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Balanced tree structures we know at this point: red-black trees, B-trees, treaps. • 

Could you implement them right now? Probably, with time. . . but without looking up any • 
details? 

Skip lists are a simple randomized structure you’ll never forget. • 

Starting from scratch 
Initial goal: just searches — ignore updates (Insert/Delete) for now • 

Simplest data structure: linked list • 

Sorted linked list: �(n) time• 

2 sorted linked lists: • 

–	 Each element can appear in 1 or both lists 
–	 How to speed up search? 
–	 Idea: Express and local subway lines 
–	 Example: 14 , 23, 34 , 42 , 50, 59, 66, 72 , 79, 86, 96 , 103, 110, 116, 125 
(What is this sequence?) 
–	 Boxed values are “express” stops; others are normal stops 
–	 Can quickly jump from express stop to next express stop, or from any stop to next 
normal stop 
–	 Represented as two linked lists, one for express stops and one for all stops: 

14 

14 

23 34 42 72 96 

34 42 72 96 

50 59 66 79 86 103 110 116 125 

–	 Every element is in bottom linked list (L2); some elements also in top linked list (L1) 
–	 Link equal elements between the two levels 
–	 To search, first search in L1 until about to go too far, then go down and search in L2 
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– Cost: 

– Minimized when 

|L1| + 
|L2| 
|L1| 

= |L1| + 
n 

|L1| 

n |L1| = |L1| 
≤ |L1| 2 = n 

≤ |L1| = 
∞

n 

≤ search cost = 2
∞

n 

– Resulting 2-level structure: 

sqrt n sqrt n sqrt n sqrt n 

sqrt n 

33 linked lists: 3 
∞

n•	 · 
kk linked lists: k 
∞

n•	 · 
lg nlg n linked lists: lg n 
∞

n = lg n n 1/ lg n = �(lg n)•	 · · 
=2 

– Becomes like a binary tree: 

23 42 7250 59 66 79 86 103 110 116 12514 96 

14 

14 

14 

50 

50 

79 

79 

79 

96 110 

110 

125 

34 

34 66 

– (In fact, a level-linked B+-tree; see Problem Set 5.) 
–	 Example: Search for 72 

� Level 1: 14 too small, 79 too big; go down 14 
� Level 2: 14 too small, 50 too small, 79 too big; go down 50 
� Level 3: 50 too small, 66 too small, 79 too big; go down 66 
� Level 4: 66 too small, 72 spot on 
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Insert 
New element should certainly be added to bottommost level • 
(Invariant: Bottommost list contains all elements) 

Which other lists should it be added to? • 
(Is this the entire balance issue all over again?) 

Idea: Flip a coin • 

–	With what probability should it go to the next level? 
–	 To mimic a balanced binary tree, we’d like half of the elements to advance to the next-
to-bottommost level 
–	 So, when you insert an element, flip a fair coin 
–	 If heads: add element to next level up, and flip another coin (repeat) 

Thus, on average: • 

–	 1/2 the elements go up 1 level 
–	 1/4 the elements go up 2 levels 
–	 1/8 the elements go up 3 levels 
–	 Etc. 

Thus, “approximately even” • 

Example 
Get out a real coin and try an example • 

You should put a special value −∗ at the beginning of each list, and always promote this • 
special value to the highest level of promotion 

This forces the leftmost element to be present in every list, which is necessary for searching • 

. . . many coins are flipped . . . 
(Isn’t this easy?) 

The result is a skip list. • 

It probably isn’t as balanced as the ideal configurations drawn above. • 

It’s clearly good on average. • 

Claim it’s really really good, almost always. • 
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Analysis: Claim of With High Probability 
Theorem: With high probability, every search costs O(lg n) in a skip list with n elements• 

•	What do we need to do to prove this? [Calculate the probability, and show that it’s high!] 

•	We need to define the notion of “with high probability”; this is a powerful technical notion, 
used throughout randomized algorithms 

Informal definition: An event occurs with high probability if, for any � 1, there is an •	 →
appropriate choice of constants for which E occurs with probability at least 1 − O(1/n�) 

•	 In reality, the constant hidden within O(lg n) in the theorem statement actually depends on c. 

Precise definition: A (parameterized) event E� occurs with high probability if, for any • 
� 1, E� occurs with probability at least 1 − c�/n�, where c� is a “constant” depending →
only on �. 

The term O(1/n�) or more precisely c�/n� is called the error probability • 

•	 The idea is that the error probability can be made very very very small by setting � to 
something big, e.g., 100 

Analysis: Warmup 
Lemma: With high probability, skip list with n elements has O(lg n) levels • 

•	 (In fact, the number of levels is �(log n), but we only need an upper bound.) 

Proof: • 

–	 Pr{element x is in more than c lg n levels} = 1/2c lg n = 1/nc 

–	 Recall Boole’s inequality / union bound: 

+ Pr{Ek}Pr{E1 ≥ E2 ≥ · · · ≥ Ek } � Pr{E1} + Pr{E2} + · · ·

–	 Applying this inequality:

Pr{any element is in more than c lg n levels} � n 1/nc = 1/nc−1
·
–	 Thus, error probability is polynomially small and exponent (� = c − 1) can be made 
arbitrarily large by appropriate choice of constant in level bound of O(lg n) 
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Analysis: Proof of Theorem 

Cool idea: Analyze search backwards—from leaf to root • 

– Search starts at leaf (element in bottommost level) 
– At each node visited: 

� If node wasn’t promoted higher (got TAILS here), then we go [came from] left 
� If node was promoted higher (got HEADS here), then we go [came from] up 

– Search stops at root of tree 

• Know height is O(lg n) with high probability; say it’s c lg n 

• Thus, the number of “up” moves is at most c lg n with high probability 

•	 Thus, search cost is at most the following quantity:


How many times do we need to flip a coin to get c lg n heads?


• Intuitively, �(lg n) 

Analysis: Coin Flipping 
Claim: Number of flips till c lg n heads is �(lg n) with high probability • 

• Again, constant in �(lg n) bound will depend on � 

Proof of claim: • 

– Say we make 10c lg n flips 
– When are there at least c lg n heads? 

�c lg n	 � 
1 �9c lg n 

– Pr{exactly c lg n heads} = 
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· 
2 

· 
2 

� �� � � �� � � �� � 
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HHHTTT vs. HTHTHT 

�9c lg n 

– Pr{at most c lg n heads} � 
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– Applying this formula to the previous equation: 



Pr{at most c lg n heads} � 
10c lg n 

��
1 �9c lg n 

c lg n 2 

 

e 10c lg n 
�c lg n �

1 �9c lg n ·� 
c lg n 

· 
2 

�9c lg n 

= (10e)c lg n 
�

1 · 
2 
�9c lg n�

1 
= 2lg(10e)·c lg n · 

2 

= 2

= 2(lg(10e)−9)c lg n 

−� lg n 

= 1/n� 

– The point here is that, as 10 � ∗, � = 9 − lg(10e) � ∗, independent of (for all) c 

• End of proof of claim and theorem 
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