
Introduction to Algorithms October 25, 2005

Massachusetts Institute of Technology 6.046J/18.410J

Professors Erik D. Demaine and Charles E. Leiserson Handout 17

Lecture Notes on Skip Lists
Lecture 12 — October 26, 2005

Erik Demaine

Balanced tree structures we know at this point: red-black trees, B-trees, treaps. •

Could you implement them right now? Probably, with time. . . but without looking up any •
details?

Skip lists are a simple randomized structure you’ll never forget. •

Starting from scratch
Initial goal: just searches — ignore updates (Insert/Delete) for now •

Simplest data structure: linked list •

Sorted linked list: �(n) time•

2 sorted linked lists: •

–	 Each element can appear in 1 or both lists
–	 How to speed up search?
–	 Idea: Express and local subway lines
–	 Example: 14 , 23, 34 , 42 , 50, 59, 66, 72 , 79, 86, 96 , 103, 110, 116, 125
(What is this sequence?)
–	 Boxed values are “express” stops; others are normal stops
–	 Can quickly jump from express stop to next express stop, or from any stop to next
normal stop
–	 Represented as two linked lists, one for express stops and one for all stops:

14

14

23 34 42 72 96

34 42 72 96

50 59 66 79 86 103 110 116 125

–	 Every element is in bottom linked list (L2); some elements also in top linked list (L1)
–	 Link equal elements between the two levels
–	 To search, first search in L1 until about to go too far, then go down and search in L2

� ��	 �

2 Handout 17: Lecture Notes on Skip Lists

– Cost:

– Minimized when

|L1| +
|L2|
|L1|

= |L1| +
n

|L1|

n |L1| = |L1|
≤ |L1| 2 = n

≤ |L1| =
∞

n

≤ search cost = 2
∞

n

– Resulting 2-level structure:

sqrt n sqrt n sqrt n sqrt n

sqrt n

33 linked lists: 3
∞

n•	 ·
kk linked lists: k
∞

n•	 ·
lg nlg n linked lists: lg n
∞

n = lg n n 1/ lg n = �(lg n)•	 · ·
=2

– Becomes like a binary tree:

23 42 7250 59 66 79 86 103 110 116 12514 96

14

14

14

50

50

79

79

79

96 110

110

125

34

34 66

– (In fact, a level-linked B+-tree; see Problem Set 5.)
–	 Example: Search for 72

� Level 1: 14 too small, 79 too big; go down 14
� Level 2: 14 too small, 50 too small, 79 too big; go down 50
� Level 3: 50 too small, 66 too small, 79 too big; go down 66
� Level 4: 66 too small, 72 spot on

3 Handout 17: Lecture Notes on Skip Lists

Insert
New element should certainly be added to bottommost level •
(Invariant: Bottommost list contains all elements)

Which other lists should it be added to? •
(Is this the entire balance issue all over again?)

Idea: Flip a coin •

–	With what probability should it go to the next level?
–	 To mimic a balanced binary tree, we’d like half of the elements to advance to the next-
to-bottommost level
–	 So, when you insert an element, flip a fair coin
–	 If heads: add element to next level up, and flip another coin (repeat)

Thus, on average: •

–	 1/2 the elements go up 1 level
–	 1/4 the elements go up 2 levels
–	 1/8 the elements go up 3 levels
–	 Etc.

Thus, “approximately even” •

Example
Get out a real coin and try an example •

You should put a special value −∗ at the beginning of each list, and always promote this •
special value to the highest level of promotion

This forces the leftmost element to be present in every list, which is necessary for searching •

. . . many coins are flipped . . .
(Isn’t this easy?)

The result is a skip list. •

It probably isn’t as balanced as the ideal configurations drawn above. •

It’s clearly good on average. •

Claim it’s really really good, almost always. •

4 Handout 17: Lecture Notes on Skip Lists

Analysis: Claim of With High Probability
Theorem: With high probability, every search costs O(lg n) in a skip list with n elements•

•	What do we need to do to prove this? [Calculate the probability, and show that it’s high!]

•	We need to define the notion of “with high probability”; this is a powerful technical notion,
used throughout randomized algorithms

Informal definition: An event occurs with high probability if, for any � 1, there is an •	 →
appropriate choice of constants for which E occurs with probability at least 1 − O(1/n�)

•	 In reality, the constant hidden within O(lg n) in the theorem statement actually depends on c.

Precise definition: A (parameterized) event E� occurs with high probability if, for any •
� 1, E� occurs with probability at least 1 − c�/n�, where c� is a “constant” depending →
only on �.

The term O(1/n�) or more precisely c�/n� is called the error probability •

•	 The idea is that the error probability can be made very very very small by setting � to
something big, e.g., 100

Analysis: Warmup
Lemma: With high probability, skip list with n elements has O(lg n) levels •

•	 (In fact, the number of levels is �(log n), but we only need an upper bound.)

Proof: •

–	 Pr{element x is in more than c lg n levels} = 1/2c lg n = 1/nc

–	 Recall Boole’s inequality / union bound:

+ Pr{Ek}Pr{E1 ≥ E2 ≥ · · · ≥ Ek } � Pr{E1} + Pr{E2} + · · ·

–	 Applying this inequality:

Pr{any element is in more than c lg n levels} � n 1/nc = 1/nc−1
·
–	 Thus, error probability is polynomially small and exponent (� = c − 1) can be made
arbitrarily large by appropriate choice of constant in level bound of O(lg n)

�

5 Handout 17: Lecture Notes on Skip Lists

Analysis: Proof of Theorem

Cool idea: Analyze search backwards—from leaf to root •

– Search starts at leaf (element in bottommost level)
– At each node visited:

� If node wasn’t promoted higher (got TAILS here), then we go [came from] left
� If node was promoted higher (got HEADS here), then we go [came from] up

– Search stops at root of tree

• Know height is O(lg n) with high probability; say it’s c lg n

• Thus, the number of “up” moves is at most c lg n with high probability

•	 Thus, search cost is at most the following quantity:

How many times do we need to flip a coin to get c lg n heads?

• Intuitively, �(lg n)

Analysis: Coin Flipping
Claim: Number of flips till c lg n heads is �(lg n) with high probability •

• Again, constant in �(lg n) bound will depend on �

Proof of claim: •

– Say we make 10c lg n flips
– When are there at least c lg n heads?

�c lg n	 �
1 �9c lg n

– Pr{exactly c lg n heads} =

10c lg n
� �

1
c lg n

·
2

·
2

� �� � � �� � � �� �
heads tailsorders

HHHTTT vs. HTHTHT

�9c lg n

– Pr{at most c lg n heads} �

10c lg n
� �

1
c lg n

·
2

� �� � � �� �
tailsoverestimate

on orders

y– Recall bounds on
�

:
x

�
y �x

 �
y �

y �x

e
x

�
x

�
x

6 Handout 17: Lecture Notes on Skip Lists

– Applying this formula to the previous equation:

Pr{at most c lg n heads} �
10c lg n

��
1 �9c lg n

c lg n 2

e 10c lg n
�c lg n �

1 �9c lg n ·�
c lg n

·
2

�9c lg n

= (10e)c lg n
�

1 ·
2
�9c lg n�

1
= 2lg(10e)·c lg n ·

2

= 2

= 2(lg(10e)−9)c lg n

−� lg n

= 1/n�

– The point here is that, as 10 � ∗, � = 9 − lg(10e) � ∗, independent of (for all) c

• End of proof of claim and theorem

Acknowledgments
This lecture is based on discussions with Michael Bender at SUNY Stony Brook.

