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Lecture 24: Cache-oblivious algorithms II
 

• Search 

– binary 

– B-ary 

– cache-oblivious 

• Sorting 

– mergesorts 

– cache-oblivious 

Why LRU block replacement strategy? 

LRUM ≤ 2 · OPTM/2 [Sleater and Tarjan 1985] 
Proof. 

• partition block access sequence into maximal phases of M/B distinct blocks 

• LRU spends ≤ M/B memory transfers/phase 

• OPT must spend ≥ M /B memory transfers per phase: at best, starts phase 
2 

with entire M/2 cache with needed items. But there are M/B blocks during 
phase. So ≤ half free 

Search 

Preprocess n elements in comparison model to support predecessor search for x. 

B-trees 

They support predecessor (and insert and delete) in O(logB+1 N) memory transfers. 

• each node occupies Θ(1) blocks 

• height= Θ(logB N) 

• need to know B 
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x 

Binary search 

Approximately, every iteration visits a different block until we are in x’s block. Thus, 
MT (N) = Θ(log  N − log B) = Θ(log(N/B)). SLOW 

van Emde Boas layout 

[Prokop 1999] 

lg N 

(1/2)lg N 

middle level 

\sqrt{N} 

•	 store N elements in complete BST 

•	 carve BST at middle level of edges 

•	 recursively layout the pieces and concatenate 

•	 like block matrix multiplication, order of pieces doesn’t matter; just need each 
piece to be stored consecutively 

Analysis of BST search in vEB layout: 

•	 consider recursive level of refinement at which structure has ≤ B nodes 
√ •	 the height of the vEB tree is between 

2
1 lg B and lg B =⇒ size is between B 

and B 
=⇒ any root-to-node path (search path) visits ≤ lg N = 2  logB N trees that 1 

2 lg B 

have size ≤ B 

•	 each tree of size ≤ B occupies ≤ 2 memory blocks 

=⇒ ≤ 4 logB N = O(logB N) memory transfers 
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•	 this generalizes to heights that are not powers of 2, B-trees of constant branch­
ing factor and dynamic B-trees: O(logB N) insert/delete. [Bender, Demaine, 
Farach-Colton 2000] 

Sorting 

B-trees 

N inserts into (cache-oblivious) B-tree =⇒ MT (N) = Θ(N logB N) NOT OPTI­

MAL. By contrast, BST sort is optimal O(N lg N) 

Binary mergesort 

•	 binary mergesort is cache-oblivious. 

•	 the merge is 3 parallel scans
 
=⇒ MT (N) = 2MT (N/2) + O(N/B + 1) 
  
MT (M) =  O(M/B)
 

•	 the recursion tree has lg(N/M) levels, and each level contributes O(N/B) 
=⇒ MT (N) =  N

B lg 
M
N . ← 

lg 
B
B faster than the B-tree version discussed earlier! 

M/B-way mergesort 

•	 split array into M/B equal subarrays 

•	 recursively sort each 

•	 merge via M/B parallel scans (keeping one “current” block per list) 

M N 
=⇒ MT (N) =  MT  + O(N/B + 1)  

B M/B 

MT (M) =  O(M/B) 

N 
=⇒ height becomes logM/B + 1  

M 
N B 

= logM/B · + 1  
B M 
N M 

= logM/B − logM/B + 1  
B B 
N 

= logM/B B 
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N N 
=⇒ MT (N) =  O logM/B B B 

This is asymptotically optimal, in the comparison model. 

Cache-oblivious Sorting 

This requires the tall-cache assumption: M = Ω(B1+E) for some fixed f >  0, e.g., 
M = Ω(B2) or  M/B = Ω(B). 

Then, ≈ N E-way mergesort with recursive (“funnel”) merge works. 

Priority Queues 

• O( 1 N 
B logM/B B ) per insert or delete-min 

• generalizes sorting 

• external memory and cache-oblivious 

• see 6.851 
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