
��

Introduction to Algorithms October 14, 2005

Massachusetts Institute of Technology 6.046J/18.410J

Professors Erik D. Demaine and Charles E. Leiserson Handout 14

Quiz 1 Solutions

Do not open this quiz booklet until you are directed to do so. Read all the instructions on •
this page.

When the quiz begins, write your name on every page of this quiz booklet.
•
This quiz contains 4 problems, some with multiple parts. You have 80 minutes to earn 80 •
points.

This quiz booklet contains 13 pages, including this one. Two extra sheets of scratch paper
•
are attached. Please detach them before turning in your quiz at the end of the examination
period.
This quiz is closed book. You may use one handwritten A4 or 8 1 × 11�� crib sheet. No

2
•
calculators or programmable devices are permitted.

Write your solutions in the space provided. If you need more space, write on the back of the
•
sheet containing the problem. Do not put part of the answer to one problem on the back of

the sheet for another problem, since the pages may be separated for grading.

Do not waste time and paper rederiving facts that we have studied. It is sufficient to cite
•
known results.

Do not spend too much time on any one problem. Read them all through first, and attack
•
them in the order that allows you to make the most progress.

Show your work, as partial credit will be given. You will be graded not only on the correct­
•
ness of your answer, but also on the clarity with which you express it. Be neat.

Good luck!
•

Problem Parts Points Grade Grader

1 4 12

2 1 7

3 11 44

4 3 17

Total 80

Name:

2 Handout 14: Quiz 1 Solutions

Problem 1. Asymptotic Running Times [12 points] (4 parts)
For each algorithm listed below,

give a recurrence that describes its worst-case running time, and •

give its worst-case running time using �-notation.•

You need not justify your answers.

(a)	 Binary search

Solution: T (n) = T (n/2) + �(1) = �(lg n)

(b)	 Insertion sort

Solution: T (n) = T (n − 1) + �(n) = �(n2)

3 Handout 14: Quiz 1 Solutions

(c) Strassen’s algorithm

nlg 7)Solution: T (n) = 7T (n/2) + �(n2) = �(

(d) Merge sort

Solution: T (n) = 2T (n/2) + �(n) = �(n lg n)

4 Handout 14: Quiz 1 Solutions

Problem 2. Substitution Method [7 points]
Consider the recurrence

T (n) = T (n/2) + T (n/4) + n ,

T (m) = 1 for m � 5.

Use the substitution method to give a tight upper bound on the solution to the recurrence using
O-notation.

Solution: We guess T (n) = O(n), which leads to the induction hypothesis T (m) � cm for all
m < n. For c � 1, we have the base cases T (n) = 1 � cn for n � 5. The induction hypothesis
yields

T (n) = T (n/2) + T (n/4) + n � cn/2 + cn/4 + n = (3c/4 + 1)n.

If we choose c = 4, then T (n) � (3 + 1)n = 4n = cn. By induction on n, T (n) � cn for c � 4
and all n � 1.

 �

5 Handout 14: Quiz 1 Solutions

Problem 3. True or False, and Justify [44 points] (11 parts)
Circle T or F for each of the following statements to indicate whether the statement is true or
false, respectively. If the statement is correct, briefly state why. If the statement is wrong, explain
why. The more content you provide in your justification, the higher your grade, but be brief. Your
justification is worth more points than your true-or-false designation.

T F The solution to the recurrence T (n) = 3T (n/3) + O(lg n) is T (n) = �(n lg n).

O(nlog3 3)Solution: False. Case 3 of the master theorem applies: f (n) = = O(n) for
f (n) = O(lg n), hence, T (n) = O(n).

2T F Let Fk denote the kth Fibonacci number. Then, the n2th Fibonacci number Fn can be
computed in O(lg n) time.

Solution: True. The n2th Fibonacci number can be computed in O(lg n2) = O(lg n)
time by using square and multiply method with matrix

1 1
.

1 0

6 Handout 14: Quiz 1 Solutions

T F	 Suppose that an array contains n numbers, each of which is −1, 0, or 1. Then, the array
can be sorted in O(n) time in the worst case.

Solution: True. We may use counting sort. We first add 1 to each of the elements in the
input array such that the precondition of counting sort is satisfied. After running counting
sort, we subtract 1 from each of the elements in the sorted output array.
A solution based on partitioning is as follows. Let A[1 . . n] be the input array. We define
the invariant

A[1 . . i] contains only −1,•
A[i + 1 . . j] contains only 0, and •
A[h . . n] contains only +1.•

Initially, i = 0, j = 0, and h = n + 1. If h = j + 1, then we are done; the array is sorted.
In the loop we examine A[j+1]. If A[j+1] = −1, then we exchange A[j+1] and A[i+1]
and we increase both i and j with 1 (as in partition in quicksort). If A[j + 1] = 0, then we
increase j with 1. Finally, if A[j + 1] = +1, then we exchange A[j + 1] and A[h − 1] and
we decrease h by 1.

T F	 An adversary can provide randomized quicksort with an input array of length n that forces
the algorithm to run in �(n lg n) time on that input.

Solution: False. As we saw in lecture, for any input, the expected running time of
quicksort is O(n lg n), where the expectation is taken over the random choices made by
quicksort, independent of the choice of the input.

7 Handout 14: Quiz 1 Solutions

T F	 The array
20 15 18 7 9 5 12 3 6 2

forms a max-heap.

Solution: True.
A[1] = 20 has children A[2] = 15 � 20 and A[3] = 18 � 20.•
A[2] = 15 has children A[4] = 7 � 15 and A[5] = 9 � 15.•
A[3] = 18 has children A[6] = 5 � 18 and A[7] = 12 � 18.•
A[4] = 7 has children A[8] = 3 � 7 and A[9] = 6 � 7.•
A[5] = 9 has child A[10] = 2.•
A[6], . . . , A[10] have no children. •

T F	 Heapsort can be used as the auxiliary sorting routine in radix sort, because it operates in
place.

Solution: False. The auxiliary sorting routine in radix sort needs to be stable, meaining
that numbers with the same value appear in the output array in the same order as they do
appear in the input array. Heapsort is not stable. It does operate in place, meaning that
only a constant number of elements of the input array are ever stored outside the array.

8 Handout 14: Quiz 1 Solutions

T F	 There exists a comparison sort of 5 numbers that uses at most 6 comparisons in the worst
case.

Solution: False. The number of leaves of a decision tree which sorts 5 numbers is 5!
and the height of the tree is at least lg(5!). Since 5! = 120, 26 = 64, and 27 = 128, we
have 6 < lg(5!) < 7. Thus at least 7 comparisons are required.

T F	 Suppose that a hash table with collisions resolved by chaining contains n items and has a
load factor of � = 1/ lg n. Assuming simple uniform hashing, the expected time to search
for an item in the table is O(1/ lg n).

Solution: False. The expected time to search for an item in the table is O(1 + �) =
O(1 + 1/ lg n) = O(1). At least a constant running time O(1) is needed to search for an
item; subconstant running time O(1/ lg n) is not possible.

�

�

9 Handout 14: Quiz 1 Solutions

T F Let X be an indicator random variable such that E [X] = 1/2. Then, we have E
��

X =

1/
�

2.

Solution: False. Since X is an indicator random variable, X = 0 or X = 1. For both
possible values

�
X = X , which implies that E

��
X = E [X] = 1/2.

T F	 Suppose that a hash table of m slots contains a single element with key k and the rest of
the slots are empty. Suppose further that we search r times in the table for various other
keys not equal to k. Assuming simple uniform hashing, the probability is r/m that one of
the r searches probes the slot containing the single element stored in the table.

Solution: False. The probability p that one of the r searches collides with the single
element stored in the table is equal to 1 minus the probability that none of the r searches

rcollides with the single element stored in the table. That is, p = 1 − (1 − 1/m) .

10 Handout 14: Quiz 1 Solutions

T F Let S be a set of n integers. One can create a data structure for S so that determining
whether an integer x belongs to S can be performed in O(1) time in the worst case.

Solution: True. Perfect hashing.

� �

11 Handout 14: Quiz 1 Solutions

Problem 4. Close Numbers [17 points] (3 parts)
Consider a set S of n � 2 distinct numbers. For simplicity, assume that n = 2k + 1 for some
k � 0. Call a pair of distinct numbers x, y ≤ S close in S if

1
max z − min z ,|x − y| �

n − 1 z�S z�S

that is, if the distance between x and y is at most the average distance between consecutive numbers
in the sorted order.

(a)	 Explain briefly why every set S of n � 2 distinct numbers contains a close pair of

numbers.

Solution: Without loss of generality, assume S = {z1, z2, . . . , zn}, with zi � zi+1.
The average distance between two consecutive numbers zi and zi+1 is

n−11	 � 1
n − 1

i=1

(zi+1 − zi) =
n − 1

(zn − z1).

There exists at least one pair of consecutive numbers x and y whose distance between
them is less than or equal to the avearge. The result then follows from the definition
of the close pair.

� � � �

� � � �

� �

� � � �

12 Handout 14: Quiz 1 Solutions

(b)	 Suppose that we partition S around a pivot element p ≤ S, organizing the result into

two subsets of S: S1 = {x ≤ S x � p} and S2 = x ≤ S x � p}. Prove that either
|	 { |
1. every pair x, y ≤ S1 of numbers that is close in S1 is also close in S, or
2. every pair x, y ≤ S2 of numbers that is close in S2 is also close in S.

S
Show how to determine, in O(n) time, a value k ≤ {1, 2} such that every pair x, y ≤

k of numbers that is close in Sk is also close in S.

Solution: Without loss of generality, assume that the elements in Si are in sorted
order. For k = 1, 2, let ak be the average distance between two consecutive numbers
in Sk , and let nk the number of elements in Sk . Using the result from Part (a), we have

1	 1
a1 =

n1 − 1
max z − min z =

n1 − 1
p − min z ,

z�S1 z�S1	 z�S

and
1	 1

a2 =
n2 − 1

max z − min z =
n2 − 1

max z − p .
z�S2 z�S2	 z�S

The average distance a between two consecutive numbers in S in sorted order is then
given by

1
a =

n − 1
max z − min z
z�S z�S

1	 1
=

n − 1
p − min z +

n − 1
max z − p

z�S	 z�S

n1 − 1 n2 − 1
= a1 + a2.

n − 1 n − 1

Note that n1 + n2 = n + 1, because p is included in both S1 and S2. So, a is a weighted
average of a1 and a2:

a = (1 − �)a1 + �a2,

where � = (n2 − 1)/(n − 1).

Suppose that a1 � a2. If x and y are a close pair in S1, then

x − y � a1 = (1 − �)a1 + �a1 � (1 − �)a1 + �a2 = a.| |

This implies that every close pair in S1 is also a close pair in S. Similarly, if a2 � a1,
then every close pair in S2 is a close pair in S.
The average distance ak can be computed in O(n) time, by searching for the minimum
or the maximum number in Sk . Therefore, the subset Sk with the specified property
can be computed in O(n) time.

13 Handout 14: Quiz 1 Solutions

(c)	 Describe an O(n)-time algorithm to find a close pair of numbers in S. Explain briefly

why your algorithm is correct, and analyze its running time. (Hint: Use divide and

conquer.)

Solution: The idea is to partition S recursively until we find a close pair.
1. Determine the median of S and use it to partion S into S1 and S2.
2. Use the result from Part (b) to determine the set Sk that contains a close pair of S.
3. Recurse on Sk until Sk contains 2 elements.
Since each recursive step reduces the cardinality of the set by roughly a half, the
recursion is guaranteed to terminate. After each recursive step, the remaining set
contains a close pair of S.
Step 1 takes O(n) time in the worst case, if we use the deterministic median-finding
algorithm. Step 2 takes O(n) time based on the result from Part (b). Therefore, the
running time of the algorithm is given by the following recurrence:

T (n) = T (n/2) + O(n),

with the solution T (n) = O(n) according to the master theorem.

SCRATCH PAPER — Please detach this page before handing in your exam.

SCRATCH PAPER — Please detach this page before handing in your exam.

