
6.047/6.878/HSPH IMI.231/HST.507 Fall 2015 
Problem Set 3: Motifs and RNA Structures 

Due Tuesday, October 27 at 8pm (submit on the course website) 

Submit a zip file of a directory named Lastname Firstname containing: 

• A PDF file named Lastname Firstname.pdf with your written answers 

• A directory named code with all code you are submitting 

• A directory named data with all other results you are submitting 

In your answers to the questions please refer to the appropriate file name where your results/code for that 
problem are located. Unless

 
skeleton

 
code has been provided, feel free to use any programming language you 

are  comfortable with, as long as you  structure and comment your code to make it concise and legible. 

1	 Gibbs sampling for motif discovery 

In this problem, you will implement a Gibbs sampler to discover sequence motifs. We have provided a Python 
skeleton gibbs.py. Submit all code you write. 

(a) Recall the Gibbs sampling algorithm for this problem: Initialize the motif position in each sequence. Until 
convergence: re-estimate the position weight matrix (PWM) from all the motifs except one, score ev­
ery position in the excluded sequence, and sample a k-mer from the excluded sequence with probability 
proportional to the score. 

We have intentionally not specified many of the implementation details. Describe and justify the design 
decisions you made in your implementation. For example, how do you choose the sequence to exclude when 
recomputing the position weight matrix? 

(b) We have provided four test cases.	 data1 is a synthetic data set where the motif is identical across the 
sequences. data2 is a synthetic data set with a degenerate motif. data3 and data4 are yeast transcription 
factor binding sites of ACE2 and MBP1, respectively. 

Run your Gibbs sampler on the test data to discover motifs of length 10. You will need to repeat this 
procedure several times on each data set due to the stochastic nature of Gibbs sampling. 

Submit plain text files containing the most consistently found PWM for each sequence. Use Weblogo1 to 
create a sequence logo from each PWM and include them in your writeup. 

2	 Evolutionary signatures of motifs 

In this problem, you will search for enriched (over-represented) k-mers in regions conserved across the yeast clade 
Saccharomyces. Submit all code you write. 

(a) We have provided the sequence of all intergenic regions in S. cerevisiae in the file allinter. We have also 
provided an annotation of conservation in the file allintercons. Each position marked with ∗ corresponds 
to a conserved nucleotide. For simplicity, we will look for motifs which are non-degenerate, exact matches. 

Compute the frequency and conservation of all 6-mers. Submit a plain text file with the 50 most frequently 
occurring and 50 most conserved motifs (those with the highest proportion of conserved instances). 

1http://weblogo.threeplusone.com/create.cgi 
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(b) Compare frequently occurring motifs to highly conserved motifs. Are there biases in the sequence properties 
of either class? If so, where does this bias come from? 

Which of the two lists should we use to direct further inquiry into yeast transcription factor binding sites? 
We have provided an annotation of known yeast motifs yeast motifs.txt. Which known motifs does 
your scan of 6-mers find? 

3 RNA secondary structure 

In this problem we will explore the output of the Nussinov algorithm on random RNA sequences. Submit all code 
you write. 

(a) Implement the Nussinov algorithm, scoring A–U, G–U, and C–G pairs as −1 and all other pairs as 0. 

(b) Generate 1000 RNA sequences of length 100 where each base is drawn uniformly at random. What is the 
average score for these sequences? 

(c) How does the score vary as a function of length? (You will need to repeat (b) for various lengths.) 

(d) How does the score vary as a function of GC content? Is this function symmetric around GC content equal 
to 0.5? Why or why not? (You will need to repeat (b) for different distributions from which you draw 
bases.) 

(e) Given an RNA transcript of interest, how should you interpret the score output by the Nussinov algorithm 
with respect to your observations about its dependence on length and sequence composition? Is there a 
better way to estimate the effect of these biases on the score? 

4 Upcoming project milestones 

This is a reminder of upcoming project milestones: 

Project proposal: Tuesday, 10/20 Refer to the handout on the course website. 

Project proposal presentations and feedback: Friday 10/23, 4PM, 32D-507 Prepare a short presentation 
(no more than 3 slides) describing your team, project, goals, and deliverables and submit it before the 
meeting in PDF or Powerpoint format on the course website 

Submit a presentation even if you are unable to attend the meeting. Attending is optional but we strongly 
encourage you to do so not just to receive feedback on the feasibility and challenge of your project but also 
to hear the feedback your classmates receive. 
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5	 Probabilistic model for transcription factor binding sites (6.878 only) 

In this problem we will derive the probabilistic model underlying position weight matrices (PWMs) and use it 
to study CCCTC-binding factor (CTCF ) binding sites. CTCF is a conserved zinc-finger protein which binds to 
thousands of locations in the human genome and acts as an insulator/repressor. 

The data provided for this problem comes from Kim et al. “Analysis of the Vertebrate Insulator Protein CTCF-
Binding Sites in the Human Genome.” Cell. 2007 Mar 23;128(6):1231–45. Submit all code you write. 

(a) Explain how to estimate the motif model M = [mij] where mij = P(position i = nucleotide j). 

(b) Describe and justify an algorithm to estimate the background model B. What assumptions does your model 
make? What are some of its weaknesses? 

(c) Recall that a PWM gives the log odds of observing a particular nucleotide at a particular position in the 
motif model against in the background distribution. 

Use your algorithm from (a) to estimate M from ctcf binding site sequences.txt and your algorithm 
from (b) to estimate B from chr11 region.fa. Include these distributions in your writeup. 

Estimate a PWM for CTCF using M and B and include it in your writeup. 

(d) An alternative visual representation of transcription factor	 binding sites is a sequence logo which gives 
the information content at every position (intuitively, how important each position is for protein binding 
affinity). 

Use WebLogo2 to generate a sequence logo for ctcf binding site sequences.txt. Include it in your 
writeup. 

(e) Compare your sequence logo to the published logo ctcf motif.jpg. What could account for any differ­
ences? 

(f) Discuss the limitations of PWMs as a representation of transcription factor binding sites.	 What assumptions 
are made? Do they hold in general? 

(g) Because the entries of a PWM are log odds scores, we can score a k-mer by simply adding up the appropriate 
entries of the PWM. 

Convert the published Position Frequency Matrix (PFM) ctcf pwm.txt to a PWM and use it to scan for 
CTCF binding sites in chr11 region.fa. This region flanks the gene insulin-like growth factor 2 (IGF2 ). 
Plot the scores at every position for each strand and include the plots in your writeup. 

(h) Recall that short	 k-mers frequently occur by chance throughout the genome. Estimate the probability 
distribution of scores by randomly sampling 1 million 20-mers from chromosome 11 and scoring them using 
the published PWM. You may want to use the full sequence of chromosome 11 rather than the region we 
have provided . Plot a histogram of this distribution. 

A simple way to use this null distribution to filter out hits that occurred by chance is to only keep hits with 
P(score > threshold) < 10−5 . Based on the distribution you estimated, what is the threshold? 

In a plain text file, report the location, score, and sequence (be sure to account for strand orientation) of 
each 20-mer which meets the threshold. 

(i) Discuss some limitations of filtering PWM matches in this manner.	 Does the method by which we sample 
20-mers matter? How will the sequence properties of randomly chosen genomic regions affect the answer? 
Can we choose regions in a more principled way to account for sequence properties? Is it possible to estimate 
the probability of a PWM match occurring by chance without sampling? 

2http://weblogo.threeplusone.com/create.cgi  
3ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/chr11.fa.gz  
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