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Problem Set 7 Solutions 

Problem 7-1. Edit distance 

In this problem you will write a program to compute edit distance. This problem is mandatory. 
Failure to turn in a solution will result in a serious and negative impact on your term grade! 
We advise you to start this programming assignment as soon as possible, because getting all the 
details right in a program can take longer than you think. 

Many word processors and keyword search engines have a spelling correction feature. If you type 
in a misspelled word x, the word processor or search engine can suggest a correction y. The 
correction y should be a word that is close to x. One way to measure the similarity in spelling 
between two text strings is by “edit distance.” The notion of edit distance is useful in other fields 
as well. For example, biologists use edit distance to characterize the similarity of DNA or protein 
sequences. 

The edit distance d(x, y) of two strings of text, x[1 . .m] and y[1 . . n], is defined to be the minimum 
possible cost of a sequence of “transformation operations” (defined below) that transforms string 
x[1 . .m] into string y[1 . . n].1 To define the effect of the transformation operations, we use an 
auxiliary string z[1 . . s] that holds the intermediate results. At the beginning of the transformation 
sequence, s = m and z[1 . . s] = x[1 . .m] (i.e., we start with string x[1 . .m]). At the end of 
the transformation sequence, we should have s = n and z[1 . . s] = y[1 . . n] (i.e., our goal is to 
transform into string y[. . n]). Throughout the tranformation, we maintain the current length s of 
string z, as well as a cursor position i, i.e., an index into string z. The invariant 1 � i � s + 1 
holds at all times during the transformation. (Notice that the cursor can move one space beyond 
the end of the string z in order to allow insertions at the end of the string.) 

Each transformation operation may alter the string z, the size s, and the cursor position i. Each 
transformation operation also has an associated cost. The cost of a sequence of transformation 
operations is the sum of the costs of the individual operations on the sequence. The goal of the 
edit-distance problem is to find a sequence of transformation operations of minimum cost that 
transforms x[1 . .m] into y[1 . . n]. 

There are five transformation operations: 

1Here we view a text string as an array of characters. Individual characters can be manipulated in constant time. 
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Operation Cost	 Effect 
left 0 If i = 1 then do nothing. Otherwise, set i � i− 1.

right 0 If i = s + 1 then do nothing. Otherwise, set i � i + 1.

replace 4 If i = s+1 then do nothing. Otherwise, replace the character


under the cursor by another character c by setting z[i] � c, 
and then incrementing i. 

delete 2	 If i = s+1 then do nothing. Otherwise, delete the character c

under the cursor by setting z[i . . s] � z[i + 1 . . s + 1] and

decrementing s. The cursor position i does not change.


insert 3	 Insert the character c into string z by incrementing s, set­

ting z[i + 1 . . s] � z[i . . s − 1], setting z[i] � c, and then

incrementing index i.


As an example, one way to transform the source string algorithm to the target string analysis 
is to use the sequence of operations shown in Table 1, where the position of the underlined char­
acter represents the cursor position i. Many other sequences of transformation operations also 
transform algorithm to analysis—the solution in Table 1 is not unique—and some other 
solutions cost more while some others cost less. 

Operation z Cost Total 
initial string algorithm 0 0 
right algorithm 0 0 
right algorithm 0 0 
replace by y 4 4 
replace by s 4 8 
replace by i 4 12 
replace by s 4 16 
delete 2 18 
delete 2 20 
delete 2 22 
left 0 22 
left 0 22 
left 0 22 
left alysis 0 22 

alyorithm 
alysrithm 
alysiithm 
alysisthm 
alysishm 
alysism 
alysis 
alysis 
alysis 
alysis 

left 0 22 
insert n 3 25 
insert a 3 28 

alysis 
anlysis 
analysis 

Table 1: Transforming algorithm into analysis 

(a)	 It is possible to transform algorithm to analysis without using the “left” oper­
ation. Give a sequence of operations in the style of Table 1 that has the same cost as 
in Table 1 but does not use the “left” operation. 



algorithm 
algorithm 
anlgorithm 
analgorithm 
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Solution: 

Operation z Cost Total 
initial string 0 0 
right 0 0 
insert n 3 3 
insert a 3 6 
right analgorithm 0 6 
replace by y 4 10 
replace by s 4 14 
replace by i 4 18 
replace by s 4 22 
delete 2 24 
delete 2 26 
delete analysis 2 28 

analyorithm 
analysrithm 
analysiithm 
analysisthm 
analysishm 
analysism 

Table 2: Transforming algorithm into analysis without moving left 

(b)	 Argue that, for any two strings x and y with edit distance d(x, y), there exists a se­
quence S of transformation operations that transforms x to y with cost d(x, y) where 
S does not contain any “left” operations. 

S

Solution: We argue that there is a sequence S that transforms x to y with cost d(x, y) 
without using any “left” operations by contradiction. Suppose that no such sequence 
S exists. Consider a sequence S � that does transform x to y with cost d(x, y) that 
uses “left” operations. Consider the characters inserted by the operations in S � . If a 
character is inserted and then later deleted, then both operations can be removed from 
� to produce a sequence S �� that produces the same result at lower cost. If a character 

a is inserted and then later replaced by a character b, then the insert operation can be 
changed to insert b and the replace operation can be removed to produce a sequence S �� 

that produces the same result at lower cost. If a character is replaced by a character a 
and then replaced again by a character b, then both operations can be replaced by “re­
place b”. This means that all inserted and replaced characters are never changed after 
performing the insertion or replacement. Notice that after removing these operations 
that introduce dependencies, any sequence of insert, delete, and replace operations can 
be reordered so that they occur from left to right without affecting the outcome of the 
transformation. 

(c)	 Show that the problem of calculating the edit distance d(x, y) exhibits optimal sub­
structure. (Hint: Consider all suffixes of x and y.) 
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Solution: 

We show that computing edit distance for strings x and y can be done by finding the 
edit distance of subproblems. Define a cost function 

cxy (i, j) = d(x, y[1 . . i]�x[j + 1 . .m])	 (1) 

That is, cxy (i, j) is the minimum cost of transforming the first j characters of x into 
the first i characters of y. Then d(x, y) = cxy (n, m). Now consider a sequence of 
operations S = �o1, o2, . . . , ok� that transforms x to y with cost C(S) = d(x, y). 
Let Si be the subsequence of S containing the first i operations of S. Let zi be the 
auxilliary string after performing operations Si, where z0 = x and zk = y. 

Theorem 1 If C(Si) = d(x, zi), then C(Si−1) = d(x, zi−1). 

That is, the optimal solution to d(x, zi) contains optimal solutions to subproblems 
d(x, zi−1). We prove this claim by contradiction using cut and paste. Suppose that 
C(Si−1) ∪

z

= d(x, zi−1). There are two cases, C(Si−1) < d(x, zi−1) or C(Si−1) > 
d(x, zi− 1). If C < d(x, zi−1), then we can transform x to zi−1 using operations Si−1 

with lower cost than d(x, zi−1), which is a contradiction. If C(Si−1) > d(x, zi−1), 
then we could replace Si−1 with the sequence of operations S � that transforms x to 

i−1 with cost d(x, zi−1). Then the sequence of operations S � ← oi transforms x to y 
with cost C(S � ← oi). 

C(S � ← oi) = d(x, zi−1) + C(oi) 

< C(Si−1) + C(oi) 

= C(Si) 

= d(x, zi) 

This means that d(x, zi) is not the edit distance between x and zi, which is a contradic­
tion. Therefore Theorem 1 is correct and the edit distance problem exhibits optimal 
substructure. 

(d)	 Recursively define the value of edit distance d(x, y) in terms of the suffixes of strings 
x and y. Indicate how edit distance exhibits overlapping subproblems. 

Solution: 
We can calculate the edit distance d(x, y) using the definition of cxy (i, j) from Equa­
tion 1. Recall that d(x, y) = cxy (m, n). Since we showed in part (a) that there exists 
a sequence of operations that achieves d(x, y) without using the “left” operation, we 
only need to consider the four operations “right”, “replace”, “delete”, and “insert”. 
We can calculate cxy (m, n) recursively. The base case is when no transformation op­
erations have been performed, so cxy (0, 0) = 0. 
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⎧ 0	 if i = 0 and j = 0 
⎧ 
⎧ 
⎧ 
⎧ 
⎧ cxy (i− 1, j − 1) if i > 0 and j > 0 and x[i− 1] = y[j − 1] 

cxy (i, j) = min cxy (i− 1, j − 1) + 4 if i > 0 and j > 0 
⎧ 
⎧ 
⎧ 
⎧ cxy (i− 1, j) + 2 if i > 0 
⎧ 
⎧ 
� cxy (i, j − 1) + 3 if j > 0 

(2)


This recursive solution exhibits overlapping subproblems. For example, computing

cxy (i, j), cxy (i− 1, j), and cxy (i, j− 1) all require recursively computing the subprob­

lem cxy (i− 1, j − 1).


(e)	 Describe a dynamic-programming algorithm that computes the edit distance from 
x[1 . .m] to y[1 . . n]. (Do not use a memoized recursive algorithm. Your algorithm 
should be a classical, bottom-up, tabular algorithm.) Analyze the running time and 
space requirements of your algorithm. 

Solution: Construct a table T where each entry T [i, j] = cxy (i, j). Since each value 
of cxy (i, j) only depends on cxy (i , j �) where i � i and j � � j, we can compute the

entries of T row by row using Equation 2:


EDIT-DISTANCE (x[1..m], y[1..n])

1 T [0, 0] � 0

2 for i � 1 to n

3 for j � 1 to m


⎧ T[i− 1, j − 1] if i > 0 and j > 0 and x[i− 1] = y[j − 1] 
⎧ 
� T[i− 1, j − 1] + 4 if i > 0 and j > 0

4 do T [i, j] � min 
⎧ T[i− 1, j] + 2 if i > 0 
⎧ 

T[i, j − 1] + 3 if j > 0

5 return T [n, m]


The running time of this algorithm is �(mn). This algorithm requires �(mn) space. 

(f)	 Implement your algorithm as a computer program in any language you wish.2 Your 
program should calculate the edit distance d(x, y) between two strings x and y using 
dynamic programming and print out the corresponding sequence of transformation 
operations in the style of Table 1. Run your program on the strings 

x	 = "electrical engineering" , 

y	 = "computer science" . 

Submit the source code of your program electronically on the class website, and hand

in a printout of your source code and your results.


2Solutions will be provided in Java and Python. 
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Solution: Source code for the solutions in Java and Python can be found on the class 
web site. The output of program on the above inputs is: 

x: electrical engineering

y: computer science

Edit Distance: 54


Oper | c |Total| z

initial | 0 | 0 | *electrical engineering 
delete | 2 | 2 | *lectrical engineering 
delete | 2 | 4 | *ectrical engineering 
delete | 2 | 6 | *ctrical engineering 
right | 0 | 6 | c*trical engineering 
insert | 3 | 9 | co*trical engineering 
insert | 3 | 12 | com*trical engineering 
insert | 3 | 15 | comp*trical engineering 
insert | 3 | 18 | compu*trical engineering 
right | 0 | 18 | comput*rical engineering 
insert | 3 | 21 | compute*rical engineering 
right | 0 | 21 | computer*ical engineering 
delete | 2 | 23 | computer*cal engineering 
delete | 2 | 25 | computer*al engineering 
delete | 2 | 27 | computer*l engineering 
delete | 2 | 29 | computer* engineering 
right | 0 | 29 | computer *engineering 
delete | 2 | 31 | computer *ngineering 
replace | 4 | 35 | computer s*gineering 
replace | 4 | 39 | computer sc*ineering 
right | 0 | 39 | computer sci*neering 
delete | 2 | 41 | computer sci*eering 
delete | 2 | 43 | computer sci*ering 
right | 0 | 43 | computer scie*ring 
delete | 2 | 45 | computer scie*ing 
delete | 2 | 47 | computer scie*ng 
right | 0 | 47 | computer scien*g 
insert | 3 | 50 | computer scienc*g 
replace | 4 | 54 | computer science* 

Note that this solution is not necessarily unique. There may be other transformation 
sequences that have the same cost. 

Sample input and output text is provided on the class website to help you debug your program. 
These solutions are not necessarily unique: there may be other sequences of transformation oper­
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ations that achieve the same cost. As usual, you may collaborate to solve this problem, but you 
must write the program by yourself. 

(g)	 Run your program on the three input files provided on the class website. Each input

file contains the following four lines:


1. The number of characters m in the string x. 

2. The string x. 

3. The number of characters n in the string y. 

4. The string y. 

Compute the edit distance d(x, y) for each input. Do not hand in a printout of the 
transformation operations for this problem part. (Extra bonus kudos if you can identify 
the source of all the texts, without searching the web.) 

Solution: 
Input File d(x, y) 
Input 1 1816 
Input 2 1824 
Input 3 1829 

(h)	 If z is implemented using an array, then the “insert” and “delete” operations require 
�(n) time. Design a suitable data structure that allows each of the five transformation 
operations to be implemented in O(1) time. 

Solution: All the transformation operations can be implemented in O(1) time using 
two stacks, L and R. Initially, L is empty and R contains all the characters of x in 
order. 

Operation Implementation 
left If not EMPTY(L), then PUSH(R, POP(L))

right If not EMPTY(R), then PUSH(L, POP(R))

replace by c If not EMPTY(R), then POP(R), PUSH(L, c)

delete If not EMPTY(R), then POP(R)

insert c PUSH(L, c)


Each stack operation requires O(1) time, and each transformation operation requires 
only O(1) stack operations. Therefore each operation requires O(1) time. 

Problem 7-2. GreedSox 

GreedSox, a popular major-league baseball team, is interested in one thing: making money. They 
have hired you as a consultant to help boost their group ticket sales. They have noticed the follow­
ing problem. When a group wants to see a ballgame, all members of the group need seats (in the 
bleacher section), or they go away. Since partial groups can’t be seated, the bleachers are often not 
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full. There is still space available, but not enough space for the entire group. In this case, the group 
cannot be seated, losing money for the GreedSox. 

The GreedSox want your recommendation on a new seating policy. Instead of seating people first-
come/first-serve, the GreedSox decide to seat large groups first, followed by smaller groups, and 
finally singles (i.e., groups of 1). 

You are given a set of groups, G[1 . .m] = [g1, g2, . . . , gm], where gi is a number representing the 
size of the group. Assume that the bleachers seat n people. Consider the following greedy seating 
algorithm, where the function ADMIT(i) admits group i, and REJECT(i) sends away group i. 

SEAT(G[1 . .m], n) 
1 admitted � 0 
2 remaining � n 
3 G � SORT(G) � Sort groups largest to smallest. 
4 for i � 1 to m 
5 do if G[i] � remaining 
6 then ADMIT(i) 
7 remaining � remaining − G[i] 
8 admitted � admitted + G[i] 
9 else REJECT(i) 

10 return admitted 

The SEAT algorithm first sorts the groups by size. It then iterates through the groups from largest 
to smallest, seating any group that fits in the bleachers. It returns the number of people admitted. 

(a)	 The GreedSox owners are right: the greedy seating algorithm works pretty well. Show

that if, given G and n, it is possible to admit k people, then the greedy seating algo­

rithm admits at least k/2 people.


Solution: We begin by proving a lemma about the number of people admitted by the 
algorithm SEAT. 

Lemma 2 Algorithm SEAT either admits all groups of size � n, or it admits � n/2 
people. 

Proof. Assume algorithm SEAT does not admit all groups of size � n. That is, there 
is some group gi of size � n that SEAT does not admit. 

There are two cases to consider. First, assume that gi � n/2. Then, since the algorithm 
is greedy, we know that it must have admitted some group larger than gi; otherwise, 
group gi would have been admitted. Therefore, we can conclude that the algorithm 
seats � n/2 people, as required. 

For the second case, assume that gi < n/2. Since gi is not admitted, we know that 
at some point remaining < gi < n/2. Since remaining is non-increasing, we thus 
conclude that at least n/2 people are seated. 
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We argue that this lemma immediately implies that the SEAT algorithm is 2-competitive. 
First, if SEAT admits all groups of size � n, then it admits exactly the same number 
of people as the optimal seating algorithm. Second, if SEAT admits at least n/2 peo­
ple, we know that the optimal seating algorithm can seat at most n people. Hence 
n/2 > k/2, as required. 

(b)	 Unfortunately, the SEAT algorithm does not work perfectly. Show that SEAT is not

optimal by giving a counterexample in which, asymptotically as n gets large, the ratio

between greedy seating and optimal seating approaches 1/2.


Solution: Consider groups G = {(n + 2)/2, n/2, n/2}. Notice that the greedy 
seating algorithm admits the group of size (n + 2)/2, and then cannot admit any of 
the other groups. The optimal algorithm admits the two groups of size n/2, filling all 
n seats. Notice that asymptotically ((n + 2)/2)/n approaches 1/2 as n gets large. 

When you present your results to the GreedSox owners, they point out the following problem: 
unlike numbers in a computer’s memory, real people are hard to move around. In particular, people 
waiting in line do not like to be “sorted.” The GreedSox owners ask you to develop a version of 
the greedy seating algorithm that does not modify the set G. (You can think of G as being stored 
in read-only memory.) You suggest the following algorithm: 

RESEAT(G[1 . . m], n)

1 admitted � 0

2 remaining � n

3	 for j � 1 to ≤lg n≥ 
4 do for i � 1 to m 
5 do if G[i] � n/2j and G[i] � remaining 
6	 then ADMIT(i) 
7	 remaining � remaining − G[i] 
8	 admitted � admitted + G[i] 
9	 else if G[i] > remaining 

10	 then REJECT(i) 
11	 return admitted 

The RESEAT algorithm iterates through the list of groups several times. In the first iteration, it 
admits any group of size at least n/2. In the second iteration, it admits any group of size at least 
n/4. It continues in the same manner seating smaller and smaller groups until the bleachers are 
filled. When RESEAT finishes, it returns the number of people admitted. 

(c)	 Assume that, given G and n, it is possible to admit at least k people. Show that the

RESEAT algorithm still seats at least k/2 people.
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Solution: 
The argument in this case is quite similar to the proof in part (a). We begin by reprov­
ing the same lemma about the number of people admitted by the algorithm RESEAT . 

Lemma 3 Algorithm RESEAT either admits all groups of size � n, or it admits � n/2 
people. 

Proof. Assume algorithm RESEAT does not admit all groups of size � n. That is, 
there is some group gi of size � n that RESEAT does not admit. 
There are two cases to consider. First, assume that gi � n/2. Then, since the algorithm 
first considers all groups of size � n/2 (when j = 1), we know that it must have 
admitted some group of size � n/2; otherwise, group gi would have been admitted 
in the loop when j = 1. Therefore, we can conclude that the algorithm seats � n/2 
people, as required. 
For the second case, assume that gi < n/2. Notice that when j = ≤lg n≥, gi � 
n/2j . Therefore, if gi is not admitted, we can conclude that gi > remaining. That is, 
remaining < gi < n/2. Since remaining is non-increasing, we thus conclude that at 
least n/2 people are seated. 
As before, this lemma immediately implies that the algorithm RESEAT is 2-competitive, 
as desired. 

(d)	 The RESEAT algorithm runs in O(m lg n) time. Devise a new algorithm that runs in

O(m) time and still guarantees that if k people can be seated, your algorithm seats at

least k/2 people.


Solution: 
FAST-RESEAT(G[1 . . m], n)

1 admitted � 0

2 remaining � n

3 for i � 1 to m

4 do if G[i] � n/2 and G[i] � remaining

5 then ADMIT(i)

6 admitted � admitted + G[i]

7 remaining � remaining − G[i]

8 for i � 1 to m

9 do if G[i] � remaining


10 then ADMIT(i) 
11 admitted � admitted + G[i]

12 remaining � remaining − G[i]

13 return admitted


The argument showing this algorithm is correct is essentially the same as the proof 
in part (c). In particular, we again show the same lemma about the number of people 
seated. 
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Lemma 4 Algorithm FAST-RESEAT either admits all groups of size � n, or it admits 
� n/2 people. 

Proof. Assume algorithm FAST-RESEAT does not admit all groups of size � n. 
That is, there is some group gi of size � n that FAST-RESEAT does not admit.


There are two cases to consider. First, assume that gi � n/2. Then, since the algorithm

first considers all groups of size � n/2, we know that if gi was rejected, it must have

admitted some group of size � n/2; otherwise, group gi would have been admitted.

Therefore, we can conclude that the algorithm seats � n/2 people, as required.


g
For the second case, assume that gi < n/2. If gi is not admitted, we can conclude that


i > remaining. That is, remaining < gi < n/2. Since remaining is non-increasing,

we thus conclude that at least n/2 people are seated.


As before, this lemma immediately implies that the algorithm FASTRESEAT is 2­

competitive, as desired.



