

Lecture 05

Hidden Markov Models

Part II

6.047/6.878/HST.507
Computational Biology: Genomes, Networks, Evolution

1

2

Module 1: Aligning and modeling genomes

• Module 1: Computational foundations
– Dynamic programming: exploring exponential spaces in poly-time
– Introduce Hidden Markov Models (HMMs): Central tool in CS
– HMM algorithms: Decoding, evaluation, parsing, likelihood, scoring

• This week: Sequence alignment / comparative genomics
– Local/global alignment: infer nucleotide-level evolutionary events
– Database search: scan for regions that may have common ancestry

• Next week: Modeling genomes / exon / CpG island finding
– Modeling class of elements, recognizing members of a class
– Application to gene finding, conservation islands, CpG islands

3

Goals for today: HMMs, part II

1. Review: Basics and three algorithms from last time
– Markov Chains and Hidden Markov Models
– Calculating likelihoods P(x,π) (algorithm 1)
– Viterbi algorithm: Find π* = argmaxπ P(x,π) (alg 3)
– Forward algorithm: Find P(x), over all paths (alg 2)

2. Increasing the ‘state’ space / adding memory
– Finding GC-rich regions vs. finding CpG islands
– Gene structures (GENSCAN), chromatin (ChromHMM)

3. Posterior decoding: Another way of ‘parsing’
– Find most likely state πi, sum over all possible paths

4. Learning (ML training, Baum-Welch, Viterbi training)
– Supervised: Find ei(.) and aij given labeled sequence
– Unsupervised: given only x  annotation + params

4

Markov chains and Hidden Markov Models (HMMs)

• What you see is what you get:
next state only depends on
current state (no memory)

Sun

Rain

Clouds

Snow

• Hidden state of the world determines
emission probabilities

• State transitions are a Markov chain

hidden

observed

All observed

Summer Fall Winter Spring

Transitions

Emissions

Transitions

• Markov Chain
– Q: states
– p: initial state probabilities
– A: transition probabilities

• HMM
– Q: states, p: initial, A: transitions
– V: observations
– E: emission probabilities

5

HMM nomenclature for this course

• Vector x = Sequence of observations

• Vector π = Hidden path (sequence of hidden states)

• Transition matrix A=akl=probability of kl state transition

• Emission vector E=ek(xi) = prob. of observing xi from state k

• Bayes’s rule: Use P(xi|πi=k) to estimate P(πi=k|xi)

Fall Winter Spring

Emissions: ek(xi)=P(xi|πi=k)

Transitions: akl=P(πi=l|πi-1=k) Summer π=

x=

πi

xi

Transition probability
from state k to state l

Emission probability of
symbol xi from state k

6

Example: The Dishonest Casino

A casino has two dice:
• Fair die
 P(1) = P(2) = P(3) = P(5) = P(6) = 1/6
• Loaded die
 P(1) = P(2) = P(3) = P(4) = P(5) = 1/10
 P(6) = 1/2
Casino player switches between fair and loaded

die on average once every 20 turns

Game:
1. You bet $1
2. You roll (always with a fair die)
3. Casino player rolls (maybe with fair die,

maybe with loaded die)
4. Highest number wins $2

Slide credit: Serafim Batzoglou

7

Examples of HMMs for genome annotation
Application Detection

of GC-rich
regions

Detection
of
conserved
regions

Detection
of protein-
coding
exons

Detection
of protein-
coding
conservatio
n

Detection
of protein-
coding
gene
structures

Detection
of
chromatin
states

Topology /
Transitions

2 states,
different
nucleotide
composition

2 states,
different
conservation
levels

2 states,
different tri-
nucleotide
composition

2 states,
different
evolutionary
signatures

~20 states,
different
composition/
conservation
, specific
structure

40 states,
different
chromatin
mark
combination
s

Hidden
States /
Annotation

GC-rich / AT-
rich

Conserved /
non-
conserved

Coding exon
/ non-coding
(intron or
intergenic)

Coding exon
/ non-coding
(intron or
intergenic)

First/last/mid
dle coding
exon,UTRs,
intron1/2/3,
intergenic,
*(+/- strand)

Enhancer /
promoter /
transcribed /
repressed /
repetitive

Emissions /
Observatio
ns

Nucleotides Level of
conservation

Triplets of
nucleotides

Nucleotide
triplets,
conservation
levels

Codons,
nucleotides,
splice sites,
start/stop
codons

Vector of
chromatin
mark
frequencies

8

SC
O

R
IN

G

PA
R

SI
N

G

LE
A

R
N

IN
G

The main questions on HMMs
1. Scoring x, one path = Joint probability of a sequence and a path, given the model

– GIVEN a HMM M, a path , and a sequence x,
– FIND Prob[x,  | M]
 “Running the model”, simply multiply emission and transition probabilities
 Application: “all promoter” vs. “all backgorund” comparisons

2. Scoring x, all paths = total probability of a sequence, summed across all paths
– GIVEN a HMM M, a sequence x
– FIND the total probability P[x | M] summed across all paths
 Forward algorithm, sum score over all paths (same result as backward)

3. Viterbi decoding = parsing a sequence into the optimal series of hidden states
– GIVEN a HMM M, and a sequence x,
– FIND the sequence * of states that maximizes P[x,  | M]
 Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path

4. Posterior decoding = total prob that emission xi came from state k, across all paths
– GIVEN a HMM M, a sequence x
– FIND the total probability P[i = k | x, M)
 Posterior decoding: run forward & backward algorithms to & from state I =k

5. Supervised learning = optimize parameters of a model given training data
– GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x,
– FIND parameters  = (ei, aij) that maximize P[x | ]
 Simply count frequency of each emission and transition observed in the training data

6. Unsupervised learning = optimize parameters of a model given training data
– GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x,
– FIND parameters  = (ei, aij) that maximize P[x | ]
 Viterbi training: guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate
 Baum-Welch training: guess, sum over all emissions/transitions (#4), update (#5), iterate

9

1. Scoring x, one path

 P(x,π)

Prob of a path, emissions

2. Scoring x, all paths

 P(x) = Σπ P(x,π)

Prob of emissions, over all paths

3. Viterbi decoding

 π* = argmaxπ P(x,π)

Most likely path

4. Posterior decoding

π^ = {πi | πi=argmaxk ΣπP(πi=k|x)}

Path containing the most likely
state at any time point.

One path All paths
D

ec
od

in
g

Sc
or

in
g

Le
ar

ni
ng

 5. Supervised learning, given π
 Λ* = argmaxΛ P(x,π|Λ)
6. Unsupervised learning.
 Λ* = argmaxΛ maxπP(x,π|Λ)
 Viterbi training, best path

6. Unsupervised learning

 Λ* = argmaxΛ ΣπP(x,π|Λ)

Baum-Welch training, over all paths

10

Probability of given path p, emissions x

1
2

K
…

1
2

K
…

1
2

K
…

…

…

…

1
2

K
…

x2 x3 xK

2
1

K

2

x1

• P(x,) = a01
 * Πi ei

(xi)  aii+1

start emission transition

x is the
(observed)
sequence

π is the
(hidden) path

es(xi)

ast

Courtesy of Serafim Batzoglou. Used with permission.

11

Example: One particular P vs. B assignment

P

B

P

B

P

B B

P

B B

P

B

P

B

G C A A A T G C

L:

S:

P P

1 0 2 1 3 2 7

7

3 6 2 2

(|) (|) (|) (|) (|) (|)... (|)

(0.85) (0.25) (0.75) (0.42) 0.30 0.15

6.7 10

P P G B P B B P C B P B B P A B P P B P C B





     

 

B B B B B
0.85

0.25

0.85

0.15 0.25

0.25 0.25 0.42 0.42 0.30 0.25 0.25

0.85

P P P
0.75 0.75

12

1. Scoring x, one path

 P(x,π)

Prob of a path, emissions

2. Scoring x, all paths

 P(x) = Σπ P(x,π)

Prob of emissions, over all paths

3. Viterbi decoding

 π* = argmaxπ P(x,π)

Most likely path

4. Posterior decoding

π^ = {πi | πi=argmaxk ΣπP(πi=k|x)}

Path containing the most likely
state at any time point.

One path All paths
D

ec
od

in
g

Sc
or

in
g

Le
ar

ni
ng

 5. Supervised learning, given π
 Λ* = argmaxΛ P(x,π|Λ)
6. Unsupervised learning.
 Λ* = argmaxΛ maxπP(x,π|Λ)
 Viterbi training, best path

6. Unsupervised learning

 Λ* = argmaxΛ ΣπP(x,π|Λ)

Baum-Welch training, over all paths

13

Finding the most likely path

1
2

K
…

1
2

K
…

1
2

K
…

…

…

…

1
2

K
…

x2 x3 xK

2
1

K

2

x1

• Find path * that maximizes total joint probability P[x, ]

• argmaxπP(x,) =argmaxπ a01
 * Πi ei

(xi)  aii+1

start emission transition
14

Calculate maximum P(x,) recursively

• Assume we know Vj for the previous time step (i-1)

• Calculate Vk(i) = ek(xi) * maxj (Vj(i-1)  ajk)

xi

ek

k
j

ajk …
…

xi-1

…
Vj(i-1)

Vk(i) hidden
states

observations

this emission Transition
from state j

max ending
in state j at step i

all possible previous states j

current max

Viterbi algortithm
Define Vk(i) = Probability of the most likely path through state i=k
Compute Vk(i+1) recursively, as a function of maxk’ { Vk’(i) }

15

The Viterbi Algorithm

x1 x2 x3 ………………………………………..xN

Input: x = x1……xN

Initialization:
 V0(0)=1, Vk(0) = 0, for all k > 0

Iteration:
 Vk(i) = eK(xi)  maxj ajk Vj(i-1)

Termination:
 P(x, *) = maxk Vk(N)

Traceback:
 Follow max pointers back

In practice:
 Use log scores for computation

Running time and space:
 Time: O(K2N)
 Space: O(KN)

State 1

2

K

Vk(i)

16

1. Scoring x, one path

 P(x,π)

Prob of a path, emissions

2. Scoring x, all paths

 P(x) = Σπ P(x,π)

Prob of emissions, over all paths

3. Viterbi decoding

 π* = argmaxπ P(x,π)

Most likely path

4. Posterior decoding

π^ = {πi | πi=argmaxk ΣπP(πi=k|x)}

Path containing the most likely
state at any time point.

One path All paths
D

ec
od

in
g

Sc
or

in
g

Le
ar

ni
ng

 5. Supervised learning, given π
 Λ* = argmaxΛ P(x,π|Λ)
6. Unsupervised learning.
 Λ* = argmaxΛ maxπP(x,π|Λ)
 Viterbi training, best path

6. Unsupervised learning

 Λ* = argmaxΛ ΣπP(x,π|Λ)

Baum-Welch training, over all paths

17

P(x)  Prob that model emits x, sum over all paths

Given a sequence x,
What is the probability that x was generated by the model (using any path)?

– P(x) = Σπ P(x,π)
• Challenge: exponential number of paths

– Sum over all paths, weighing the path probability, and the emission probs
– Prob of emitting sequence: use individual emission probs from each state
– Prob of path: use both emission and transition prob, based on previous path

1
2

K
…

1
2

K
…

1
2

K
…

…

…

…

1
2

K
…

x1 x2 x3 xn

2
1

K

2
0

e2(x1)

a02

• P(x) = Σπ a01
 * Πi ei

(xi)  aii+1

start emission transition
18

Calculate total probability Σπ P(x,) recursively

• Assume we know fj for the previous time step (i-1)

• Calculate fk(i) = ek(xi) * sumj (fj(i-1)  ajk)

xi

ek

k
j

ajk …
…

xi-1

…
fj(i-1)

fk(i) hidden
states

observations

this emission transition
from state j

sum ending
in state j at step i

Sum over all previous states j

current sum

19

The Forward Algorithm

x1 x2 x3 ………………………………………..xN

Input: x = x1……xN

Initialization:
 f0(0)=1, fk(0) = 0, for all k > 0

Iteration:
 fk(i) = eK(xi)  sumj ajk fj(i-1)

Termination:
 P(x, *) = sumk fk(N)

In practice:
 Sum of log scores is difficult
  approximate exp(1+p+q)
  scaling of probabilities

Running time and space:
 Time: O(K2N)
 Space: O(K)

State 1

2

K

fk(i)

20

Goals for today: HMMs, part II

1. Review: Basics and three algorithms from last time
– Markov Chains and Hidden Markov Models
– Calculating likelihoods P(x,π) (algorithm 1)
– Viterbi algorithm: Find π* = argmaxπ P(x,π) (alg 3)
– Forward algorithm: Find P(x), over all paths (alg 2)

2. Increasing the ‘state’ space / adding memory
– Finding GC-rich regions vs. finding CpG islands
– Gene structures GENSCAN, chromatin ChromHMM

3. Posterior decoding: Another way of ‘parsing’
– Find most likely state πi, sum over all possible paths

4. Learning (ML training, Baum-Welch, Viterbi training)
– Supervised: Find ei(.) and aij given labeled sequence
– Unsupervised: given only x  annotation + params

21

Increasing the state space
(remembering more)

HMM1: Promoters = only Cs and Gs matter
HMM2: Promoters = it’s actually CpGs that matter

(di-nucleotides, remember previous nucleotide)

22

Increasing the state of the system (looking back)

• Markov Models are memory-less
– In other words, all memory is encoded in the states
– To remember additional information, augment state

• A two-state HMM has minimal memory
– Two states: GC-rich vs. equal probability
– State, emissions, only depend on current state
– Current state only encodes one previous nucleotide

• How do you count di-nucleotide frequencies?
– CpG islands: di-nucleotides
– Codon triplets: tri-nucleotides
– Di-codon frequencies: six nucleotides

 Expanding the number of states

+ -

A: .2

C: .3

G: .3

T: .2

A: 1/4

C: 1/4

G: 1/4

T: 1/4

a++ a-- a+-

a-+

23

Remember previous nucleotide: expand both states

A
+

T
+

G
+

C
+

A: 0
C

: 0
G

: 1
T: 0

A: 1
C

: 0
G

: 0
T: 0

A: 0
C

: 1
G

: 0
T: 0

A: 0
C

: 0
G

: 0
T: 1

CpG+ CpG-

A: .1

C: .3

G: .4

T: .2

A: 1/4

C: 1/4

G: 1/4

T: 1/4

aPP aBB aPB

aBP

A +

T +

G
+

C
+

A:
 0

C

: 0

G
: 1

T:

 0

A:
 1

C

: 0

G
: 0

T:

 0

A:
 0

C

: 1

G
: 0

T:

 0

A:
 0

C

: 0

G
: 0

T:

 1

“Memory” of previous
nucleotide is encoded
in the current state.

GC-rich: 4 states
Background: 4 states

24

HMM for CpG islands

• A single model combines two Markov
chains, each of four nucleotides:
– ‘+’ states: A+, C+, G+, T+

• Emit symbols: A, C, G, T in CpG islands
– ‘-’ states: A-, C-, G-, T-

• Emit symbols: A, C, G, T in non-islands

• Emission probabilities distinct for the ‘+’
and the ‘-’ states
– Infer most likely set of states, giving rise

to observed emissions
 ‘Paint’ the sequence with + and - states

A+ T+ G+ C+

A- T- G- C-

A: 0

C: 0

G: 1

T: 0

A: 1

C: 0

G: 0

T: 0

A: 0

C: 1

G: 0

T: 0

A: 0

C: 0

G: 0

T: 1

A: 0

C: 0

G: 1

T: 0

A: 1

C: 0

G: 0

T: 0

A: 0

C: 1

G: 0

T: 0

A: 0

C: 0

G: 0

T: 1

Why we need so many states…
In our simple GC-content example, we only had 2 states (+|-)
Why do we need 8 states here: 4 CpG+ / 4 CpG- ?
 Encode ‘memory’ of previous state: nucleotide transitions

25

Training emission parameters for CpG+/CpG- states
• Count di-nucleotide frequencies:

– 16 possible di-nucleotides. 16 transition parameters.
– Alternative: 16 states, each emitting di-nucleotide

• Derive two Markov chain models:
– ‘+’ model: from the CpG islands
– ‘-’ model: from the remainder of sequence

• Transition probabilities for each model:
– Encode differences in di-nucleotide frequencies

+ A C G T
A .180 .274 .426 .120

C .171 .368 .274 .188

G .161 .339 .375 .125

T .079 .355 .384 .182

A T

G C

aGT aAC

aGC

aAT

- A C G T
A .300 .205 .285 .210

C .322 .298 .078 .302

G .248 .246 .298 .208

T .177 .239 .292 .292
26

Examples of HMMs for genome annotation
Detection
of GC-rich
regions

Detection
of CpG-rich
regions

Detection
of
conserved
regions

Detection
of protein-
coding
exons

Detection
of protein-
coding
conservatio
n

Detection
of protein-
coding
gene
structures

Detection
of
chromatin
states

2 states,
different
nucleotide
composition

8 states,
4 each +/-,
different
transition
probabilities

2 states,
different
conservation
levels

2 states,
different tri-
nucleotide
composition

2 states,
different
evolutionary
signatures

~20 states,
different
composition/
conservation
, specific
structure

40 states,
different
chromatin
mark
combination
s

GC-rich / AT-
rich

CpG-rich /
CpG-poor

Conserved /
non-
conserved

Coding exon
/ non-coding
(intron or
intergenic)

Coding exon
/ non-coding
(intron or
intergenic)

First/last/mid
dle coding
exon,UTRs,
intron1/2/3,
intergenic,
*(+/- strand)

Enhancer /
promoter /
transcribed /
repressed /
repetitive

Nucleotides Di-
Nucleotides

Level of
conservation

Triplets of
nucleotides

64x64 matrix
of codon
substitution
frequencies

Codons,
nucleotides,
splice sites,
start/stop
codons

Vector of
chromatin
mark
frequencies

27

HMM architecture matters: Protein-coding genes

• Gene vs. Intergenic
• Start & Stop in/out
• UTR: 5’ and 3’ end
• Exons, Introns
• Remembering frame

– E0,E1,E2
– I0,I1,I2

• Sequence patterns
to transition between
states:
– ATG, TAG,

Acceptor/Donor,
TATA, AATAA

28

© Bill Majoros / GeneZilla. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://www.genezilla.org/design.html
http://ocw.mit.edu/help/faq-fair-use/

Chromatin State: Emission & Transition Matrices

Ernst and Kellis, Nature Biotech 2010, Nature 2011, Nature Methods 2012

• Emission matrix:
• Multi-variate HMM
• Emits vector of values

• Transition matrix:
• Learn spatial relationships
• No a-priori ‘gene’ structure

© Macmillan Publishers Limited. All rights reserved. This content is excluded from our Creative
Commons license. For more information,see http://ocw.mit.edu/help/faq-fair-use/.
Source: Ernst, Jason and Manolis Kellis. "Discovery and characterization of chromatin states for
systematic annotation of the human genome.“ Nature Biotechnology 28, no. 8 (2010): 817-825.

29

http://ocw.mit.edu/help/faq-fair-use/
http://dx.doi.org/10.1038/nbt.1662
http://dx.doi.org/10.1038/nbt.1662

Goals for today: HMMs, part II

1. Review: Basics and three algorithms from last time
– Markov Chains and Hidden Markov Models
– Calculating likelihoods P(x,π) (algorithm 1)
– Viterbi algorithm: Find π* = argmaxπ P(x,π) (alg 3)
– Forward algorithm: Find P(x), over all paths (alg 2)

2. Increasing the ‘state’ space / adding memory
– Finding GC-rich regions vs. finding CpG islands
– Gene structures GENSCAN, chromatin ChromHMM

3. Posterior decoding: Another way of ‘parsing’
– Find most likely state πi, sum over all possible paths

4. Learning (ML training, Baum-Welch, Viterbi training)
– Supervised: Find ei(.) and aij given labeled sequence
– Unsupervised: given only x  annotation + params

30

1. Scoring x, one path

 P(x,π)

Prob of a path, emissions

2. Scoring x, all paths

 P(x) = Σπ P(x,π)

Prob of emissions, over all paths

3. Viterbi decoding

 π* = argmaxπ P(x,π)

Most likely path

4. Posterior decoding

π^ = {πi | πi=argmaxk ΣπP(πi=k|x)}

Path containing the most likely
state at any time point.

One path All paths
D

ec
od

in
g

Sc
or

in
g

Le
ar

ni
ng

 5. Supervised learning, given π
 Λ* = argmaxΛ P(x,π|Λ)
6. Unsupervised learning.
 Λ* = argmaxΛ maxπP(x,π|Λ)
 Viterbi training, best path

6. Unsupervised learning

 Λ* = argmaxΛ ΣπP(x,π|Λ)

Baum-Welch training, over all paths







31

4. Decoding, all paths

Find the likelihood an emission xi is
generated by a state

32

Calculate most probable label at a single position

• Calculate most probable label, L*
i , at each position i

• Do this for all N positions gives us {L*
1, L*

2, L*
3…. L*

N}
• How much information have we observed? Three settings:

– Observed nothing: Use prior information
– Observed only character at position i: Prior + emission probability
– Observed entire sequence: Posterior decoding

P

B

P

B

P

B B

P

B B

P

B

P

B

G C A A A T G C

π:

x:

P P P

B

P

B

P

B B

P

B B

P

B

P

B

P P
Sum over all paths

P(Labeli=B|x)

33

Calculate P(π7= CpG+ | x7=G)

• With no knowledge (no characters)
– Simply time spent in markov chain states
– P(πi=k) = most likely state (prior)

• With very little knowledge (just that character)

– Time spent, adjusted for different emission probs.
– Use Bayes rule to change inference directionality
– P(πi=k | xi=G) = P(πι=κ) * P(xi=G|πi=k) / P(xi=G)

• With knowledge of entire sequence (all characters)

– P(πi=k | x=AGCGCG…GATTATCGTCGTA)
– Sum over all paths that emit ‘G’ at position 7
 Posterior decoding

34

Motivation for the Backward Algorithm

We want to compute

 P(i = k | x), the probability distribution on the ith position, given x

We start by computing

P(i = k, x) = P(x1…xi, i = k, xi+1…xN)
 = P(x1…xi, i = k) P(xi+1…xN | x1…xi, i = k)
 = P(x1…xi, i = k) P(xi+1…xN | i = k)

Forward, fk(i) Backward, bk(i)

35

The Backward Algorithm – derivation
Define the backward probability:

 bk(i) = P(xi+1…xN | i = k)
 = i+1…N P(xi+1,xi+2, …, xN, i+1, …, N | i = k)
 = l i+1…N P(xi+1,xi+2, …, xN, i+1 = l, i+2, …, N | i = k)
 = l el(xi+1) akl i+1…N P(xi+2, …, xN, i+2, …, N | i+1 = l)
 = l el(xi+1) akl bl(i+1)

36

Calculate total end probability recursively

• Assume we know bl for the next time step (i+1)

• Calculate bk(i) = suml (el(xi+1)  akl  bl(i+1))

xi+1

el

l
k

akl

…

…

xi

… bk(i)
bl(i+1)

hidden
states

observations

next
emission

transition
to next state

prob sum from
state l to end

sum over all possible next states

current max

37

The Backward Algorithm

x1 x2 x3 ………………………………………..xN

Input: x = x1……xN

Initialization:
 bk(N) = ak0, for all k

Iteration:
 bk(i) = l el(xi+1) akl bl(i+1)

Termination:
 P(x) = l a0l el(x1) bl(1)

In practice:
 Sum of log scores is difficult
  approximate exp(1+p+q)
  scaling of probabilities

Running time and space:
 Time: O(K2N)
 Space: O(K)

State 1

2

K

bk(i)

38

Putting it all together: Posterior decoding

• P(k) = P(πi=k | x) = fk(i)*bk(i) / P(x)
– Probability that ith state is k, given all emissions x

• Posterior decoding
– Find the most likely state at position i over all possible hidden paths

given the observed sequence x
– ^

i = argmaxk P(i = k | x)
• Posterior decoding ‘path’ ^

i
– For classification, more informative than Viterbi path *

• More refined measure of “which hidden states” generated x
– However, it may give an invalid sequence of states

• Not all jk transitions may be possible

x1 x2 x3 ………………………………………..xN

State 1

2

K

P(k)

39

Goals for today: HMMs, part II

1. Review: Basics and three algorithms from last time
– Markov Chains and Hidden Markov Models
– Calculating likelihoods P(x,π) (algorithm 1)
– Viterbi algorithm: Find π* = argmaxπ P(x,π) (alg 3)
– Forward algorithm: Find P(x), over all paths (alg 2)

2. Increasing the ‘state’ space / adding memory
– Finding GC-rich regions vs. finding CpG islands
– Gene structures GENSCAN, chromatin ChromHMM

3. Posterior decoding: Another way of ‘parsing’
– Find most likely state πi, sum over all possible paths

4. Learning (ML training, Baum-Welch, Viterbi training)
– Supervised: Find ei(.) and aij given labeled sequence
– Unsupervised: given only x  annotation + params

40

1. Scoring x, one path

 P(x,π)

Prob of a path, emissions

2. Scoring x, all paths

 P(x) = Σπ P(x,π)

Prob of emissions, over all paths

3. Viterbi decoding

 π* = argmaxπ P(x,π)

Most likely path

4. Posterior decoding

π^ = {πi | πi=argmaxk ΣπP(πi=k|x)}

Path containing the most likely
state at any time point.

One path All paths
D

ec
od

in
g

Sc
or

in
g

Le
ar

ni
ng

 5. Supervised learning, given π
 Λ* = argmaxΛ P(x,π|Λ)
6. Unsupervised learning.
 Λ* = argmaxΛ maxπP(x,π|Λ)
 Viterbi training, best path

6. Unsupervised learning

 Λ* = argmaxΛ ΣπP(x,π|Λ)

Baum-Welch training, over all paths

 

 

41

Learning: How to train an HMM

Transition probabilities
e.g. P(Pi+1|Bi) – the
probability of entering a
pathogenicity island from
background DNA

Emission probabilities

i.e. the nucleotide
frequencies for
background DNA and
pathogenicity islands

B P

P(S|P) P(S|B)

P(Li+1|Li)

42

Two learning scenarios

Case 1. Estimation when the “right answer” is known

Examples:
 GIVEN: a genomic region x = x1…x1,000,000 where we have good

 (experimental) annotations of the CpG islands

Case 2. Estimation when the “right answer” is unknown

Examples:

 GIVEN: the porcupine genome; we don’t know how frequent are the

 CpG islands there, neither do we know their composition

QUESTION: Update the parameters  of the model to maximize P(x|)

43

Two types of learning: Supervised / Unsupervised
5. Supervised learning
 infer model parameters given labeled training data

– GIVEN:
• a HMM M, with unspecified transition/emission probs.
• labeled sequence x,

– FIND:
• parameters  = (Ei, Aij) that maximize P[x | ]

 Simply count frequency of each emission and transition,
 as observed in the training data

6. Unsupervised learning
 infer model parameters given unlabelled training data

– GIVEN:
• a HMM M, with unspecified transition/emission probs.
• unlabeled sequence x,

– FIND:
• parameters  = (Ei, Aij) that maximize P[x | ]

 Viterbi training:
guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate

 Baum-Welch training:
guess parameters, sum over all paths (#4), update parameters (#5), iterate 44

5: Supervised learning

Estimate model parameters
based on labeled training data

45

Case 1. When the right answer is known
Given x = x1…xN
for which the true  = 1…N is known,

Define:

 Akl = # times kl transition occurs in 
 Ek(b) = # times state k in  emits b in x

We can show that the maximum likelihood parameters  are:

 Akl Ek(b)
 akl = ––––– ek(b) = –––––––
 i Aki c Ek(c)

46

Learning From Labelled Data

P

B

P

B

P

B B

P

B B

P

B

P

B

G C A A A T G C

L:

S:

If we have a sequence that has islands marked, we can simply count

A:
T:
G:
C:

A: 1/5
T: 0
G: 2/5
C: 2/5

P(S|P) P(S|B) P(Li+1|Li)
Bi+1 Pi+1 End

Bi 3/5 1/5 1/5

Pi 1/3 2/3 0

Start 1 0 0

End start

P

B B B B B

P

ETC..

 Maximum Likelihood Estimation

!

47

Case 1. When the right answer is known
Intuition: When we know the underlying states,
 Best estimate is the average frequency of
 transitions & emissions that occur in the training data

Drawback:
 Given little data, there may be overfitting:
 P(x|) is maximized, but  is unreasonable
 0 probabilities – VERY BAD

Example:
 Given 10 nucleotides, we observe
 x = C, A, G, G, T, C, C, A, T, C

  = P, P, P, p, p, P, P, P, P, P

 Then:
 aPP = 1; aPB = 0
 eP(A) = .2;
 eP(C) = .4;
 eP(G) = .2;
 eP(T) =.2

48

Pseudocounts
Solution for small training sets:

 Add pseudocounts

 Akl = # times kl transition occurs in  + rkl
 Ek(b) = # times state k in  emits b in x + rk(b)

rkl, rk(b) are pseudocounts representing our prior belief

Larger pseudocounts  Strong priof belief

Small pseudocounts ( < 1): just to avoid 0 probabilities

49

Example: Training Markov Chains for CpG islands

• Training Set:
– set of DNA sequences w/ known CpG islands

• Derive two Markov chain models:
– ‘+’ model: from the CpG islands
– ‘-’ model: from the remainder of sequence

• Transition probabilities for each model:

 


 

t' st'

st
st

c

c
a


stc is the number of times

letter t followed letter s
inside the CpG islands

+ A C G T
A .180 .274 .426 .120

C .171 .368 .274 .188

G .161 .339 .375 .125

T .079 .355 .384 .182

A T

G C

aG

T
aA

C
aGC

aAT

 


 

t' st'

st
st

c

c
a



stc is the number of times
letter t followed letter s
outside the CpG islands

- A C G T
A .300 .205 .285 .210

C .322 .298 .078 .302

G .248 .246 .298 .208

T .177 .239 .292 .292
50

6: Unsupervised learning

Estimate model parameters
based on unlabeled training data

51

Unlabelled Data

P

B

P

B

P

B B

P

B B

P

B

P

B

G C A A A T G C

L:

S:

How do we know how to count?

A:
T:
G:
C:

A:
T:
G:
C:

P(S|P) P(S|B) P(Li+1|Li)
Bi+1 Pi+1 End

Bi

Pi ?
Start

End start

P P

?

52

Unlabeled Data

An idea:
1. Imagine we start with some parameters
2. We could calculate the most likely path,

P*, given those parameters and S
3. We could then use P* to update our

parameters by maximum likelihood
4. And iterate (to convergence)

P

B

P

B

P

B B

P

B B

P

B

P

B

G C A A A T G C

L:

S:

P(S|P)0 P(S|B)0 P(Li+1|Li)0

End start

P P

P(S|P)1 P(S|B)1 P(Li+1|Li)1

P(S|P)2 P(S|B)2 P(Li+1|Li)2

P(S|P)K P(S|B)K P(Li+1|Li)K

…

B B B B B B B B B B B B B

P P P

53

Learning case 2. When the right answer is unknown

We don’t know the true Akl, Ek(b)

Idea:
• We estimate our “best guess” on what Akl, Ek(b) are

(M step, maximum-likelihood estimation)
• We update the probabilistic parse of our sequence,

based on these parameters (E step, expected
probability of being in each state given parameters)

• We repeat

Two settings:
• Simple: Viterbi training (best guest = best path)
• Correct: Expectation maximization (all paths, weighted)

54

1. Scoring x, one path

 P(x,π)

Prob of a path, emissions

2. Scoring x, all paths

 P(x) = Σπ P(x,π)

Prob of emissions, over all paths

3. Viterbi decoding

 π* = argmaxπ P(x,π)

Most likely path

4. Posterior decoding

π^ = {πi | πi=argmaxk ΣπP(πi=k|x)}

Path containing the most likely
state at any time point.

One path All paths
D

ec
od

in
g

Sc
or

in
g

Le
ar

ni
ng

 5. Supervised learning, given π
 Λ* = argmaxΛ P(x,π|Λ)
6. Unsupervised learning.
 Λ* = argmaxΛ maxπP(x,π|Λ)
 Viterbi training, best path

7. Unsupervised learning

 Λ* = argmaxΛ ΣπP(x,π|Λ)

Baum-Welch training, over all paths

 

 



55

Simple casae: Viterbi Training

Initialization:
Pick the best-guess for model parameters
 (or arbitrary)
Iteration:

1. Perform Viterbi, to find *
2. Calculate Akl, Ek(b) according to * + pseudocounts
3. Calculate the new parameters akl, ek(b)

Until convergence
Notes:

– Convergence to local maximum guaranteed. Why?
– Does not maximize P(x | )
– In general, worse performance than Baum-Welch

56

1. Scoring x, one path

 P(x,π)

Prob of a path, emissions

2. Scoring x, all paths

 P(x) = Σπ P(x,π)

Prob of emissions, over all paths

3. Viterbi decoding

 π* = argmaxπ P(x,π)

Most likely path

4. Posterior decoding

π^ = {πi | πi=argmaxk ΣπP(πi=k|x)}

Path containing the most likely
state at any time point.

One path All paths
D

ec
od

in
g

Sc
or

in
g

Le
ar

ni
ng

 5. Supervised learning, given π
 Λ* = argmaxΛ P(x,π|Λ)
6. Unsupervised learning.
 Λ* = argmaxΛ maxπP(x,π|Λ)
 Viterbi training, best path

6. Unsupervised learning

 Λ* = argmaxΛ ΣπP(x,π|Λ)

Baum-Welch training, over all paths

 

 




57

Expectation Maximization (EM)

EM pervasive in computational biology
 Rec 3 (SiPhy), Lec 8 (Kmeans), Lec 9 (motifs)

The basic idea is the same:

1.Use model to estimate missing data (E step)
2.Use estimate to update model (M step)

3.Repeat until convergence

EM is a general approach for learning models
(ML estimation) when there is “missing data”

Widely used in computational biology

58

1. Initialize parameters randomly

2. E Step Estimate expected probability of hidden labels, Q, given current
(latest) parameters and observed (unchanging) sequence

3. M Step Choose new maximum likelihood parameters over
probability distribution Q, given current probabilistic label assignments

4. Iterate

Expectation Maximization (EM)

(| ,)1Q P Labels S paramst 

1arg max log (, |)t t

Q
params

params E P S labels params    

P(S|Model) guaranteed to increase each iteration
59

Case 2. When the right answer is unknown
Starting with our best guess of a model M, parameters :

 Given x = x1…xN
 for which the true  = 1…N is unknown,

We can get to a provably more likely parameter set 

Principle: EXPECTATION MAXIMIZATION

1. Estimate probabilistic parse based on parameters (E step)
2. Update parameters Akl, Ek based on probabilistic parse (M step)
3. Repeat 1 & 2, until convergence

60

Estimating probabilistic parse given params (E step)
To estimate Akl:

At each position i:

Find probability transition kl is used:

P(i = k, i+1 = l | x) = [1/P(x)]  P(i = k, i+1 = l, x1…xN) = Q/P(x)

where Q = P(x1…xi, i = k, i+1 = l, xi+1…xN) =
 = P(i+1 = l, xi+1…xN | i = k) P(x1…xi, i = k) =
 = P(i+1 = l, xi+1xi+2…xN | i = k) fk(i) =
 = P(xi+2…xN | i+1 = l) P(xi+1 | i+1 = l) P(i+1 = l | i = k) fk(i) =
 = bl(i+1) el(xi+1) akl fk(i)

 fk(i) akl el(xi+1) bl(i+1)
So: P(i = k, i+1 = l | x, ) = ––––––––––––––––––
 P(x | )

(For one such transition, at time step ii+1)

P

B

P

B

P

B B

P

B B

P

B

P

B

G C A A A T G C

L:

S:

End start

P P

B

P

K

L

i j

61

New parameters given probabilistic parse (M step)

So,

 fk(i) akl el(xi+1) bl(i+1)

Akl = i P(i = k, i+1 = l | x, ) = i –––––––––––––––––
 P(x | )

Similarly,

 Ek(b) = [1/P(x)] {i | xi = b} fk(i) bk(i)

(Sum over all kl transitions, at any time step i)

62

Dealing with multiple training sequences

(Sum over all training seqs, all kl transitions, all time steps i)
If we have several training sequences, x1, …, xM, each of length N,

 fk(i) akl el(xi+1) bl(i+1)

Akl = x i P(i = k, i+1 = l | x, ) = x i ––––––––––––––––
 P(x | )

Similarly,

 Ek(b) = x (1/P(x)) {i | xi = b} fk(i) bk(i)

63

The Baum-Welch Algorithm
Initialization:
 Pick the best-guess for model parameters
 (or arbitrary)

Iteration:

1. Forward
2. Backward
3.  Calculate new log-likelihood P(x | ) (E step)
4. Calculate Akl, Ek(b)
5.  Calculate new model parameters akl, ek(b) (M step)

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION

Until P(x | ) does not change much

64

The Baum-Welch Algorithm – comments
Time Complexity:

 # iterations  O(K2N)

• Guaranteed to increase the log likelihood of the model

P( | x) = P(x, ) / P(x) = P(x | ) / (P(x) P())

• Not guaranteed to find globally best parameters

Converges to local optimum, depending on initial conditions

• Too many parameters / too large model: Overtraining

65

1. Scoring x, one path

 P(x,π)

Prob of a path, emissions

2. Scoring x, all paths

 P(x) = Σπ P(x,π)

Prob of emissions, over all paths

3. Viterbi decoding

 π* = argmaxπ P(x,π)

Most likely path

4. Posterior decoding

π^ = {πi | πi=argmaxk ΣπP(πi=k|x)}

Path containing the most likely
state at any time point.

One path All paths
D

ec
od

in
g

Sc
or

in
g

Le
ar

ni
ng

 5. Supervised learning, given π
 Λ* = argmaxΛ P(x,π|Λ)
6. Unsupervised learning.
 Λ* = argmaxΛ maxπP(x,π|Λ)
 Viterbi training, best path

6. Unsupervised learning

 Λ* = argmaxΛ ΣπP(x,π|Λ)

Baum-Welch training, over all paths

66

Examples of HMMs for genome annotation
Detection
of GC-rich
regions

Detection
of CpG-rich
regions

Detection
of
conserved
regions

Detection
of protein-
coding
exons

Detection
of protein-
coding
conservatio
n

Detection
of protein-
coding
gene
structures

Detection
of
chromatin
states

2 states,
different
nucleotide
composition

8 states,
4 each +/-,
different
transition
probabilities

2 states,
different
conservation
levels

2 states,
different tri-
nucleotide
composition

2 states,
different
evolutionary
signatures

~20 states,
different
composition/
conservation
, specific
structure

40 states,
different
chromatin
mark
combination
s

GC-rich / AT-
rich

CpG-rich /
CpG-poor

Conserved /
non-
conserved

Coding exon
/ non-coding
(intron or
intergenic)

Coding exon
/ non-coding
(intron or
intergenic)

First/last/mid
dle coding
exon,UTRs,
intron1/2/3,
intergenic,
*(+/- strand)

Enhancer /
promoter /
transcribed /
repressed /
repetitive

Nucleotides Di-
Nucleotides

Level of
conservation

Triplets of
nucleotides

64x64 matrix
of codon
substitution
frequencies

Codons,
nucleotides,
splice sites,
start/stop
codons

Vector of
chromatin
mark
frequencies

67

What have we learned ?
• Generative model. Hidden states, observed emissions.

– Generate a random sequence
• Choose random transition, choose random emission (#0)

• Scoring: Finding the likelihood of a given sequence
– Calculate likelihood of annotated path and sequence

• Multiply emission and transition probabilities (#1)
– Without specifying a path, total probability of generating x

• Sum probabilities over all paths
• Forward algorithm (#3)

• Decoding: Finding the most likely path, given a sequence
– What is the most likely path generating entire sequence?

• Viterbi algorithm (#2)
– What is the most probable state at each time step?

• Forward + backward algorithms, posterior decoding (#4)
• Learning: Estimating HMM parameters from training data

– When state sequence is known
• Simply compute maximum likelihood A and E (#5a)

– When state sequence is not known
• Viterbi training: Iterative estimation of best path / frequencies (#5b)
• Baum-Welch: Iterative estimation over all paths / frequencies (#6) 68

Goals for today: HMMs, part II

1. Review: Basics and three algorithms from last time
– Markov Chains and Hidden Markov Models
– Calculating likelihoods P(x,π) (algorithm 1)
– Viterbi algorithm: Find π* = argmaxπ P(x,π) (alg 3)
– Forward algorithm: Find P(x), over all paths (alg 2)

2. Increasing the ‘state’ space / adding memory
– Finding GC-rich regions vs. finding CpG islands
– Gene structures GENSCAN, chromatin ChromHMM

3. Posterior decoding: Another way of ‘parsing’
– Find most likely state πi, sum over all possible paths

4. Learning (ML training, Baum-Welch, Viterbi training)
– Supervised: Find ei(.) and aij given labeled sequence
– Unsupervised: given only x  annotation + params

69

MIT OpenCourseWare
http://ocw.mit.edu

6.047 / 6.878 / HST.507 Computational Biology
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

