containing the most likely

state at any time point.

5. Supervised learning, given 1
N* = argmax, P(x,mT|A)
6. Unsupervised learning.
* = argmax, maxP(x,1|A\)
Viterbi training, best path

Learning

6. Unsupervised learning
N* = argmax, 2 P(x,1|A)

Baum-Welch training, over all paths

17

P(x) < Prob that model emits x, sum over all paths

Given a sequence X,
What is the probability that x was generated by the model (using any path)?

- P(x) = 2, P(x)
« Challenge: exponential number of paths
— Sum over all paths, weighing the path probability, and the emission probs

— Prob of emitting sequence: use individual emission probs from each state
— Prob of path: use both emission and transition prob, based on previous path

start emission transition

18

Calculate total probability 2_ P(x,x) recursively

r©
a f (i
hidden f('1)® ik A k) fli)
(-
J
states @ e
K v
observations Xi_1 X;

* Assume we know f; for the previous time step (i-1)

. Calculate * sum(

current sum this emission sum ending transition
in state jatstepi from state j

Sum over all previous states j

The Forward Algorithm

State 1 X
2 \
“fi(i)
7,
K /

Input: x =x1...... XN

Initialization:
f,(0)=1, f(0) = 0, for all k > 0

Iteration:

f (i) = ex(x;) x sum, a; f(i-1)

Termination:
P(x, ©*) = sum, f (N)

In practice:

Sum of log scores is difficult
—> approximate exp(1+p+Qq)
—> scaling of probabilities

Running time and space:

Time: O(K2N)
Space: O(K)

20

Goals for today: HMMs, part Il

1. Review: Basics and three algorithms from last time
— Markov Chains and Hidden Markov Models
— Calculating likelihoods P(x,TT)
— Viterbi algorithm: Find * = argmax,, P(X,)
— Forward algorithm: Find P(x), over all paths

2. Increasing the ‘state’ space / adding memory
— Finding GC-rich regions vs. finding CpG islands
— Gene structures GENSCAN, chromatin ChromHMM

3. Posterior decoding: Another way of ‘parsing’
— Find most likely state 11;, sum over all possible paths
4. Learning (ML training, Baum-Welch, Viterbi training)
— Supervised: Find g(.) and a; given labeled sequence
— Unsupervised: given only x = annotation + params

21

Increasing the state space
(remembering more)

HMM1: Promoters = only Cs and Gs matter
HMM2: Promoters = it’s actually CpGs that matter
(di-nucleotides, remember previous nucleotide)

22

Increasing the state of the system (looking back)

 Markov Models are memory-less

— In other words, all memory is encoded in the states

— To remember additional information, augment state
* A two-state HMM has minimal memory

— Two states: GC-rich vs. equal probability

— State, emissions, only depend on current state

— Current state only encodes one previous nucleotide
 How do you count di-nucleotide frequencies?

— CpG islands: di-nucleotides a,, . a..

— Codon triplets: tri-nucleotides y

— Di-codon frequencies: six nucleotides
= Expanding the number of states

a-

A: 1/4
C:1/4
G:1/4
T: 1/4

H© o
N o i

Remember previous nucleotide: expand both states

HQ0O2

Ooo_\:

HQ 02|

— O O o

1466 F

°o—\o‘

402

O «— O oo

1€ O @K

©C a0

o © O Y O

<OOF

HQOP2
~ococo

“Memory” of previous
nucleotide is encoded
in the current state.

GC-rich: 4 states
Background: 4 states

"M O O O

<OOF

24

HMM for CpG islands

* A single model combines two Markov
chains, each of four nucleotides:

— 4 States A+7 C+7 G"" T+

« Emit symbols: A, C, G, T in CpG islands
— ‘“states: A, C, G, T.
« Emit symbols: A, C, G, T in non-islands
« Emission probabilities distinct for the ‘+
and the '-’ states

A:1 |[A:0 |[A:0 |[|A:0 — Infer most likely set of states, giving rise
C:0 C:1 {fC20 11 C:0 to observed emissions
G:0[[|G:0]1G:1][]G:0 A :

0 llT0o lTo Il T1 => ‘Paint’ the sequence with + and - states

Why we need so many states...

In our simple GC-content example, we only had 2 states (+|-)
Why do we need 8 states here: 4 CpG+/4 CpG- ?

= Encode ‘memory’ of previous state: nucleotide transitions

25

Training emission parameters for CpG+/CpG- states

« Count di-nucleotide frequencies:
— 16 possible di-nucleotides. 16 transition parameters.
— Alternative: 16 states, each emitting di-nucleotide
* Derive two Markov chain models:
— ‘4’ model: from the CpG islands
— ‘“” model: from the remainder of sequence

« Transition probabilities for each model:
— Encode differences in di-nucleotide frequencies

+ | A C | G| T - A|C |G| T

A | 180 | 274 | 426 | .120 A | 300 | 205 | 285 | .210
C | 171 | 368 | .274 | .188 C | 322 | 298 | .078 | .302
G | 161 | 339 | .375 | .125 (G | 248 | 246 | 298 | .208
T | 079 | 355 | 384 | .182 T | 177 | 239 | 292 | 292

Examples of HMMs for genome annotation

Detection Detection Detection Detection Detection Detection Detection
of GC-rich of CpG-rich | of of protein- | of protein- | of protein- | of
regions regions conserved | coding coding coding chromatin
regions exons conservatio | gene states
n structures
2 states, 8 states, 2 states, 2 states, 2 states, ~20 states, 40 states,
different 4 each +/-, different different tri- different different different
nucleotide different conservation | nucleotide evolutionary | composition/ | chromatin
composition | transition levels composition | signatures conservation | mark
probabilities , specific combination
structure S
GC-rich / AT- | CpG-rich / Conserved / | Coding exon | Coding exon | First/last/mid | Enhancer /
rich CpG-poor non- / non-coding | / non-coding | dle coding promoter /
conserved (intron or (intron or exon,UTRs, | transcribed/
intergenic) intergenic) intron1/2/3, | repressed /
intergenic, repetitive
*(+/- strand)
Nucleotides | Di- Level of Triplets of 64x64 matrix | Codons, Vector of
Nucleotides | conservation | nucleotides | of codon nucleotides, | chromatin
substitution | splice sites, | mark
frequencies | start/stop frequencies

codons

27

HMM architecture matters: Protein-coding genes

+strand

____________ e R O TN
;’* -sfrand

© Bill Majoros / GeneZilla. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Gene vs. Intergenic
Start & Stop in/out

UTR: 5 and 3’ end

Exons, Introns

Remembering frame
— EO,E1,E2

- 10,11,12

Sequence patterns
to transition between
states:

— ATG, TAG,

Acceptor/Donor,
TATA, AATAA

28

http://www.genezilla.org/design.html
http://ocw.mit.edu/help/faq-fair-use/

Chromatin State: Emission & Transition Matrices

IR N

© Macmillan Publishers Limited. All rights reserved. This content is excluded from our Creative

Commons license. For more information,see http://ocw.mit.edu/help/fag-fair-use/.

Source: Ernst, Jason and Manolis Kellis. "Discovery and characterization of chromatin states for
systematic annotation of the human genome."™ Nature Biotechnology 28, no. 8 (2010): 817-825.

« Emission matrix: * Transition matrix:
 Multi-variate HMM » Learn spatial relationships

» Emits vector of values * No a-priori ‘gene’ structure
Ernst and Kellis, Nature Biotech 2010, Nature 2011, Nature Methods 2012 -

http://ocw.mit.edu/help/faq-fair-use/
http://dx.doi.org/10.1038/nbt.1662
http://dx.doi.org/10.1038/nbt.1662

Goals for today: HMMs, part Il

1. Review: Basics and three algorithms from last time
— Markov Chains and Hidden Markov Models
— Calculating likelihoods P(x,TT)
— Viterbi algorithm: Find * = argmax,, P(X,)
— Forward algorithm: Find P(x), over all paths
2. Increasing the ‘state’ space / adding memory
— Finding GC-rich regions vs. finding CpG islands
— Gene structures GENSCAN, chromatin ChromHMM

3. Posterior decoding: Another way of ‘parsing’
— Find most likely state 11;, sum over all possible paths

4. Learning (ML training, Baum-Welch, Viterbi training)
— Supervised: Find g(.) and a; given labeled sequence
— Unsupervised: given only x = annotation + params

30

One path All paths

1. Scoring x, one path 2. Scoring x, all paths

(@)

c

g P(x,T) / / P(x) = ZTT P(x,T)

ﬁ Prob of a path, emissions Prob of emissions, over all paths
3. Viterbi decoding 4. Posterior decoding

e

o T = argmax.. P(x,T) A = {1, | m=argmax, ¥ _P(1r.=K|x)}

S v

8 Most likely path Path containing the most likely

state at any time point.

5. Supervised learning, given 1 6. Unsupervised learning

g’ A* = argmax, P(x,TT|A\)

"= 6. Unsupervised learning. N* = argmax, 2 P(x,1|A)

E * = argmax, maxP(x,1|A\)

il, Viterbi training, best path Baum-Welch training, over all paths

31

4. Decoding, all paths

Find the likelihood an emission x; is
generated by a state

Calculate most probable label at a single position

®

Sum over all paths

X: G C A A A T G C

P(Label.=B|x)
 Calculate most probable label, L', , at each position i
Do this for all N positions gives us {L";, L',, L'5.... L'}

 How much information have we observed? Three settings:
— Observed nothing: Use prior information
— Observed only character at position i: Prior + emission probability
— Observed entire sequence: Posterior decoding

33

Calculate P(1r.= CpG+ | x,=G)

« With no knowledge (no characters)
— Simply time spent in markov chain states
— P(=k) = most likely state (prior)

« With very little knowledge (just that character)
— Time spent, adjusted for different emission probs.

— Use Bayes rule to change inference directionality
— P(m=k | x=G) = P(1r=K) * P(x=G|m=K) / P(x;=G)

« With knowledge of entire sequence (all characters)
— P(1=k | x=AGCGCG...GATTATCGTCGTA)
— Sum over all paths that emit ‘G’ at position 7
=>» Posterior decoding

34

Motivation for the Backward Algorithm

We want to compute

P(m, = k | x), the probability distribution on the it position, given x
We start by computing
P(m, = Kk, X) = P(X4...X, T = K, Xizq...Xy)

= P(Xq...X;, T = K) P(X4q...X\ | Xq...%;, T = K)
= P(Xq... %5, m = K) [P (Xjaq.. - Xy | T = K)

Forward, f,(i) Backward, b, (i)

The Backward Algorithm — derivation

Define the backward probability:

b (i) = P(Xi1q1... Xy | T = K)

= Xie1.aN PXie1: Xies - or Xy gy «-o0 T | 715 = K)

=2 21N PXis1:Xia2s oo X Tigq = |, g, -0y oy | 5 = K)
— - |
=3, €(Xis1) A Xt 2N PXisos oes Xy Wiy «-en Ty | Tigq = 1

= 2, €(Xisq) Qy|by(i+1)

Calculate total end probability recursively

c ()
hidden J ®/'
states @

~

b,(i+1)

observations X; Xi+1

» Assume we know Db, for the next time step (i+1)

. Calculate= sum(

current max next transition prob sum from
emission o next state state | to end

sum over all possible next states

The Backward Algorithm

State 1 P
2 a
b, (i)~
. \
X1 X2 X3 ... XN

Input: x = x1...... xN

Initialization:
b.(N) = a,,, for all k

Iteration:
b (i) = Z, €/(Xis1) @ by(i+1)

Termination:
P(x) = X, ag &(X4) by(1)

In practice:

Sum of log scores is difficult
—> approximate exp(1+p+q)
—> scaling of probabilities

Running time and space:

Time: O(K2N)
Space: O(K)

38

Putting it all together: Posterior decoding

State 1 X P
2 7
Y
K TN
) T D XN

P(k) = P(=k | x') = f(i)"b(i) / P(x)
— Probability that ith state is k, given all emissions x
Posterior decoding

— Find the most likely state at position i over all possible hidden paths
given the observed sequence X

— 7', = argmax, P(m = k | x)
Posterior decoding ‘path’ ="
— For classification, more informative than Viterbi path =*
* More refined measure of “which hidden states” generated x
— However, it may give an invalid sequence of states
* Not all j=>k transitions may be possible

39

Goals for today: HMMs, part Il

1. Review: Basics and three algorithms from last time
— Markov Chains and Hidden Markov Models
— Calculating likelihoods P(x,tT) (algorithm 1)
— Viterbi algorithm: Find " = argmax.. P(x,1) (alg 3)
— Forward algorithm: Find P(x), over all paths (alg 2)
2. Increasing the ‘state’ space / adding memory
— Finding GC-rich regions vs. finding CpG islands
— Gene structures GENSCAN, chromatin ChromHMM
3. Posterior decoding: Another way of ‘parsing’
— Find most likely state 11;, sum over all possible paths

4. Learning (ML training, Baum-Welch, Viterbi training)
— Supervised: Find g;(.) and a; given labeled sequence
— Unsupervised: given only x = annotation + params

40

One path All paths

1. Scoring x, one path 2. Scoring x, all paths

o)

c

‘= P(x,) P(x) = 2 P(x,T)

5 EER'AL"4 n Plx

N Prob of a path, emissions Prob of emissions, over all paths
3. Viterbi decoding 4. Posterior decoding

=

o ™ = argmax.. P(x,T) A = {1, | m=argmax, ¥ _P(1r=K|x)}

O

S et v |V - |

0 ost likely path Path containing the most likely

state at any time point.

5. Supervised learning, given 1 6. Unsupervised learning

g’ N* =argmax, P(x,TT|A)

"= 6. Unsupervised learning. N* = argmax, 2 P(x,1|A)

E * = argmax, maxP(x,1|A\)

3 Viterbi training, best path Baum-Welch training, over all paths

41

Learning: How to train an HMM

Transition probabilities
e.g. P(P.,4B;) — the
probability of entering a
pathogenicity island from
background DNA

P(L;.4]L)

Emission probabilities \./ !
l.e. the nucleotide

frequencies for P(S|B) P(S|P)
background DNA and
pathogenicity islands

42

Two learning scenarios

Case 1. Estimation when the “right answer” is known

Examples:

GIVEN: a genomic region X = X4...X4 g where we have good
(experimental) annotatlons ofothe CpG islands

Case 2. Estimation when the “right answer” is unknown

Examples:

GIVEN: the porcupine genome; we don’t know how frequent are the
CpG islands there, neither do we know their composition

QUESTION: Update the parameters 0 of the model to maximize P(x|0)

43

Two types of learning: Supervised / Unsupervised
5. Supervised learning

infer model parameters given labeled training data
— GIVEN:

a HMM M, with unspecified transition/emission probs.
labeled sequence x,

— FIND:
parameters 0 = (Ei, Aij) that maximize P[x| 0]
= Simply count frequency of each emission and transition,
as observed in the training data

6. Unsupervised learning

infer model parameters given unlabelled training data
— GIVEN:

a HMM M, with unspecified transition/emission probs.
unlabeled sequence X,

— FIND:
parameters 6 = (Ei, Aij) that maximize P[x| 0]
=» Viterbi training:
guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate
= Baum-Welch training:

guess parameters, sum over all paths (#4), update parameters (#5), iterate »

5: Supervised learning

Estimate model parameters
based on labeled training data

Case 1. When the right answer is known

Given X = X4...Xy
for which the true n = &t,...my is known,

Define:
A, = # times k—l transition occurs in &t
E,(b) = # times state k in T emits b in x

We can show that the maximum likelihood parameters 0 are:

Ay E,(b)
dy = e(b) =
2 Ay 2. Ey(c)

46

Learning From Labelled Data
- Maximum Likelihood Estimation

If we have a sequence that has islands marked, we can simply count

. ®® e 0060 e

S G| C A A A T |G| C
P(L;.|L)) P(S|B) P(S|P)
B 1 F)i+1

Case 1. When the right answer is known

Intuition: When we know the underlying states,
Best estimate is the average frequency of
transitions & emissions that occur in the training data

Drawback:
Given little data, there may be overfitting:
P(x|0) is maximized, but 6 is unreasonable
0 probabilities — VERY BAD

Example:
Given 10 nucleotides, we observe
x=¢¢, A, G, G, T, C, C, A, T, C
T=P?P, P, P, P, P, P, P, P, P, P

Then:
app=1; apg=0
ep(A) = .2;
ep(C) = 4;
ep(G) = .2;

48

Pseudocounts

Solution for small training sets:
Add pseudocounts

A = # times k—| transition occursin t + r
E.(b) =#times state kintemitsbinx +r(b)

ra, N (b) are pseudocounts representing our prior belief
Larger pseudocounts = Strong priof belief

Small pseudocounts (¢ < 1): just to avoid 0 probabilities

49

Example: Training Markov Chains for CpG islands

274

120

.368

.188

339

125

355

182

205

210

322

.298

.078

.302

248

246

.298

.208

A77

239

292

292

Training Set:

— set of DNA sequences w/ known CpG islands

Derive two Markov chain models:
— ‘4’ model: from the CpG islands
— ‘“” model: from the remainder of sequence

Transition probabilities for each model:

+

a"‘ o8 CSt
st +
Zt' CSt'

A, =

Cot
Piem

C

+
st

St

is the number of times
letter t followed letter s
inside the CpG islands

is the number of times
letter t followed letter s
outside the CpG islands

50

6: Unsupervised learning

Estimate model parameters
based on unlabeled training data

Unlabelled Data

How do we know how to count?

. 9 ®® e e e e e
SNORORORCRCRORCRORE

S: G C /:I;\

A A G C

P(L;.4|L) P(S|B) P(S|P)
B,y P4 End A: A:
Bi T: T
G: G
P, C: C

Unlabeled Data

. ®® e 066 e
(o o o

S: G C A A A T G C
An idea:
1. lmagine we start with some parameters i+11™=i

2. We could calculate the most likely path,
P*, given those parameters and S

3. We could then use P* to update our
parameters by maximum likelihood

4. And iterate (to convergence)

i+11™=i

P(LilL)? P(SIB)* P(S|P)*

P(Li[L)* P(SIB)* P(SIP)*

53

Learning case 2. When the right answer is unknown

We don't know the true A, E,(b)

Idea:

* We estimate our “best guess” on what A,,, E,(b) are
(M step, maximum-likelihood estimation)

« We update the probabilistic parse of our sequence,
based on these parameters (E step, expected
probability of being in each state given parameters)

 We repeat

Two settings:
« Simple: Viterbi training (best guest = best path)
« Correct: Expectation maximization (all paths, weighted)

54

One path

1. Scoring x, one path

All paths
2. Scoring x, all paths

()

c

= P VI PR=Z.Pxm

ﬁ Prob of a path, emissions Prob of emissions, over all paths
3. Viterbi decoding 4. Posterior decoding

e

o ™ = argmax.. P(x,T) A = {1, | m=argmax, ¥ _P(1r=K|x)}

O

o

8 Most likely path / /Path containing the most likely

state at any time point.

Learning

5. Supervised learning, given 1

A* = argmax, P(x,TT|/\) /

6. Unsupervised learning.
* = argmax, max_P(x,TT|A)
Viterbi training, best path

7. Unsupervised learning
N* = argmax, 2 P(x,1|A)

Baum-Welch training, over all paths

55

Simple casae: Viterbi Training

Initialization:
Pick the best-guess for model parameters

(or arbitrary)

Iteration:
1. Perform Viterbi, to find ©’
2. Calculate A, E,(b) according to " + pseudocounts
3. Calculate the new parameters a,, e,(b)

Until convergence
Notes:

— Convergence to local maximum guaranteed. Why?
— Does not maximize P(x | 0)
— In general, worse performance than Baum-Welch

56

One path

1. Scoring x, one path

All paths
2. Scoring x, all paths

()

c

= P v Iy PR=Z.Pxm

3 Prob of a path, emissions Prob of emissions, over all paths
3. Viterbi decoding 4. Posterior decoding

e

o ™ = argmax.. P(x,T) A = {1, | m=argmax, ¥ _P(1r=K|x)}

S v

8 Most likely path Path containing the most likely

state at any time point.

5. Supervised learning, given 1
N* =argmax, P(x,TT|A)
6. Unsupervised learning.
* = argmax, maxP(x,1|A\)
Viterbi training, best path

Learning

6. Unsupervised learning

N* = argmax, 2 P(x,1T|A)

Baum-Welch training, over all paths

57

Expectation Maximization (EM)

The basic idea is the same:

1.Use model to estimate missing data (E step)
2.Use estimate to update model (M step)
3.Repeat until convergence

EM is a general approach for learning models
(ML estimation) when there is “missing data”
Widely used in computational biology

EM pervasive in computational biology
=) Rec 3 (SiPhy), Lec 8 (Kmeans), Lec 9 (motifs)

58

Expectation Maximization (EM)

1. Initialize parameters randomly

2. E Step Estimate expected probability of hidden labels, Q, given current

(latest) parameters and observed (unchanging) sequence
Q=P(Labels|S, paramst-1)

3. M Step Choose new maximum likelihood parameters over

probability distribution Q, given current probabilistic label assignments

params' = argmax E, | log P(S, labels | params™™) |

params
4. lterate

P(S|Model) guaranteed to increase each iteration

59

Case 2. When the right answer is unknown

Starting with our best guess of a model M, parameters 6:

Given X = X4...Xy
for which the true n = &t,...my is unknown,

We can get to a provably more likely parameter set 6
Principle: EXPECTATION MAXIMIZATION
1. Estimate probabilistic parse based on parameters (E step)

2. Update parameters A, E, based on probabilistic parse (M step)
3. Repeat 1 & 2, until convergence

60

Estimating probabilistic parse given params (E step)

To estimate A;:

At each position i:

S:

G C

A

G oG CRoYoroNG
B el o \BBA

i
A

Find probability transition k—l is used:

P(r = K, maq = 1| X) = [1/P(X)] x P(r; =

K, T4

=1, Xq...Xy) =

P

where Q Xq..

P(x

|+1

W = k|| Mg = |,

X

X; ...x/b/=

=1, Xi41. XN“

T = K

= P(Tivq = I Xi+1Xj+2- - - XN | = k)

() =

P(Xq...x,

= P(i+2-

Xy | g = 1)

P(X|+1 | Ti+q =) P(m,

=1|m=

K) i (i) =

= by(i+1) e(x1) ag)

So: P(m; = K,

Mg = 1] X, 0) =

fi(i)

Ay

eI(Xi+1)

b,(i+1)

P(x | 6)
(For one such transition, at time step i=2i+1)

61

New parameters given probabilistic parse (M step)

(Sum over all k=1 transitions, at any time step i)
So,

fi(i) @y €/(Xiq) by(i+1)

Ag= 2 Pm =K, my = 1| X, 0) = 2,

Similarly,

Ex(b) = (/P12 4| xi = by fli) bii)

Dealing with multiple training sequences

(Sum over all training seqs, all k=>1 transitions, all time steps i)

If we have several training sequences, x', ..., xM, each of length N,

fi (1) @y € /(%) by(i+1)

Ag=2, 2iP(m =k mq=1]x,0)=2, 2
P(x|6)

Similarly,

Ev(b) = 24y (1IP(0))2 g | i =y fild) i ()

63

The Baum-Welch Algorithm

Initialization:

Pick the best-guess for model parameters

(or arbitrary)

lteration:

1.

Al A

Forward

Backward

=» Calculate new log-likelihood P(x | 6) (E step)
Calculate A, E,(b)

=» Calculate new model parameters a,,, e,(b) (M step)

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION

Until P(x | 6) does not change much

64

The Baum-Welch Algorithm — comments

Time Complexity:
iterations x O(K2N)
« Guaranteed to increase the log likelihood of the model
PO | x)=P(x,0)/P(x)=P(x]|6)/(P(x)P(6))

* Not guaranteed to find globally best parameters

Converges to local optimum, depending on initial conditions

« Too many parameters / too large model: Overtraining

65

One path

1. Scoring x, one path

All paths
2. Scoring x, all paths

c

= P P(x) = Z, P(x,1)

O

ﬁ Prob of a path, emissions Prob of emissions, over all paths
3. Viterbi decoding 4. Posterior decoding

()

=

N o) " = argmax,, P(x,T) = {1, | m=argmax, 2 P(1m=k]|x)}

O

o

8 Most likely path Path containing the most likely

state at any time point.

5. Supervised learning, given 1
N* =argmax, P(x,TT|A)
6. Unsupervised learning.
* = argmax, maxP(x,1|A\)
Viterbi training, best path

Learning

6. Unsupervised learning
N* = argmax, 2 P(x,1|A)

Baum-Welch training, over all paths

66

Examples of HMMs for genome annotation

Detection Detection Detection Detection Detection Detection Detection
of GC-rich of CpG-rich | of of protein- | of protein- | of protein- | of
regions regions conserved | coding coding coding chromatin
regions exons conservatio | gene states
n structures
2 states, 8 states, 2 states, 2 states, 2 states, ~20 states, 40 states,
different 4 each +/-, different different tri- different different different
nucleotide different conservation | nucleotide evolutionary | composition/ | chromatin
composition | transition levels composition | signatures conservation | mark
probabilities , specific combination
structure S
GC-rich / AT- | CpG-rich / Conserved / | Coding exon | Coding exon | First/last/mid | Enhancer /
rich CpG-poor non- / non-coding | / non-coding | dle coding promoter /
conserved (intron or (intron or exon,UTRs, | transcribed/
intergenic) intergenic) intron1/2/3, | repressed /
intergenic, repetitive
*(+/- strand)
Nucleotides | Di- Level of Triplets of 64x64 matrix | Codons, Vector of
Nucleotides | conservation | nucleotides | of codon nucleotides, | chromatin
substitution | splice sites, | mark
frequencies | start/stop frequencies

codons

67

What have we learned ?

Generative model. Hidden states, observed emissions.

— Generate a random sequence
» Choose random transition, choose random emission (#0)

Scoring: Finding the likelihood of a given sequence
— Calculate likelihood of annotated path and sequence
» Multiply emission and transition probabilities (#1)
— Without specifying a path, total probability of generating x
« Sum probabilities over all paths
« Forward algorithm (#3)

Decoding: Finding the most likely path, given a sequence
— What is the most likely path generating entire sequence?

* Viterbi algorithm (#2)
— What is the most probable state at each time step?

« Forward + backward algorithms, posterior decoding (#4)

Learning: Estimating HMM parameters from training data
— When state sequence is known

« Simply compute maximum likelihood A and E (#5a)
— When state sequence is not known

 Viterbi training: Ilterative estimation of best path / frequencies (#5b)
« Baum-Welch: lterative estimation over all paths / frequencies (#6)

68

Goals for today: HMMs, part Il

1. Review: Basics and three algorithms from last time
— Markov Chains and Hidden Markov Models
— Calculating likelihoods P(x,TT)
— Viterbi algorithm: Find * = argmax,, P(X,)
— Forward algorithm: Find P(x), over all paths
2. Increasing the ‘state’ space / adding memory
— Finding GC-rich regions vs. finding CpG islands
— Gene structures GENSCAN, chromatin ChromHMM
3. Posterior decoding: Another way of ‘parsing’
— Find most likely state 11;, sum over all possible paths
4. Learning (ML training, Baum-Welch, Viterbi training)
— Supervised: Find g(.) and a; given labeled sequence
— Unsupervised: given only x = annotation + params

69

MIT OpenCourseWare
http://ocw.mit.edu

6.047 / 6.878 / HST.507 Computational Biology
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

