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Distributed Algorithms
 

1 Review 

We are going to review content from lecture that might be confusing. 
Some key ideas from lecture include: 

1. Synchronous vs.	 asynchronous network models (based on undirected graphs). In the syn­
chronous model all nodes move in lockstep. They all send messages, then receive messages 
and then do computation. Then, after computation they send messages again and re-start the 
cycle. In the asynchronous model any finite amount of time can pass in between rounds. 
This finite amount of time can be different for different nodes. This allows for many pos­
sible interleavings. (Note: analysis of the time for asynchronous models tends to add some 
assumption of nodes finishing a round by time t for some t. However, this is not used for 
correctness. For correctness any amount of time can pass, for time analysis we need some 
kind of bound. ) 

2. There are many possible ways to judge how costly a protocol is. We can count number of 
messages, number of bits, number of rounds or do asynchronous time analysis. 

3. There were many proof methods discussed in class. E.G., invariants, probabilistic methods 
for breaking symmetry, etc. 

4. Synchronous Leader Election:	 A canonical symmetry-breaking problem. In symmetric 
graphs like the clique, this is impossible if the processes are identical and deterministic, 
but has solutions if the processes have UIDs or can use randomness. 

5. Synchronous Maximal Independent Set: Another interesting symmetry-breaking problem. 
The goal is to have the set of nodes that are on by the end of execution be a maximal inde­
pendent set. Luby’s algorithm works for this. Every round nodes randomly pick an ID from 
[1, n5]. Then every node sends to all neighbors the ID. A node that has a higher ID than 
all of its neighbors selects to be in the set. It tells all of its neighbors that it is in the MIS, 
those neighbors are then not in the MIS. We repeat rounds after that. This will terminate in 
O(lg(n)) time. 

6. Synchronous Breadth-First Spanning Tree construction. 
Synchronous: v0 sends out a message to all neighbors. Those neighbors send out messages, 
etc. Nodes will save, from the first node they get a message from that that node is their 
parent. 
This is the simple algorithm from class. The message complexity is O(|E|). 
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7. Termination using convergecast. Go over this in detail. 

8. Synchronous Shortest-Paths Tree construction. Algorithm (uses relaxation). Correctness. 
Analysis. Child pointers. Simple applications. 

9. Termination using convergecast, with corrections. 

10. Asynchronous distributed algorithms. Go over the model assumptions. Process automata, 
channel automata, compose them. Max computation example. 

11. Asynchronous BFS tree construction.	 What goes wrong if we just run the synchronous 
algorithm asynchronously. A correct algorithm (uses relaxation). Correctness, analysis. 
Termination using convergecast. 

12. Asynchronous SP tree construction. Algorithm (with lots of relaxation). Analysis. Surpris­
ing back worst-case example. 

2 New Questions 

2.1 Leader election in a ring with UIDs 

Assume that the processes have UIDs and a consistent sense of direction (ports labeled “left” 
(clockwise) or “right”(counterclockwise)). 

Consider the synchronous setting first. 
Simple algorithm: Everyone sends their UID clockwise. When they receive their own back, 

they know they have received all the UIDs. Then the largest UID process can declare itself the 
leader. 

Time: n Messages: n2 

Q: What if we want to save messages? 
Idea: Throw away any arriving message that is less than your own, or less than the maximum 

you ever saw. But these don’t help the order of magnitude in the worst case. Construct an example. 
Q: Can we beat O(n2)? 
Hirshberg-Sinclair is one solution, involving searching to successively doubled distances. Specif­

ically, each process does the following. 

•	 Send out a message with its UID and a message hop count h and direction d, (UID, h, d). 

•	 If you receive another nodes message (UID, h, d) forward (UID, h − 1, d) in the direction 
d only if the hop count is greater than 0 and its UID is greater than or equal to any other UID 
you have seen before. Whenever the message is forwarded, its hop count is decremented by 
one. If it is greater than any other UID you have seen and the hop count is 0, forward it in 
the opposite direction of d. 

•	 If a node doesn’t receive a message it sent out back, then it sends no new messages. 
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•	 If a node receives its (UID, h, left) message on its right and its (UID, h, right) message 
on its left then these messages made it all the way around the circle and thus the UID is the 
largest in the circle. This node becomes the leader. 

How many messages does this send in the worst case? By the end of the round where the 
hop lengths are 2r there can be at most n/2r nodes that still send messages. Each node sending 
messages in round r will have hop counts of 2r resulting in at most 2r+1 messages sent. Then the 
total number of messages can take 

lg(\n) 

2i+2n/2i = 4n lg(n). 
i=0 

This is a big improvement! O(n lg(n)) instead of O(n2). 
Q: What about an asynchronous ring?
 
The above still works.
 

2.2 An asynchronous algorithm for counting the nodes 

Assume that the graph has at least two nodes. Assume a root process i0 at graph vertex v0. 
Q: Give a simple algorithm that allows process i0 to compute the total number of nodes in the 

network. 
Set up a spanning tree, e.g., using the simple synchronous spanning tree run asynchronously. 

In the asynchronous setting, this produces some spanning tree, which is not guaranteed to produce 
the BFS spanning tree. But it is OK for our purpose here (counting the nodes.) (This also won’t 
have the optimal time complexity, because of the timing anomaly). Finally, add a convergecast that 
also accumulates the sum on the way up. 

Work with the class to develop the code. Do this in three stages: 1. The asynchronous (non-BF) 
spanning tree code from the lecture slides. 2. Add actions for child pointers. 3. Then add actions 
for convergecasting the number of nodes. 

Analyze time cost: O(|E|). 
All the processes will use the strategy of putting messages into FIFO send queues for their 

neighbors, and then have separate output actions that actually send the messages, starting from the 
heads of the queues. Thus, all processes will have the following transition definition. We will omit 
them later. 

output send(m)u,v, m a message, v ∈ Γ(u) 
Precondition: m = head(send(v)) 
Effect: remove head of send(v) 

2.2.1 Part 1: Setting up a tree 

First search message becomes your parent. Pass search messages on. 
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Process v0 

State variables: 
for each v ∈ Γ(v0), send(v), a queue, initially (search) 

Transitions: 

input receive(search)v,v0 , v ∈ Γ(v0)
 
Effect: none
 

Process u, u  = v0 

State variables: 
parent ∈ Γ(u) ∪ {⊥}, initially ⊥
 
for each v ∈ Γ(u), send(v), a queue, initially empty
 

Transitions: 

input receive(search)v,u, v ∈ Γ(u)
 
Effect:
 
if parent = ⊥ then
 

parent := v
 
for each v ∈ Γ(u), add search to send(v)
 

2.2.2 Part 2: Adding child pointers 

Now send parent(true) or parent(false) responses. Keep track of who has responded, and which of 
these have responded parent(true)—the latter are the children. 

Process v0 

State variables: 
responded ⊆ Γ(v0), initially ∅
 
children ⊆ Γ(v0), initially ∅
 
for each v ∈ Γ(v0), send(v), a queue, initially (search)
 

Transitions: 

input receive(search)v,v0 , v ∈ Γ(v0)
 
Effect: add parent(false) to send(v)
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input receive(parent(b))v,v0 , b a Boolean, v ∈ Γ(v0)
 
Effect:
 
if b then
 

children := children ∪{v}

responded := responded ∪{v}
 

Process u, u = v0 

State variables: 
parent ∈ Γ(u) ∪ {⊥}, initially ⊥ 
responded ⊆ Γ(u), initially ∅ 
children ⊆ Γ(u), initially ∅ 
for each v ∈ Γ(u), send(v), a queue, initially empty 

Transitions: 

input receive(search)v,u, v ∈ Γ(u)
 
Effect:
 
if parent = ⊥ then
 

parent := v
 
add parent(true) to send(v)
 

else add parent(false) to send(v)
 

input receive(parent(b))v,u, b a Boolean, v ∈ Γ(u)
 
Effect:
 
if b then
 

children := children ∪{v}

responded := responded ∪{v}
 

2.2.3 Part 3: Adding the convergecast for the count 

Now convergecast the count up the tree. 

Process v0 

State variables: 
responded ⊆ Γ(v0), initially ∅ 
children ⊆ Γ(v0), initially ∅ 
done ⊆ Γ(v0), initially ∅ 
total , a nonnegative integer, initially 0 
for each v ∈ Γ(v0), send(v), a queue, initially (search) 
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Transitions: 

input receive(search)v,v0 , v ∈ Γ(v0)
 
Effect: add parent(false) to send(v)
 

input receive(parent(b))v,v0 , b a Boolean, v ∈ Γ(v0) 
if b then 

children := children ∪{v}

responded := responded ∪{v}
 

input receive(done(k))v,v0 , k a nonnegative integer, v ∈ Γ(v0)
 
Effect:
 
done := done ∪{v}

total := total +k
 
if done = Γ(v0) then (the final output is the value in total ).
 

Process u, u  v0 

State variables: 
parent ∈ Γ(u) ∪ {⊥}, initially ⊥ 
responded ⊆ Γ(u), initially ∅ 
children ⊆ Γ(u), initially ∅ 
done ⊆ Γ(u), initially ∅ 
total , a nonnegative integer, initially 0 
for each v ∈ Γ(u), send(v), a queue, initially empty 

Transitions: 

input receive(search)v,u, v ∈ Γ(u)
 
Effect:
 
if parent = ⊥ then
 

parent := v
 
add parent(true) to send(v)
 

else add parent(false) to send(v)
 

input receive(parent(b))v,u, b a Boolean, v ∈ Γ(u)
 
Effect:
 
if b then
 

children := children ∪{v}

responded := responded ∪{v}
 

if responded = Γ(u) and children = ∅ then 

6=
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add done(1) to send(parent) 

input receive(done(k))v,u, k a nonnegative integer, v ∈ Γ(u)
 
Effect:
 
done := done ∪{v}

total := total +k
 
if responded = Γ(u) and done = children then
 

add done(total + 1) to send(parent) 
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