
Introduction to Algorithms September 30, 2005
Massachusetts Institute of Technology 6.046J/18.410J
Professors Erik D. Demaine and Charles E. Leiserson Handout8

Problem Set 1 Solutions

Problem 1-1. Asymptotic Notation

For each of the following statements, decide whether it isalways true, never true, or sometimes
true for asymptotically nonnegative functionsf andg. If it is always true or never true, explain
why. If it is sometimes true, give one example for which it is true, and one for which it is false.

(a) f(n) = O(f(n)2)

Solution: Sometimes true: For f(n) = n it is true, while forf(n) = 1/n it is not
true. (The statement is always true forf(n) = Ω(1), and hence for most functions
with which we will be working in this course, and in particular all time and space
complexity functions).

(b) f(n) + g(n) = Θ (max (f(n), g(n)))

Solution: Always true: max(f(n), g(n)) ≤ f(n) + g(n) ≤ 2 max(f(n), g(n)).

(c) f(n) + O(f(n)) = Θ(f(n))

Solution: Always true: Considerf(n) + g(n) whereg(n) = O(f(n)) and letc be a
constant such that0 ≤ g(n) < cf(n) for large enoughn. Thenf(n) ≤ f(n)+g(n) ≤
(1 + c)f(n) for large enoughn.

(d) f(n) = Ω(g(n)) andf(n) = o(g(n)) (note the little-o)

Solution: Never true: If f(n) = Ω(g(n)) then there exists positive constantcΩ and
nΩ such that for alln > nΩ, cg(n) ≤ f(n). But if f(n) = o(g(n)), then for any
positive constantc, there existsno(c) such that for alln > no(c), f(n) < cg(n). If
f(n) = Ω(g(n)) andf(n) = o(g(n)), we would have that forn > max(nΩ, no(cΩ))
it should be thatf(n) < cΩg(n) ≤ f(n) which cannot be.

(e) f(n) 6= O(g(n)) andg(n) 6= O(f(n))

Solution: Sometimes true: For f(n) = 1 andg(n) = ‖n ∗ sin(n)‖ it is true, while
for anyf(n) = O(g(n)), e.g.f(n) = g(n) = 1, it is not true.



2 Handout 8: Problem Set 1 Solutions

Problem 1-2. Recurrences

Give asymptotic upper and lower bounds forT (n) in each of the following recurrences. Assume
thatT (n) is constant forn ≤ 3. Make your bounds as tight as possible, and justify your answers.

(a) T (n) = 2T (n/3) + n lg n

Solution: By Case 3 of the Master Method, we haveT (n) = Θ(n lg n).

(b) T (n) = 3T (n/5) + lg2 n

Solution: By Case 1 of the Master Method, we haveT (n) = Θ(nlog5(3)).

(c) T (n) = T (n/2) + 2n

Solution: Case 3 of master’s theorem, (check that the regularity condition holds),
Θ(2n).

(d) T (n) = T (
√

n) + Θ(lg lg n)

Solution: Change of variables: letm = lg n. Recurrence becomesS(m) =
S(m/2) + Θ(lg m). Case 2 of master’s theorem applies, soT (n) = Θ((lg lg n)2).

(e) T (n) = 10T (n/3) + 17n1.2

Solution: Sincelog3 9 = 2, so log3 10 > 2 > 1.2. Case 1 of master’s theorem
applies,Θ(nlog3 10).

(f) T (n) = 7T (n/2) + n3

Solution: By Case 3 of the Master Method, we haveT (n) = Θ(n3).

(g) T (n) = T (n/2 +
√

n) +
√

6046

Solution: By induction,T (n) is a monotonically increasing function. Thus, for large
enoughn, T (n/2) ≤ T (n/2+

√
n) ≤ T (3n/4). At each stage, we incur constant cost√

6046, but we decrease the problem size to atleast one half and at most three-quarters.
ThereforeT (n) = Θ(lg n).



Handout 8: Problem Set 1 Solutions 3

(h) T (n) = T (n− 2) + lg n

Solution: T (n) = Θ(n log n). This isT (n) =
∑n/2

i=1 lg 2i ≥ ∑n/2
i=1 lg i ≥ (n/4)(lg n/4) =

Ω(n lg n). For the upper bound, note thatT (n) ≤ S(n), whereS(n) = S(n−1)+lg n,
which is clearlyO(n lg n).

(i) T (n) = T (n/5) + T (4n/5) + Θ(n)

Solution: Master’s theorem doesn’t apply here. Draw recursion tree. At each level,
doΘ(n) work. Number of levels islog5/4 n = Θ(lg n), so guessT (n) = Θ(n lg n) and
use the substitution method to verify guess.
In thef(n) = Θ(n) term, let the constants forΩ(n) andO(n) ben0, c0 andc1, respec-
tively. In other words, let for alln ≥ n0, we havec0n ≤ f(n) ≤ c1n.

• First, we showT (n) = O(n).
For the base case, we can choose a sufficiently large constantd1 such thatT (n) <
d1n lg n.
For the inductive step, assume for allk < n, thatT (k) < d1n lg n. Then for
k = n, we have

T (n) ≤ T
(

n

5

)

+ T
(

4n

5

)

+ c1n

≤ d1
n

5
lg
(

n

5

)

+ d1
4n

5
lg
(

4n

5

)

+ c1n

= d1n lg n− d1n

5
lg 5− 4d1n

5
lg
(

5

4

)

+ c1n

= d1n lg n− n

((

lg 5 + 4 lg(5/4)

5

)

d1 − c1

)

.

The residual is negative as long as we pickd1 > 5c1/(lg 5+4 lg(5/4)). Therefore,
by induction,T (n) = O(n lg n).
• To show thatT (n) = Ω(n), we can use almost the exact same math.

For the base case, we choose a sufficiently small constantd0 such thatT (n) >
d0n lg n.
For the inductive step, assume for allk < n, thatT (k) > d0n lg n. Then, for
k = n, we have

T (n) ≥ T
(

n

5

)

+ T
(

4n

5

)

+ c0n

≥ d0
n

5
lg
(

n

5

)

+ d0
4n

5
lg
(

4n

5

)

+ c0n

= d0n lg n + n

(

c0 −
(

lg 5 + 4 lg(5/4)

5

)

d0

)

.



4 Handout 8: Problem Set 1 Solutions

The residual is positive as long asd0 < 5c0/(lg 5 + 4 lg(5/4)). Thus,T (n) =
Ω(n lg n).

(j) T (n) =
√

n T (
√

n) + 100n

Solution: Master’s theorem doesn’t apply here directly. PickS(n) = T (n)/n. The
recurrence becomesS(n) = S(

√
n) + 100. The solution of this recurrece isS(n) =

Θ(lg lg n). (You can do this by a recursion tree, or by substitutingm = lg n again.)
Therefore,T (n) = Θ(n lg lg n).

Problem 1-3. Unimodal Search

An arrayA[1 . . n] is unimodal if it consists of an increasing sequence followed by a decreasing
sequence, or more precisely, if there is an indexm ∈ {1, 2, . . . , n} such that

• A[i] < A[i + 1] for all 1 ≤ i < m, and

• A[i] > A[i + 1] for all m ≤ i < n.

In particular,A[m] is the maximum element, and it is the unique “locally maximum” element
surrounded by smaller elements (A[m− 1] andA[m + 1]).

(a) Give an algorithm to compute the maximum element of a unimodal input arrayA[1 . . n]
in O(lg n) time. Prove the correctness of your algorithm, and prove thebound on its
running time.

Solution: Notice that by the definition of unimodal arrays, for each1 ≤ i < n either
A[i] < A[i + 1] or A[i] > A[i + 1]. The main idea is to distinguish these two cases:

1. By the definition of unimodal arrays, ifA[i] < A[i + 1], then the maximum
element ofA[1..n] occurs inA[i + 1..n].

2. In a similar way, ifA[i] > A[i + 1], then the maximum element ofA[1..n] occurs
in A[1..i].

This leads to the following divide and conquer solution (note its resemblance to binary
search):

1 a, b← 1, n
2 while a < b
3 do mid← ⌊(a + b)/2⌋
4 if A[mid] < A[mid + 1]
5 then a← mid + 1
6 if A[mid] > A[mid + 1]
7 then b← mid
8 return A[a]



Handout 8: Problem Set 1 Solutions 5

The precondition is that we are given a unimodal arrayA[1..n]. The postcondition is
thatA[a] is the maximum element ofA[1..n]. For the loop we propose the invariant
“The maximum element ofA[1..n] is in A[a..b] anda ≤ b”.

When the loop completes,a ≥ b (since the loop condition failed) anda ≤ b (by
the loop invariant). Thereforea = b, and by the first part of the loop invariant the
maximum element ofA[1..n] is equal toA[a].

We use induction to prove the correctness of the invariant. Initially, a = 1 andb = n,
so, the invariant trivially holds. Suppose that the invariant holds at the start of the loop.
Then, we know that the maximum element ofA[1..n] is in A[a..b]. Notice thatA[a..b]
is unimodal as well. IfA[mid] < A[mid + 1], then the maximum element ofA[a..b]
occurs inA[mid+1..b] by case 1. Hence, aftera← mid+1 andb remains unchanged
in line 4, the maximum element is again inA[a..b]. The other case is symmetric.

To complete the proof, we need to show that the second part of the invarianta ≤ b is
also true. At the start of the loopa < b. Therefore,a ≤ ⌊(a + b)/2⌋ < b. This means
thata ≤ mid < b such that after line 4 or line 5 in whicha andb get updateda ≤ b
holds once more.

The divide and conquer approach leads to a running time ofT (n) = T (n/2)+Θ(1) =
Θ(lg n).

A polygon isconvex if all of its internal angles are less than180◦ (and none of the edges cross each
other). Figure 1 shows an example. We represent a convex polygon as an arrayV [1 . . n] where
each element of the array represents a vertex of the polygon in the form of a coordinate pair(x, y).
We are told thatV [1] is the vertex with the minimumx coordinate and that the verticesV [1 . . n]
are ordered counterclockwise, as in the figure. You may also assume that thex coordinates of the
vertices are all distinct, as are they coordinates of the vertices.

(b) Give an algorithm to find the vertex with the maximumx coordinate inO(lg n) time.

Solution: Notice that thex-coordinates of the vertices form a unimodal array and we
can use part (a) to find the vertex with the maximumx-coordinate inΘ(lg n) time.

(c) Give an algorithm to find the vertex with the maximumy coordinate inO(lg n) time.

Solution: After finding the vertexV [max] with the maximumx-coordinate, notice
that they-coordinates inV [max], V [max + 1], . . . , V [n − 1], V [n], V [1] form a uni-
modal array and the maximumy-coordinate ofV [1..n] lies in this array. Again part
(a) can be used to find the vertex with the maximumy-coordinate. The total running
time isΘ(lg n).



6 Handout 8: Problem Set 1 Solutions

V [5]

V [8]

V [9]

V [1]

V [2]

V [3]
V [4]

V [6]

V [7]

Figure 1: An example of a convex polygon represented by the arrayV [1 . . 9]. V [1] is the vertex
with the minimumx-coordinate, andV [1 . . 9] are ordered counterclockwise.


