
Design and Analysis of Algorithms March 20, 2015 
Massachusetts Institute of Technology 
Profs. Erik Demaine, Srini Devadas and Nancy Lynch Recitation 6 

Greedy Algorithms 

Process Scheduling 

You have a computer and n processes with processing times t1, ..., tn. You have to pick the order 
in which to run the processes. Let pi denote the ith process you run. Then, the completion time CiPifor process pi is defined as Cpi = tpj , i.e., the sum of times for all the processes up till this j=1 P
one ends. You have to minimize the average completion time, i.e. n .i=1 Cpi 

Greedy solution 

This problem has a well known greedy solution, known as the Shortest Processing Time First 
(SPTF) rule. We perform the processes in order of lowest processing time. Let us prove this. 

Assume tpi ≥ tpj and i < j. If we interchange pi and pj , then the completion time of every­
thing from process i to j reduces by tpi − tpj , which is non-negative, and the completion time for 
everything process j onwards remains unchanged. Thus, the interchanged order of processes is 
less than or equal to the original. 

In this manner, we can sort the process times by performing two-swaps one by one, and we 
will only decrease our average completion time. We can do this in O(n log n) time. 

Online version 

This problem has the same solution when processes can be added dynamically. If a process with a 
lower processing time than the remaining processing time of the current one is added, we switch 
to that one and complete it first. The proof is similar. 

6.046J/18.410J 



2 Recitation 6: Greedy Algorithms 

Event Overlap problem 

You have n events on your calendar, defined as intervals with a start time si and a finish time fi. 
The events might overlap, and you want to attend all the events, so you are going to create k clones 
of yourself to achieve this. You want to minimize the number of clones you need, k. A clone can 
attend a certain non-overlapping subset of events. 

Greedy solution 

We sort the intervals by start time. We start with 0 clones and dynamically assign each interval to 
one of these clones. We maintain the finish time of the last interval assigned to each of these clones. 

As we iterate through the sorted list, for each interval, if it starts after the last finished event for 
one of the clones, we can assign this interval to the clone without an overlap. So we assign this 
event to it and update its finish time. If it is not compatible with any of the clones, we create a new 
clone and assign this event to it. 

Correctness 

Let us consider the event that corresponds to adding the mth clone. Suppose it happens when 
considering interval (si, fi). This means that m − 1 previously considered intervals overlap with 
this. But, since they all start before si (since we sorted by start time), that means that at time si, 
there are at least m concurrent intervals. This means that the optimal solution uses ≥ m clones. 

Implementation 

Here is an O(n log n) implementation. We maintain a min-heap of finish times of each clone’s last 
interval. When adding an interval (si, fi), if the minimum finish time on the heap is ≥ si, all of the 
clones are incompatible, and so we create a new clone by adding fi to the heap. If the minimum 
finish time on the heap < si, we can add this interval to it, and so we pop from the heap and add 
fi. 

Note This problem can in fact be generalized to decomposing any partial ordering into chains 
by Dilworth’s theorem. 



3 Recitation 6: Greedy Algorithms 

Fractional Make-Change 

Let us consider the make-change problem from last recitation, with a few modifications. Instead of 
coins, we have m kinds of metals. Given a value N , we want to make change for N cents. Metal 
type i has value Si per kilogram, and we have ni kilograms of it. As these metals are in molten 
form, and we have an infinite precision scale, we can give out non-integral weights also. 

This means that if we choose to use ki kilograms of type i, where 0 ≤ ki ≤ ni, the value given P 
out will be Siki. The objective now is to minimize the total weight of the metals used ki 

Greedy solution 

Our greedy intuition for the original make change problem now works. We take the most valuable 
metal, and try to fulfill as much of the remaining value with it as possible. 

In other words, we sort the metals in decreasing order of value per kilogram and set remaining 
value r = N . As we iterate through the sorted list from i = 1 to m, if Sini < r, we set r = r−Sini 

and add ni kg of metal i to our set. Otherwise, if Sini ≥ r, we add 
S
r 
i 

kg of metal i to our collection, 
and set r = r − Si S

r 
i 
= 0. We break at this point, as our requirement is fulfilled. 

Correctness 

The proof follows by cut-and-paste. Let’s say we have w kg unused metal i and we are using w 
kg of metal j in our optimal solution, such that Si > Sj . Then, we could replace the w of metal j 

Sj Sjwith w more of metal i. As Si > Sj , w < w, so we have that much of metal i by hypothesis. 
Si Si 

Further, our total weight strictly decreases. This contradicts the assumption that our solution was 
optimal. 

We conclude that we will always exhaust the more valuable metal before using a less valuable 
one, so our greedy algorithm is correct. 



MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



