
Design and Analysis of Algorithms April 3, 2015
Massachusetts Institute of Technology
Profs. Erik Demaine, Srini Devadas and Nancy Lynch Recitation 7

Network Flow and Matching

Edmonds-Karp Analysis

Recall: Edmonds-Karp is an efficient implementation of the Ford-Fulkerson method which selects
shortest augmenting paths in the residual graph. It assigns a weight of 1 to every edge and runs
BFS to find a breadth-first shortest path from s to t in Gf .

Monotonicity Lemma

Lemma. Let δ(v) = δf (s, v) be the breadth-first distance from s to v in Gf . During the Edmonds-
Karp algorithm, δ(v) increases monotonically.

Proof:

Suppose that augmenting a flow f on G produces a new flow f /. Let δ/(v) = δf ' (s, v). We will
show that δ/(v) ≥ δ(v) by induction on δ/(v).

Base Case: δ/(v) = 0. This implies that v = s, and since δ(s) = 0 and distance can never
be negative, it follows δ/(s) ≥ δ(s).

Inductive Case: Assume inductive hypothesis holds for any u where δ/(u) < δ/(v). We will
show that it is also hods for v.

Consider a breadth-first path s → · · · → u → v in Gf ' . We must have δ/(v) = δ/(u) + 1,
since subpaths of shortest paths are also shortest paths. Also note that by our inductive assumption
δ/(u) ≥ δ(u), because δ/(u) < δ/(v). Certainly, (u, v) ∈ Ef ' . We will now prove that δ/(v) ≥ δ(v)
in both cases where (u, v) ∈ Ef and (u, v) ∈ Ef .

Case 1: (u, v) ∈ Ef . Here we have:

δ(v) ≤ δ(u) + 1 triangle inequality
≤ δ/(u) + 1 inductive assumption (1)
= δ/(v) breadth-first path

Therefore δ/(v) ≥ δ(v) and monotonicity of δ(v) is established.

6.046J/18.410J

2 Recitation 7: Network Flow and Matching

Case 2: (u, v) ∈ Ef . Here, the only way (u, v) ∈ Ef ' is if the augmenting path p that produced f /

from f must have included (v, u). Moreover, p is a breadth first path in Gf :

p = s → · · · → v → u

Thus, we have:

δ(v) = δ(u) − 1 breadth-first path
≤ δ/(u) − 1 inductive assumption

(2)
= δ/(v) − 2 breadth-first path
< δ/(v)

thereby establishing monotonicity for this case, too. D

Counting Flow Augmentations

Theorem. The number of flow augmentations in the Edmonds-Karp algorithm is O(V E).

Proof:

For an augmenting path p, define cf (p) = min{cf (u, v) ∈ p}.

Let p be an augmenting path, and suppose that we have cf (p) = cf (u, v) for edge (u, v) ∈ p. Then,
we say that (u, v) is critical, and it disappears from the residual graph after flow augmentation.
This is because during augmentation, the residual capacity of every edge in p decreases by cf (p)
as that much new flow is pushed through the augmenting path. And since cf (u, v) − cf (p) = 0,
the edge disappears after augmentation.

The first time an edge (u, v) is critical, we have δ(v) = δ(u)+1 since p is a breadth-first path. After
the augmentation, we must wait until (v, u) is on an augmenting path before (u, v) can be critical
again. Let δ/ be the distance function in the residual network when (v, u) is on an augmenting path.
Then, we have:

δ/(u) = δ/(v) + 1 breadth-first path
≥ δ(v) + 1 monotonicity (3)
= δ(u) + 2 breadth-first path

Hence between each occurrence of an edge (u, v) as critical, δ(u) increases by at least 2. And since
δ(u) starts out non-negative and can be at most |V | − 1 until the vertex is unreachable, each edge
can be critical O(V) times. And since the residual graph contains O(E) edges, the total number of
flow augmentations is O(V E). D

Corollary. The Edmonds-Karp maximum-flow algorithm runs in O(V E2) time.

Proof: Breadth-First Search runs in O(E) time, and there are O(V E) augmentations. All other
bookkeeping is O(V) per augmentation.

Recitation 7: Network Flow and Matching 3

Applications of Network Flow

Vertex Cover

Given an undirected graph G = (V, E), we say that a set S ⊆ V of vertices covers G, if for every
edge (u, v) ∈ E, S contains either u or v. The Vertex Cover problem is now to find S such that S
covers G and |S| is minimal.

Vertex Cover is NP-Hard in general graphs but polynomial time solvable in bipartite graphs.

Bipartite Vertex Cover

Given a bipartite graph G = (L U R, E ⊆ L × R), find the set S such that S covers G and |S| is
minimal.

Solution: Given G, define the following Flow Network H:

• Create a new source vertex s and add edges of capacity 1 from s to every vertex in L

• Create a new sink vertex t and add edges of capacity 1 from every vertex in R to t

• Direct all edges in E from L to R and assign each edge ∞ capacity

Run Maximum Flow in H and return the value.

For example, consider the following graph H constructed from G = ({L1, L2, L3}U{R1, R2, R3}, E)
where E consists of the shown edges:

s

L1

L2

L3

R1

R2

R3

t

1

1

1

1

1

1

∞

∞

∞

∞

∞

In this example, the Maximum Flow is 2, and the minimal vertex cover is Q = {L1, R3} and
|Q| = 2.

4 Recitation 7: Network Flow and Matching

Correctness of Bipartite Vertex Cover as Maximum Flow

Claim 1: Every Vertex Cover Q of H defines an (S, T) cut of a finite value c(S, T).

Proof: Let Q = QL U QR where QL = Q ∩ L and QR = Q ∩ R. Then define the cut (S, T)

as follows:

S = {s} ∪ QR ∪ (L\QL)

T = {t} ∪ QL ∪ (R\QR)

Proof by picture:

s

QL

L\QL

R\QR

QR

t

Note that there cannot be any edges going from L\QL to R\QR because if there were such an edge,
both endpoint vertices would not be covered and would contradict that Q was a valid vertex cover.
From the picture it is clear that (S, T) is indeed a cut in H . It is also clear that c(S, T) = QL + QR

because the only edges that cross the cut (S, T) are all the edges from s to QL and from QR to t,
and each of them have capacity 1. D

Claim 1 implies that c(S∗, T ∗) ≤ |Q∗| where Q∗ is the minimum Vertex Cover of G and (S∗, T ∗)
is the minimum cut in H .

Claim 2: For any finite cut (S, T) in H , the set Q = (S ∩ R) ∪ (T ∩ L) is a Vertex Cover of
G.

Proof: Observe the following picture:

Recitation 7: Network Flow and Matching 5

s

T ∩ L

S ∩ L

T ∩ R

S ∩ R

t

Note that there cannot be any edges going from S ∩ L to T ∩ R because that would make c(S, T)
infinite and contradict the assumption that the cut must be of finite capacity. From this picture,
it is clear that every edge in G has at least one end point in either T ∩ L or S ∩ R and indeed
Q = (S ∩ R) ∪ (T ∩ L) covers G. It is also clear that |Q| = |S ∩ R| + |T ∩ L| = c(S, T). D

Claim 2 implies that |Q∗| ≤ c(S∗, T ∗) where (S∗, T ∗) is the minimum cut in H and Q∗ is the
minimum Vertex Cover of G.

Punchline:

By claims 1 and 2, the size of the minimum Vertex Cover of G, |Q∗| is equal to the size of minimum
cut (S∗, T ∗). And since the Maximum Flow is equal to the Minimum Cut, we can use Maximum
Flow to solve Bipartite Vertex Cover in the way described above.

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

