
Design and Analysis of Algorithms February 27, 2015
Massachusetts Institute of Technology
Profs. Erik Demaine, Srini Devadas and Nancy Lynch Recitation 4

Randomized Select and Randomized Quicksort

1 Randomized Select

The algorithm RANDOMIZED-SELECT selects out the k-th order statistics of an arbitrary array.

1.1 Algorithm

The algorithm RANDOMIZED-SELECT works by partitioning the array A according to
RANDOMIZED-PARTITION, and recurses on one of the resulting arrays.

RANDOMIZED-SELECT(A, p, r, i)

1 if p = r
2 then return A[p]
3 q ← RANDOMIZED-PARTITION(A, p, r)
4 k ← q − p + 1
5 if i ≤ k
6 then return RANDOMIZED-SELECT(A, p, q, i)
7 else return RANDOMIZED-SELECT(A, q + 1, r, i − k)

RANDOMIZED-PARTITION(A, p, r)

1 i ← RANDOM(p, r)
2 exchange A[p] ↔ A[i]
3 return PARTITION(A, p, r)

Both of the algorithms above are as in CLRS.

1.2 Analysis of Running Time

Let T (n) be the expected running time Randomized Select. We would like to write out a recursion
for it.

Let Ei denote the event that the random partition divides the array into two arrays of size i and
n − i. Then we see that

n−1n
T (n) ≤ n + Pr(Ei) (max (T (i), T (n − i))) , (1)

i=0

6.046J/18.410J

2 Recitation 4: Randomized Select and Randomized Quicksort

where by taking the max we assume that we are recursing on the larger subarray (hence we have
the less than or equal sign).

For simplicity, let us assume that n is even. Note that max (T (i), T (n − i)) is always the same
as max (T (n − i), T (i)). This allows us to extend the chain of inequalities to

n/2−1n
T (n) ≤ n + 2 Pr(Ei) (max (T (i), T (n − i))) . (2)

i=0

Also, since the partition element is chosen randomly, it is equally likely to partition the array
into sizes 0, 1, · · · , n − 1. So Pr(Ei) =

n
1 for all i. This leads us to

n/2−1n2
T (n) ≤ n + (max (T (i), T (n − i))) . (3)

n
i=0

We will not show, via substitution, that T (n) = O(n).

Theorem 1 Let T (n) denote the expected running time of randomized select. Then T (n) = O(n).

Proof. We will show by the method of substitution. Let’s say that T (n) ≤ cn, and check that it
works.

We must first check the base case. This is obvious, however, since T (n') is a constant for some
'small constant n .

Now let us check the inductive case. Assume that T (k) ≤ ck for all k < n, and we now want
to show that T (n) ≤ cn.

n/2−1 n/2−1n n2 2
T (n) ≤ n + (max (T (i), T (n − i))) ≤ n + (max (ci, c(n − i))) . (4)

n n
i=0 i=0

We note that that this is the same as

n−1n2
n + ci. (5)

n
i=n/2 n−1 n−1The term 2 (ci) is the same as 2c i. So we get

n i=n/2 n i=n/2 ⎛ ⎞
n−1 n

T (n) ≤ n + c ⎝ 2
i⎠ ≤ n + c (3n/4) = n 1 +

3c
. (6)

n 4
i=n/2

Hence if we take c = 4 (which works for the case T (1) ≤ 4 as well) we get
3 ∗ 4

T (n) ≤ n 1 + = n (1 + 3) = 4n, (7)
4

as we wanted.

Recitation 4: Randomized Select and Randomized Quicksort 3

2 Randomized Quicksort

2.1 Algorithm

The algorithm RANDOMIZED-QUICKSORT works by partitioning the array A, and recursively
sorts both partitions.

RANDOMIZED-QUICKSORT(A, p, r)

1 if p < r
2 then q ← RANDOMIZED-PARTITION(A, p, r)
3 RANDOMIZED-QUICKSORT(A, p, q − 1)
4 RANDOMIZED-QUICKSORT(A, q + 1, r)

2.2 Analysis of Running Time

Let T (n) be the expected running time Randomized Quicksort. Let Ei denote the event that the
array is partitioned into two arrays of size i and n − i − 1. The pivot value is not included in either
partition. Then we have

n−1n
(8)≤ − −T () Pr(E)(T (i) + T (i 1) + Θ())n n n ,i

i=0

Because Pr(Ei) =
n
1 for all i, we have nn−1

T (n) ≤ (T (i) + T (n − i − 1) + Θ(n)),
n

i=0

1

(9)

nn−1

T (n) ≤ T (i) + Θ(n),
n

i=0

2

(10)

n

The same as Randomized select, we use induction to prove that T (n) = Θ(n log n). Suppose
T (n) ≤ cn log n for some constant c > 0. Notice the fact that

n−1

2i log i ≤
1
n 2 log n −

1
n , (11)

2 8
i=0

Then for the inductive step, we have nn−1

T (n) ≤ ci log i + Θ(n),
n

i=0

2c 1 1
(n 2 log n − n 2) + Θ(n),

2

(12)

(13)
T (n) ≤

n
 2
 8

cn
T (n) ≤ cn log n − (− Θ(n)), (14)

4
When c is chosen large enough, T (n) ≤ cn log n.

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

