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Module 1: Aligning and modeling genomes 

• Module 1: Computational foundations 
– Dynamic programming: exploring exponential spaces in poly-time 
– Introduce Hidden Markov Models (HMMs): Central tool in CS 
– HMM algorithms: Decoding, evaluation, parsing, likelihood, scoring 

• This week: Sequence alignment / comparative genomics 
– Local/global alignment: infer nucleotide-level evolutionary events 
– Database search: scan for regions that may have common ancestry 

• Next week: Modeling genomes / exon / CpG island finding 
– Modeling class of elements, recognizing members of a class 
– Application to gene finding, conservation islands, CpG islands 

3



Goals for today: HMMs, part II 

1. Review:  Basics and three algorithms from last time 
– Markov Chains and Hidden Markov Models 
– Calculating likelihoods P(x,π) (algorithm 1) 
– Viterbi algorithm:  Find π* = argmaxπ P(x,π) (alg 3) 
– Forward algorithm:  Find P(x), over all paths (alg 2) 

2. Increasing the ‘state’ space / adding memory 
– Finding GC-rich regions vs. finding CpG islands 
– Gene structures (GENSCAN), chromatin (ChromHMM) 

3. Posterior decoding: Another way of ‘parsing’ 
– Find most likely state πi, sum over all possible paths 

4. Learning (ML training, Baum-Welch, Viterbi training) 
– Supervised: Find ei(.) and aij given labeled sequence 
– Unsupervised: given only x  annotation + params 
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Markov chains and Hidden Markov Models (HMMs) 

• What you see is what you get: 
next state only depends on 
current state (no memory) 

Sun 

Rain 

Clouds 

Snow 

• Hidden state of the world determines 
emission probabilities 

• State transitions are a Markov chain 

hidden 

observed 

All observed 

Summer Fall Winter Spring 

Transitions 

Emissions 

Transitions 

• Markov Chain 
– Q: states 
– p:  initial state probabilities 
– A:  transition probabilities 

• HMM 
– Q: states, p: initial, A: transitions 
– V: observations 
– E: emission probabilities 
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HMM nomenclature for this course 

• Vector x = Sequence of observations 

• Vector π = Hidden path (sequence of hidden states) 

• Transition matrix A=akl=probability of kl state transition 

• Emission vector E=ek(xi) = prob. of observing xi from state k 

• Bayes’s rule: Use P(xi|πi=k) to estimate P(πi=k|xi) 

Fall Winter Spring 

Emissions: ek(xi)=P(xi|πi=k) 

Transitions: akl=P(πi=l|πi-1=k) Summer π= 

x= 

πi 

xi 

Transition probability 
from state k to state l 

Emission probability of 
symbol xi from state k 
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Example: The Dishonest Casino 

 
A casino has two dice: 
• Fair die 
 P(1) = P(2) = P(3) = P(5) = P(6) = 1/6 
• Loaded die 
 P(1) = P(2) = P(3) = P(4) = P(5) = 1/10 
 P(6) = 1/2 
Casino player switches between fair and loaded 

die on average once every 20 turns 
 
Game: 
1. You bet $1 
2. You roll (always with a fair die) 
3. Casino player rolls (maybe with fair die, 

maybe with loaded die) 
4. Highest number wins $2 

Slide credit: Serafim Batzoglou 
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Examples of HMMs for genome annotation 
Application Detection 

of GC-rich 
regions 

Detection 
of 
conserved 
regions 

Detection 
of protein-
coding 
exons 

Detection 
of protein-
coding 
conservatio
n 

Detection 
of protein-
coding 
gene 
structures 

Detection 
of 
chromatin 
states 

Topology / 
Transitions 

2 states, 
different 
nucleotide 
composition 

2 states, 
different 
conservation 
levels 

2 states, 
different tri-
nucleotide 
composition 

2 states, 
different 
evolutionary 
signatures 

~20 states, 
different 
composition/
conservation
, specific 
structure 

40 states, 
different 
chromatin 
mark 
combination
s 

Hidden 
States / 
Annotation 

GC-rich / AT-
rich 

Conserved / 
non-
conserved 

Coding exon 
/ non-coding 
(intron or 
intergenic) 

Coding exon 
/ non-coding 
(intron or 
intergenic) 

First/last/mid
dle coding 
exon,UTRs, 
intron1/2/3, 
intergenic, 
*(+/- strand) 

Enhancer / 
promoter / 
transcribed / 
repressed / 
repetitive 

Emissions / 
Observatio
ns 

Nucleotides Level of 
conservation 

Triplets of 
nucleotides 

Nucleotide 
triplets, 
conservation 
levels 

Codons, 
nucleotides, 
splice sites, 
start/stop 
codons 

Vector of 
chromatin 
mark 
frequencies 
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The main questions on HMMs 
1. Scoring x, one path = Joint probability of a sequence and a path, given the model 

– GIVEN  a HMM M,  a path , and a sequence x,  
– FIND  Prob[ x,  | M ] 
 “Running the model”, simply multiply emission and transition probabilities 
 Application:  “all promoter” vs. “all backgorund” comparisons 

2. Scoring x, all paths = total probability of a sequence, summed across all paths 
– GIVEN a HMM M,  a sequence x 
– FIND the total probability P[x | M] summed across all paths 
 Forward algorithm, sum score over all paths (same result as backward) 

3. Viterbi decoding = parsing a sequence into the optimal series of hidden states 
– GIVEN a HMM M,  and a sequence x, 
– FIND the sequence * of states that maximizes P[ x,  | M ] 
 Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path 

4. Posterior decoding = total prob that emission xi came from state k, across all paths 
– GIVEN  a HMM M,  a sequence x 
– FIND the total probability P[i = k | x, M) 
 Posterior decoding: run forward & backward algorithms to & from state I =k 

5. Supervised learning = optimize parameters of a model given training data 
– GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x, 
– FIND parameters  = (ei, aij) that maximize P[ x |  ] 
 Simply count frequency of each emission and transition observed in the training data 

6. Unsupervised learning = optimize parameters of a model given training data 
– GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x, 
– FIND parameters  = (ei, aij) that maximize P[ x |  ] 
 Viterbi training:  guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate 
 Baum-Welch training:  guess, sum over all emissions/transitions (#4), update (#5), iterate 
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1.  Scoring x, one path 
 
  P(x,π) 
 
Prob of a path, emissions 
 

2.  Scoring x, all paths 
 
  P(x) = Σπ P(x,π) 
 
Prob of emissions, over all paths 

3. Viterbi decoding 
 
 π* = argmaxπ P(x,π) 
 
Most likely path 

4.  Posterior decoding 
 
π^ = {πi | πi=argmaxk ΣπP(πi=k|x)} 
 
Path containing the most likely 
state at any time point. 

One path All paths 
D

ec
od

in
g 

Sc
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g 
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ng

 5. Supervised learning, given π 
 Λ* = argmaxΛ P(x,π|Λ) 
6. Unsupervised learning.  
  Λ* = argmaxΛ maxπP(x,π|Λ) 
 Viterbi training, best path 

6.  Unsupervised learning 
  
 Λ* = argmaxΛ ΣπP(x,π|Λ) 
 
Baum-Welch training, over all paths 
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Probability of given path p, emissions x 

1 
2 

K 
… 

1 
2 

K 
… 

1 
2 

K 
… 

… 

… 

… 

1 
2 

K 
… 

x2 x3 xK 

2 
1 

K 

2 

x1 

• P(x,) = a01
 * Πi ei

(xi)    aii+1 

start emission transition 

x is the  
(observed) 
sequence 

π is the  
(hidden) path 

es(xi) 

ast 

Courtesy of Serafim Batzoglou. Used with permission.
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Example: One particular P vs. B assignment 

P 

B 

P 

B 

P 

B B 

P 

B B 

P 

B 

P 

B 

G C A A A T G C 

L: 

S: 

P P 

1 0 2 1 3 2 7

7

3 6 2 2

( | ) ( | ) ( | ) ( | ) ( | ) ( | )... ( | )

(0.85) (0.25) (0.75) (0.42) 0.30 0.15

6.7 10

P P G B P B B P C B P B B P A B P P B P C B





     

 

B B B B B 
0.85 

0.25 

0.85 

0.15 0.25 

0.25 0.25 0.42 0.42 0.30 0.25 0.25 

0.85 

P P P 
0.75 0.75 
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1.  Scoring x, one path 
 
  P(x,π) 
 
Prob of a path, emissions 
 

2.  Scoring x, all paths 
 
  P(x) = Σπ P(x,π) 
 
Prob of emissions, over all paths 

3. Viterbi decoding 
 
 π* = argmaxπ P(x,π) 
 
Most likely path 

4.  Posterior decoding 
 
π^ = {πi | πi=argmaxk ΣπP(πi=k|x)} 
 
Path containing the most likely 
state at any time point. 

One path All paths 
D
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 5. Supervised learning, given π 
 Λ* = argmaxΛ P(x,π|Λ) 
6. Unsupervised learning.  
  Λ* = argmaxΛ maxπP(x,π|Λ) 
 Viterbi training, best path 

6.  Unsupervised learning 
  
 Λ* = argmaxΛ ΣπP(x,π|Λ) 
 
Baum-Welch training, over all paths 
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Finding the most likely path 

1 
2 

K 
… 

1 
2 

K 
… 

1 
2 

K 
… 

… 

… 

… 

1 
2 

K 
… 

x2 x3 xK 

2 
1 

K 

2 

x1 

• Find path * that maximizes total joint probability P[ x,  ] 

• argmaxπP(x,) =argmaxπ a01
 * Πi ei

(xi)    aii+1 

start emission transition 
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Calculate maximum P(x,) recursively 

• Assume we know Vj for the previous time step (i-1) 
 

• Calculate Vk(i) =     ek(xi)   *   maxj (   Vj(i-1)     ajk    ) 

xi 

ek 

k 
j 

ajk … 
… 

xi-1 

… 
Vj(i-1) 

Vk(i) hidden 
states 

observations 

this emission Transition 
from state j 

max ending 
in state j at step i 

all possible previous states j 

current max 

Viterbi algortithm 
Define Vk(i) = Probability of the most likely path through state i=k 
Compute Vk(i+1) recursively, as a function of maxk’ { Vk’(i) } 
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The Viterbi Algorithm 

x1   x2   x3 ………………………………………..xN 

Input: x = x1……xN 
 

Initialization: 
 V0(0)=1, Vk(0) = 0, for all k > 0 
 

Iteration: 
 Vk(i) = eK(xi)  maxj ajk Vj(i-1)  
 

Termination: 
 P(x, *) = maxk Vk(N) 

Traceback: 
 Follow max pointers back 
 
In practice: 
 Use log scores for computation 
 
Running time and space:  
 Time:    O(K2N) 
 Space:  O(KN) 

State 1 

2 

K 

Vk(i) 
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1.  Scoring x, one path 
 
  P(x,π) 
 
Prob of a path, emissions 
 

2.  Scoring x, all paths 
 
  P(x) = Σπ P(x,π) 
 
Prob of emissions, over all paths 

3. Viterbi decoding 
 
 π* = argmaxπ P(x,π) 
 
Most likely path 

4.  Posterior decoding 
 
π^ = {πi | πi=argmaxk ΣπP(πi=k|x)} 
 
Path containing the most likely 
state at any time point. 

One path All paths 
D
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 5. Supervised learning, given π 
 Λ* = argmaxΛ P(x,π|Λ) 
6. Unsupervised learning.  
  Λ* = argmaxΛ maxπP(x,π|Λ) 
 Viterbi training, best path 

6.  Unsupervised learning 
  
 Λ* = argmaxΛ ΣπP(x,π|Λ) 
 
Baum-Welch training, over all paths 
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P(x)  Prob that model emits x, sum over all paths 

Given a sequence x, 
What is the probability that x was generated by the model (using any path)? 

– P(x) = Σπ P(x,π) 
• Challenge: exponential number of paths 

– Sum over all paths, weighing the path probability, and the emission probs 
– Prob of emitting sequence: use individual emission probs from each state 
– Prob of path: use both emission and transition prob, based on previous path 

1 
2 

K 
… 

1 
2 

K 
… 

1 
2 

K 
… 

… 

… 

… 

1 
2 

K 
… 

x1 x2 x3 xn 

2 
1 

K 

2 
0 

e2(x1) 

a02 

• P(x) = Σπ  a01
 * Πi ei

(xi)    aii+1 

start emission transition 
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Calculate total probability Σπ P(x,) recursively 

• Assume we know fj for the previous time step (i-1) 
 

• Calculate  fk(i) =     ek(xi)   *   sumj (   fj(i-1)        ajk    ) 

xi 

ek 

k 
j 

ajk … 
… 

xi-1 

… 
fj(i-1) 

fk(i) hidden 
states 

observations 

this emission transition 
from state j 

sum ending 
in state j at step i 

Sum over all previous states j 

current sum 
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The Forward Algorithm 

x1   x2   x3 ………………………………………..xN 

Input: x = x1……xN 
 

Initialization: 
 f0(0)=1, fk(0) = 0, for all k > 0 
 

Iteration: 
 fk(i) = eK(xi)  sumj ajk fj(i-1)  
 

Termination: 
 P(x, *) = sumk fk(N) 

In practice: 
 Sum of log scores is difficult 
  approximate exp(1+p+q) 
  scaling of probabilities 
 
Running time and space:  
 Time:    O(K2N) 
 Space:  O(K) 

State 1 

2 

K 

fk(i) 
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Goals for today: HMMs, part II 

1. Review:  Basics and three algorithms from last time 
– Markov Chains and Hidden Markov Models 
– Calculating likelihoods P(x,π) (algorithm 1) 
– Viterbi algorithm:  Find π* = argmaxπ P(x,π) (alg 3) 
– Forward algorithm:  Find P(x), over all paths (alg 2) 

2. Increasing the ‘state’ space / adding memory 
– Finding GC-rich regions vs. finding CpG islands 
– Gene structures GENSCAN, chromatin ChromHMM 

3. Posterior decoding: Another way of ‘parsing’ 
– Find most likely state πi, sum over all possible paths 

4. Learning (ML training, Baum-Welch, Viterbi training) 
– Supervised: Find ei(.) and aij given labeled sequence 
– Unsupervised: given only x  annotation + params 
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Increasing the state space  
(remembering more) 

HMM1:  Promoters = only Cs and Gs matter 
HMM2: Promoters = it’s actually CpGs that matter 

(di-nucleotides, remember previous nucleotide) 
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Increasing the state of the system (looking back) 

• Markov Models are memory-less 
– In other words, all memory is encoded in the states 
– To remember additional information, augment state 

• A two-state HMM has minimal memory 
– Two states: GC-rich vs. equal probability 
– State, emissions, only depend on current state 
– Current state only encodes one previous nucleotide 

• How do you count di-nucleotide frequencies? 
– CpG islands: di-nucleotides 
– Codon triplets: tri-nucleotides 
– Di-codon frequencies: six nucleotides 

 Expanding the number of states 

+ - 

A: .2 

C: .3 

G: .3 

T: .2 

A: 1/4 

C: 1/4 

G: 1/4 

T: 1/4 

a++ a-- a+- 

a-+ 
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Remember previous nucleotide: expand both states 

A
+  

T
+  

G
+  

C
+  

A: 0 
C

: 0 
G

: 1 
T: 0 

A: 1 
C

: 0 
G

: 0 
T: 0 

A: 0 
C

: 1 
G

: 0 
T: 0 

A: 0 
C

: 0 
G

: 0 
T: 1 

CpG+ CpG- 

A: .1 

C: .3 

G: .4 

T: .2 

A: 1/4 

C: 1/4 

G: 1/4 

T: 1/4 

aPP aBB aPB 

aBP 

A +
 

T +
 

G
+ 

C
+ 

A:
 0

 
C

: 0
 

G
: 1

 
T:

 0
 

A:
 1

 
C

: 0
 

G
: 0

 
T:

 0
 

A:
 0

 
C

: 1
 

G
: 0

 
T:

 0
 

A:
 0

 
C

: 0
 

G
: 0

 
T:

 1
 

“Memory” of previous 
nucleotide is encoded 
in the current state.  
 
GC-rich: 4 states 
Background: 4 states 
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HMM for CpG islands 

• A single model combines two Markov 
chains, each of four nucleotides: 
– ‘+’ states: A+, C+, G+, T+ 

• Emit symbols: A, C, G, T in CpG islands 
– ‘-’ states: A-, C-, G-, T- 

• Emit symbols: A, C, G, T in non-islands 

• Emission probabilities distinct for the ‘+’ 
and the ‘-’ states 
– Infer most likely set of states, giving rise 

to observed emissions 
 ‘Paint’ the sequence with + and - states 

A+ T+ G+ C+ 

A- T- G- C- 

A: 0 

C: 0 

G: 1 

T: 0 

A: 1 

C: 0 

G: 0 

T: 0 

A: 0 

C: 1 

G: 0 

T: 0 

A: 0 

C: 0 

G: 0 

T: 1 

A: 0 

C: 0 

G: 1 

T: 0 

A: 1 

C: 0 

G: 0 

T: 0 

A: 0 

C: 1 

G: 0 

T: 0 

A: 0 

C: 0 

G: 0 

T: 1 

Why we need so many states… 
In our simple GC-content example, we only had 2 states (+|-) 
Why do we need 8 states here:  4 CpG+ / 4 CpG-  ? 
 Encode ‘memory’ of previous state: nucleotide transitions 
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Training emission parameters for CpG+/CpG- states 
• Count di-nucleotide frequencies:  

– 16 possible di-nucleotides. 16 transition parameters.  
– Alternative:  16 states, each emitting di-nucleotide 

• Derive two Markov chain models: 
– ‘+’ model: from the CpG islands 
– ‘-’ model: from the remainder of sequence  

• Transition probabilities for each model: 
– Encode differences in di-nucleotide frequencies 

 
 
 
 

+ A C G T 
A .180 .274 .426 .120 

C .171 .368 .274 .188 

G .161 .339 .375 .125 

T .079 .355 .384 .182 

A T 

G C 

aGT aAC 

aGC 

aAT 

- A C G T 
A .300 .205 .285 .210 

C .322 .298 .078 .302 

G .248 .246 .298 .208 

T .177 .239 .292 .292 
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Examples of HMMs for genome annotation 
Detection 
of GC-rich 
regions 

Detection 
of CpG-rich 
regions 

Detection 
of 
conserved 
regions 

Detection 
of protein-
coding 
exons 

Detection 
of protein-
coding 
conservatio
n 

Detection 
of protein-
coding 
gene 
structures 

Detection 
of 
chromatin 
states 

2 states, 
different 
nucleotide 
composition 

8 states,  
4 each +/-, 
different 
transition 
probabilities 

2 states, 
different 
conservation 
levels 

2 states, 
different tri-
nucleotide 
composition 

2 states, 
different 
evolutionary 
signatures 

~20 states, 
different 
composition/
conservation
, specific 
structure 

40 states, 
different 
chromatin 
mark 
combination
s 

GC-rich / AT-
rich 

CpG-rich / 
CpG-poor 

Conserved / 
non-
conserved 

Coding exon 
/ non-coding 
(intron or 
intergenic) 

Coding exon 
/ non-coding 
(intron or 
intergenic) 

First/last/mid
dle coding 
exon,UTRs, 
intron1/2/3, 
intergenic, 
*(+/- strand) 

Enhancer / 
promoter / 
transcribed / 
repressed / 
repetitive 

Nucleotides Di-
Nucleotides 

Level of 
conservation 

Triplets of 
nucleotides 

64x64 matrix 
of codon 
substitution 
frequencies 

Codons, 
nucleotides, 
splice sites, 
start/stop 
codons 

Vector of 
chromatin 
mark 
frequencies 
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HMM architecture matters: Protein-coding genes 

• Gene vs. Intergenic 
• Start & Stop in/out 
• UTR: 5’ and 3’ end 
• Exons, Introns 
• Remembering frame 

– E0,E1,E2 
– I0,I1,I2 

• Sequence patterns 
to transition between 
states: 
– ATG, TAG, 

Acceptor/Donor, 
TATA, AATAA 
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Chromatin State: Emission & Transition Matrices 

Ernst and Kellis, Nature Biotech 2010, Nature 2011, Nature Methods 2012 

• Emission matrix:  
• Multi-variate HMM 
• Emits vector of values 

• Transition matrix:  
• Learn spatial relationships 
• No a-priori ‘gene’ structure 

© Macmillan Publishers Limited. All rights reserved. This content is excluded from our Creative
Commons license. For more information,see http://ocw.mit.edu/help/faq-fair-use/.
Source: Ernst, Jason and Manolis Kellis. "Discovery and characterization of chromatin states for
systematic annotation of the human genome.“                                                        Nature Biotechnology 28, no. 8 (2010): 817-825.
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Goals for today: HMMs, part II 

1. Review:  Basics and three algorithms from last time 
– Markov Chains and Hidden Markov Models 
– Calculating likelihoods P(x,π) (algorithm 1) 
– Viterbi algorithm:  Find π* = argmaxπ P(x,π) (alg 3) 
– Forward algorithm:  Find P(x), over all paths (alg 2) 

2. Increasing the ‘state’ space / adding memory 
– Finding GC-rich regions vs. finding CpG islands 
– Gene structures GENSCAN, chromatin ChromHMM 

3. Posterior decoding: Another way of ‘parsing’ 
– Find most likely state πi, sum over all possible paths 

4. Learning (ML training, Baum-Welch, Viterbi training) 
– Supervised: Find ei(.) and aij given labeled sequence 
– Unsupervised: given only x  annotation + params 
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1.  Scoring x, one path 
 
  P(x,π) 
 
Prob of a path, emissions 
 

2.  Scoring x, all paths 
 
  P(x) = Σπ P(x,π) 
 
Prob of emissions, over all paths 

3. Viterbi decoding 
 
 π* = argmaxπ P(x,π) 
 
Most likely path 

4.  Posterior decoding 
 
π^ = {πi | πi=argmaxk ΣπP(πi=k|x)} 
 
Path containing the most likely 
state at any time point. 

One path All paths 
D

ec
od

in
g 
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 5. Supervised learning, given π 
 Λ* = argmaxΛ P(x,π|Λ) 
6. Unsupervised learning.  
  Λ* = argmaxΛ maxπP(x,π|Λ) 
 Viterbi training, best path 

6.  Unsupervised learning 
  
 Λ* = argmaxΛ ΣπP(x,π|Λ) 
 
Baum-Welch training, over all paths 

 

 

 
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4. Decoding, all paths 

Find the likelihood an emission xi is 
generated by a state 
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Calculate most probable label at a single position 

• Calculate most probable label, L*
i , at each position i 

• Do this for all N positions gives us {L*
1, L*

2, L*
3…. L*

N} 
• How much information have we observed? Three settings:  

– Observed nothing: Use prior information 
– Observed only character at position i:  Prior + emission probability 
– Observed entire sequence: Posterior decoding 

P 

B 

P 

B 

P 

B B 

P 

B B 

P 

B 

P 

B 

G C A A A T G C 

π: 

x: 

P P P 

B 

P 

B 

P 

B B 

P 

B B 

P 

B 

P 

B 

P P 
Sum over all paths 

P(Labeli=B|x) 
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Calculate P(π7= CpG+ | x7=G) 

• With no knowledge (no characters) 
– Simply time spent in markov chain states 
– P( πi=k ) =  most likely state (prior) 

 
• With very little knowledge (just that character) 

– Time spent, adjusted for different emission probs. 
– Use Bayes rule to change inference directionality 
– P( πi=k | xi=G ) = P(πι=κ) * P(xi=G|πi=k) / P(xi=G) 

 
• With knowledge of entire sequence (all characters) 

– P( πi=k | x=AGCGCG…GATTATCGTCGTA) 
– Sum over all paths that emit ‘G’ at position 7 
 Posterior decoding 
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Motivation for the Backward Algorithm 

We want to compute 
 
  P(i = k | x), the probability distribution on the ith position, given x 
 
We start by computing 
 
P(i = k, x) = P(x1…xi, i = k, xi+1…xN) 
       = P(x1…xi, i = k) P(xi+1…xN | x1…xi, i = k)  
       = P(x1…xi, i = k) P(xi+1…xN | i = k)  

Forward, fk(i)  Backward, bk(i)  
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The Backward Algorithm – derivation 
Define the backward probability: 
 
 bk(i) = P(xi+1…xN | i = k)  
        = i+1…N P(xi+1,xi+2, …, xN, i+1, …, N | i = k) 
        = l i+1…N P(xi+1,xi+2, …, xN, i+1 = l, i+2, …, N | i = k) 
        = l el(xi+1) akl i+1…N P(xi+2, …, xN, i+2, …, N | i+1 = l) 
        = l el(xi+1) akl bl(i+1) 
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Calculate total end probability recursively 

• Assume we know bl for the next time step (i+1) 
 

• Calculate  bk(i)  =    suml (   el(xi+1)       akl         bl(i+1)  ) 

xi+1 

el 

l 
k 

akl 

… 

… 

xi 

… bk(i) 
bl(i+1) 

hidden 
states 

observations 

next 
emission 

transition 
to next state 

prob sum from 
state l to end 

sum over all possible next states 

current max 

37



The Backward Algorithm 

x1   x2   x3 ………………………………………..xN 

Input: x = x1……xN 
 

Initialization:  
 bk(N) = ak0, for all k 
 

Iteration: 
 bk(i) = l el(xi+1) akl bl(i+1) 
 

Termination: 
 P(x) = l a0l el(x1) bl(1) 

In practice: 
 Sum of log scores is difficult 
  approximate exp(1+p+q) 
  scaling of probabilities 
 
Running time and space:  
 Time:    O(K2N) 
 Space:  O(K) 

State 1 

2 

K 

bk(i) 
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Putting it all together:  Posterior decoding 

• P(k) = P( πi=k | x ) = fk(i)*bk(i) / P(x) 
– Probability that ith state is k, given all emissions x 

• Posterior decoding 
– Find the most likely state at position i over all possible hidden paths 

given the observed sequence x 
– ^

i = argmaxk P(i = k | x) 
• Posterior decoding ‘path’ ^

i 
– For classification, more informative than Viterbi path * 

• More refined measure of “which hidden states” generated x 
– However, it may give an invalid sequence of states 

• Not all jk transitions may be possible 

x1   x2   x3 ………………………………………..xN 

State 1 

2 

K 

P(k) 
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Goals for today: HMMs, part II 

1. Review:  Basics and three algorithms from last time 
– Markov Chains and Hidden Markov Models 
– Calculating likelihoods P(x,π) (algorithm 1) 
– Viterbi algorithm:  Find π* = argmaxπ P(x,π) (alg 3) 
– Forward algorithm:  Find P(x), over all paths (alg 2) 

2. Increasing the ‘state’ space / adding memory 
– Finding GC-rich regions vs. finding CpG islands 
– Gene structures GENSCAN, chromatin ChromHMM 

3. Posterior decoding: Another way of ‘parsing’ 
– Find most likely state πi, sum over all possible paths 

4. Learning (ML training, Baum-Welch, Viterbi training) 
– Supervised: Find ei(.) and aij given labeled sequence 
– Unsupervised: given only x  annotation + params 
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1.  Scoring x, one path 
 
  P(x,π) 
 
Prob of a path, emissions 
 

2.  Scoring x, all paths 
 
  P(x) = Σπ P(x,π) 
 
Prob of emissions, over all paths 

3. Viterbi decoding 
 
 π* = argmaxπ P(x,π) 
 
Most likely path 

4.  Posterior decoding 
 
π^ = {πi | πi=argmaxk ΣπP(πi=k|x)} 
 
Path containing the most likely 
state at any time point. 

One path All paths 
D
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g 
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 5. Supervised learning, given π 
 Λ* = argmaxΛ P(x,π|Λ) 
6. Unsupervised learning.  
  Λ* = argmaxΛ maxπP(x,π|Λ) 
 Viterbi training, best path 

6.  Unsupervised learning 
  
 Λ* = argmaxΛ ΣπP(x,π|Λ) 
 
Baum-Welch training, over all paths 

  

  
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Learning: How to train an HMM 

Transition probabilities 
e.g. P(Pi+1|Bi) – the 
probability of entering a 
pathogenicity island from 
background DNA 

 
Emission probabilities 

i.e. the nucleotide 
frequencies for 
background DNA and 
pathogenicity islands 

B P 

P(S|P) P(S|B) 

P(Li+1|Li) 
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Two learning scenarios 

Case 1. Estimation when the “right answer” is known 
 
Examples:  
 GIVEN: a genomic region x = x1…x1,000,000 where we have good  

  (experimental) annotations of the CpG islands 
  
  

Case 2. Estimation when the “right answer” is unknown 
 
Examples: 
 
 GIVEN: the porcupine genome; we don’t know how frequent are the  

  CpG islands there, neither do we know their composition 
 

 
QUESTION: Update the parameters  of the model to maximize P(x|) 
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Two types of learning:  Supervised / Unsupervised 
5. Supervised learning 
 infer model parameters given labeled training data 

– GIVEN: 
• a HMM M, with unspecified transition/emission probs. 
• labeled sequence x, 

– FIND: 
• parameters  = (Ei, Aij) that maximize P[ x |  ] 

 Simply count frequency of each emission and transition, 
 as observed in the training data 

6. Unsupervised learning 
 infer model parameters given unlabelled training data 

– GIVEN:  
• a HMM M, with unspecified transition/emission probs. 
• unlabeled sequence x, 

– FIND:  
• parameters  = (Ei, Aij) that maximize P[ x |  ] 

 Viterbi training:   
guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate 

 Baum-Welch training:   
guess parameters, sum over all paths (#4), update parameters (#5), iterate 44



5: Supervised learning 

Estimate model parameters  
based on labeled training data 
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Case 1. When the right answer is known 
Given x = x1…xN 
for which the true  = 1…N is known, 
 
Define: 
 
 Akl   = # times kl transition occurs in  
 Ek(b)  = # times state k in  emits b in x 
 
 
We can show that the maximum likelihood parameters  are: 
 
            Akl            Ek(b) 
  akl = –––––   ek(b) =   –––––––  
          i  Aki      c  Ek(c) 
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Learning From Labelled Data 

P 

B 

P 

B 

P 

B B 

P 

B B 

P 

B 

P 

B 

G C A A A T G C 

L: 

S: 

If we have a sequence that has islands marked, we can simply count 

A:  
T:   
G:  
C:  

A:      1/5 
T:        0 
G:      2/5 
C:      2/5 

P(S|P) P(S|B) P(Li+1|Li) 
Bi+1 Pi+1 End 

Bi 3/5 1/5 1/5 

Pi 1/3 2/3 0 

Start 1 0 0 

End start 

P 

B B B B B 

P 

ETC.. 

 Maximum Likelihood Estimation 

! 
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Case 1. When the right answer is known 
Intuition: When we know the underlying states, 
          Best estimate is the average frequency of        
          transitions & emissions that occur in the training data 
 
Drawback:  
 Given little data, there may be overfitting: 
 P(x|) is maximized, but  is unreasonable 
 0 probabilities – VERY BAD 
 
Example: 
  Given 10 nucleotides, we observe  
   x = C, A, G, G, T, C, C, A, T, C 

    = P, P, P, p, p, P, P, P, P, P 

  Then: 
   aPP = 1;   aPB = 0 
   eP(A) = .2;  
   eP(C) = .4;  
   eP(G) = .2;  
   eP(T) =.2    
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Pseudocounts 
Solution for small training sets: 
 
 Add pseudocounts 
 
 Akl   = # times kl transition occurs in  + rkl 
 Ek(b)  = # times state k in  emits b in x + rk(b) 
 
rkl, rk(b) are pseudocounts representing our prior belief 
 
Larger pseudocounts  Strong priof belief 
 
Small pseudocounts ( < 1): just to avoid 0 probabilities  

49



Example: Training Markov Chains for CpG islands 

• Training Set:  
– set of DNA sequences w/ known CpG islands 

• Derive two Markov chain models: 
– ‘+’ model: from the CpG islands 
– ‘-’ model: from the remainder of sequence  

• Transition probabilities for each model: 
 
 
 
 

 


 

t' st'

st
st

c

c
a


stc is the number of times 

letter t  followed letter s 
inside the CpG islands 

+ A C G T 
A .180 .274 .426 .120 

C .171 .368 .274 .188 

G .161 .339 .375 .125 

T .079 .355 .384 .182 

A T 

G C 

aG

T 
aA

C 
aGC 

aAT 

 


 

t' st'

st
st

c

c
a



stc is the number of times 
letter t  followed letter s 
outside the CpG islands 

- A C G T 
A .300 .205 .285 .210 

C .322 .298 .078 .302 

G .248 .246 .298 .208 

T .177 .239 .292 .292 
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6: Unsupervised learning 

Estimate model parameters  
based on unlabeled training data 
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Unlabelled Data 

P 

B 

P 

B 

P 

B B 

P 

B B 

P 

B 

P 

B 

G C A A A T G C 

L: 

S: 

How do we know how to count? 

A:  
T:   
G:  
C:  

A: 
T:         
G: 
C: 

P(S|P) P(S|B) P(Li+1|Li) 
Bi+1 Pi+1 End 

Bi 

Pi ? 
Start 

End start 

P P 

? 
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Unlabeled Data 

An idea: 
1. Imagine we start with some parameters 
2. We could calculate the most likely path, 

P*, given those parameters and S 
3. We could then use P* to update our 

parameters by maximum likelihood 
4. And iterate (to convergence) 

P 

B 

P 

B 

P 

B B 

P 

B B 

P 

B 

P 

B 

G C A A A T G C 

L: 

S: 

P(S|P)0 P(S|B)0 P(Li+1|Li)0 

End start 

P P 

P(S|P)1 P(S|B)1 P(Li+1|Li)1 

P(S|P)2 P(S|B)2 P(Li+1|Li)2 

P(S|P)K P(S|B)K P(Li+1|Li)K 

… 

B B B B B B B B B B B B B 

P P P 
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Learning case 2. When the right answer is unknown 

We don’t know the true Akl, Ek(b) 
 
Idea: 
• We estimate our “best guess” on what Akl, Ek(b) are 

(M step, maximum-likelihood estimation) 
• We update the probabilistic parse of our sequence, 

based on these parameters (E step, expected 
probability of being in each state given parameters) 

• We repeat 
 

Two settings:  
• Simple: Viterbi training (best guest = best path) 
• Correct: Expectation maximization (all paths, weighted) 
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1.  Scoring x, one path 
 
  P(x,π) 
 
Prob of a path, emissions 
 

2.  Scoring x, all paths 
 
  P(x) = Σπ P(x,π) 
 
Prob of emissions, over all paths 

3. Viterbi decoding 
 
 π* = argmaxπ P(x,π) 
 
Most likely path 

4.  Posterior decoding 
 
π^ = {πi | πi=argmaxk ΣπP(πi=k|x)} 
 
Path containing the most likely 
state at any time point. 

One path All paths 
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 5. Supervised learning, given π 
 Λ* = argmaxΛ P(x,π|Λ) 
6. Unsupervised learning.  
  Λ* = argmaxΛ maxπP(x,π|Λ) 
 Viterbi training, best path 

7.  Unsupervised learning 
  
 Λ* = argmaxΛ ΣπP(x,π|Λ) 
 
Baum-Welch training, over all paths 

  

  

 
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Simple casae: Viterbi Training 

Initialization: 
Pick the best-guess for model parameters 
  (or arbitrary) 
Iteration: 

1. Perform Viterbi, to find * 
2. Calculate Akl, Ek(b) according to * + pseudocounts 
3. Calculate the new parameters akl, ek(b) 

Until convergence 
Notes: 

– Convergence to local maximum guaranteed. Why? 
– Does not maximize P(x | ) 
– In general, worse performance than Baum-Welch 
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1.  Scoring x, one path 
 
  P(x,π) 
 
Prob of a path, emissions 
 

2.  Scoring x, all paths 
 
  P(x) = Σπ P(x,π) 
 
Prob of emissions, over all paths 

3. Viterbi decoding 
 
 π* = argmaxπ P(x,π) 
 
Most likely path 

4.  Posterior decoding 
 
π^ = {πi | πi=argmaxk ΣπP(πi=k|x)} 
 
Path containing the most likely 
state at any time point. 

One path All paths 
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 5. Supervised learning, given π 
 Λ* = argmaxΛ P(x,π|Λ) 
6. Unsupervised learning.  
  Λ* = argmaxΛ maxπP(x,π|Λ) 
 Viterbi training, best path 

6.  Unsupervised learning 
  
 Λ* = argmaxΛ ΣπP(x,π|Λ) 
 
Baum-Welch training, over all paths 

  

  

 
 
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Expectation Maximization (EM) 

EM pervasive in computational biology 
  Rec 3 (SiPhy), Lec 8 (Kmeans), Lec 9 (motifs) 

The basic idea is the same: 
 

1.Use model to estimate missing data (E step) 
2.Use estimate to update model (M step) 

3.Repeat until convergence 
 

EM is a general approach for learning models  
(ML estimation) when there is “missing data” 

Widely used in computational biology 
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1. Initialize parameters randomly 
 
 

2. E Step Estimate expected probability of hidden labels, Q, given current 
(latest) parameters and observed (unchanging) sequence 
 
 

3. M Step Choose new maximum likelihood parameters over 
probability distribution Q, given current probabilistic label assignments 
 
 

4. Iterate 

Expectation Maximization (EM) 

( | , )1Q P Labels S paramst 

1arg max log ( , | )t t

Q
params

params E P S labels params    

P(S|Model) guaranteed to increase each iteration 
59



Case 2. When the right answer is unknown 
Starting with our best guess of a model M, parameters : 
 
 Given x = x1…xN 
  for which the true  = 1…N is unknown, 
 
We can get to a provably more likely parameter set  
 
Principle: EXPECTATION MAXIMIZATION 
 
1. Estimate probabilistic parse based on parameters (E step) 
2. Update parameters Akl, Ek based on probabilistic parse (M step) 
3. Repeat 1 & 2, until convergence 
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Estimating probabilistic parse given params (E step) 
To estimate Akl: 
 
At each position i: 
 
Find probability transition kl is used: 
 
P(i = k, i+1 = l | x) = [1/P(x)]  P(i = k, i+1 = l, x1…xN) = Q/P(x) 
 
where Q = P(x1…xi, i = k, i+1 = l, xi+1…xN) = 
    = P(i+1 = l, xi+1…xN | i = k) P(x1…xi, i = k) = 
    = P(i+1 = l, xi+1xi+2…xN | i = k) fk(i) = 
    = P(xi+2…xN | i+1 = l) P(xi+1 | i+1 = l) P(i+1 = l | i = k) fk(i) = 
    = bl(i+1) el(xi+1) akl fk(i) 
 
         fk(i) akl el(xi+1) bl(i+1) 
So:  P(i = k, i+1 = l | x, ) =   –––––––––––––––––– 
      P(x | ) 

(For one such transition, at time step ii+1) 

P 

B 

P 

B 

P 

B B 

P 

B B 

P 

B 

P 

B 

G C A A A T G C 

L: 

S: 

End start 

P P 

B 

P 

K 

L 

i j 
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New parameters given probabilistic parse (M step) 

So, 

                              fk(i) akl el(xi+1) bl(i+1) 

Akl = i P(i = k, i+1 = l | x, ) = i ––––––––––––––––– 
                             P(x | ) 
 
 
Similarly, 
 

        Ek(b) = [1/P(x)] {i | xi = b} fk(i) bk(i) 

(Sum over all kl transitions, at any time step i) 
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Dealing with multiple training sequences 

(Sum over all training seqs, all kl transitions, all time steps i) 
If we have several training sequences, x1, …, xM, each of length N, 
 

                         fk(i) akl el(xi+1) bl(i+1) 

Akl = x i P(i = k, i+1 = l | x, ) = x i –––––––––––––––– 
                                       P(x | ) 
 
 
Similarly, 
 

      Ek(b) = x (1/P(x)) {i | xi = b} fk(i) bk(i) 
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The Baum-Welch Algorithm 
Initialization: 
 Pick the best-guess for model parameters 
  (or arbitrary) 
 
Iteration: 

1. Forward 
2. Backward 
3.  Calculate new log-likelihood P(x | )   (E step) 
4. Calculate Akl, Ek(b) 
5.  Calculate new model parameters akl, ek(b)  (M step) 

 
GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION 
 

Until P(x | ) does not change much 
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The Baum-Welch Algorithm – comments 
Time Complexity: 
  
 # iterations  O(K2N) 
 
• Guaranteed to increase the log likelihood of the model 

 
P( | x) = P(x, ) / P(x) = P(x | ) / ( P(x) P() ) 

 
• Not guaranteed to find globally best parameters 

 
Converges to local optimum, depending on initial conditions 

 
• Too many parameters / too large model: Overtraining 
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1.  Scoring x, one path 
 
  P(x,π) 
 
Prob of a path, emissions 
 

2.  Scoring x, all paths 
 
  P(x) = Σπ P(x,π) 
 
Prob of emissions, over all paths 

3. Viterbi decoding 
 
 π* = argmaxπ P(x,π) 
 
Most likely path 

4.  Posterior decoding 
 
π^ = {πi | πi=argmaxk ΣπP(πi=k|x)} 
 
Path containing the most likely 
state at any time point. 

One path All paths 
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 5. Supervised learning, given π 
 Λ* = argmaxΛ P(x,π|Λ) 
6. Unsupervised learning.  
  Λ* = argmaxΛ maxπP(x,π|Λ) 
 Viterbi training, best path 

6.  Unsupervised learning 
  
 Λ* = argmaxΛ ΣπP(x,π|Λ) 
 
Baum-Welch training, over all paths 
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Examples of HMMs for genome annotation 
Detection 
of GC-rich 
regions 

Detection 
of CpG-rich 
regions 

Detection 
of 
conserved 
regions 

Detection 
of protein-
coding 
exons 

Detection 
of protein-
coding 
conservatio
n 

Detection 
of protein-
coding 
gene 
structures 

Detection 
of 
chromatin 
states 

2 states, 
different 
nucleotide 
composition 

8 states,  
4 each +/-, 
different 
transition 
probabilities 

2 states, 
different 
conservation 
levels 

2 states, 
different tri-
nucleotide 
composition 

2 states, 
different 
evolutionary 
signatures 

~20 states, 
different 
composition/
conservation
, specific 
structure 

40 states, 
different 
chromatin 
mark 
combination
s 

GC-rich / AT-
rich 

CpG-rich / 
CpG-poor 

Conserved / 
non-
conserved 

Coding exon 
/ non-coding 
(intron or 
intergenic) 

Coding exon 
/ non-coding 
(intron or 
intergenic) 

First/last/mid
dle coding 
exon,UTRs, 
intron1/2/3, 
intergenic, 
*(+/- strand) 

Enhancer / 
promoter / 
transcribed / 
repressed / 
repetitive 

Nucleotides Di-
Nucleotides 

Level of 
conservation 

Triplets of 
nucleotides 

64x64 matrix 
of codon 
substitution 
frequencies 

Codons, 
nucleotides, 
splice sites, 
start/stop 
codons 

Vector of 
chromatin 
mark 
frequencies 
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What have we learned ? 
• Generative model.  Hidden states, observed emissions. 

– Generate a random sequence 
• Choose random transition, choose random emission (#0) 

• Scoring:  Finding the likelihood of a given sequence  
– Calculate likelihood of annotated path and sequence 

• Multiply emission and transition probabilities (#1) 
– Without specifying a path, total probability of generating x 

• Sum probabilities over all paths 
• Forward algorithm (#3) 

• Decoding:  Finding the most likely path, given a sequence 
– What is the most likely path generating entire sequence? 

• Viterbi algorithm (#2) 
– What is the most probable state at each time step? 

• Forward + backward algorithms, posterior decoding (#4) 
• Learning:  Estimating HMM parameters from training data 

– When state sequence is known 
• Simply compute maximum likelihood A and E (#5a) 

– When state sequence is not known 
• Viterbi training:  Iterative estimation of best path / frequencies (#5b) 
• Baum-Welch:  Iterative estimation over all paths / frequencies (#6) 68



Goals for today: HMMs, part II 

1. Review:  Basics and three algorithms from last time 
– Markov Chains and Hidden Markov Models 
– Calculating likelihoods P(x,π) (algorithm 1) 
– Viterbi algorithm:  Find π* = argmaxπ P(x,π) (alg 3) 
– Forward algorithm:  Find P(x), over all paths (alg 2) 

2. Increasing the ‘state’ space / adding memory 
– Finding GC-rich regions vs. finding CpG islands 
– Gene structures GENSCAN, chromatin ChromHMM 

3. Posterior decoding: Another way of ‘parsing’ 
– Find most likely state πi, sum over all possible paths 

4. Learning (ML training, Baum-Welch, Viterbi training) 
– Supervised: Find ei(.) and aij given labeled sequence 
– Unsupervised: given only x  annotation + params 
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