
Lecture 23	 Cache-Oblivious I Spring 2015

Lecture 23: Cache-oblivious Algorithms I

This lecture introduces cache-oblivious algorithms. Topics include
• memory hierarchy

• external memory vs. cache-oblivious model

• cache-oblivious scanning

•	 cache-oblivious divide & conquer algorithms: median finding & matrix multi­

plication

1 Modern Memory Hierarchy

So far in this class, we have viewed all operations and memory accesses as equal cost.
However, modern computers have memory hierarchy.

memoryCPU L1 L2 L3 disk

∼size 10KB 100KB MB GB TB

latency ∼ 1ns 10ns 10ns 100ns 10ms

Each hierarchy on the right is bigger, but has longer latency due to the longer
distance data has to travel. Yet, bandwidth between different hierarchies is usually
matched.

A common technique to mitigate latency is blocking : when fetching a word of
data, get the entire block containing it. Using algorithmic terminology, the idea is
to amortize latency over a whole block. For this idea to work, we additional require
the algorithm to use all words in a block (spatial locality) and reuse blocks in cache
(temporal locality).

1

6.046J

Lecture 23 Cache-Oblivious I Spring 2015

2 Memory Model of Algorithms

2.1 External Memory Model

cache memory/disk

CPU

fast slow & blocked

... ...

O(1) size ...

...

Total size M
divided into M/B blocks
Each block has B words

Infinite size
divided into blocks

Each block has B words

In this model, cache acecsses are free. The algorithm explicitly reads and writes
memory in blocks. We will count the number of memory transfers between the cache
and the memory, as an important metric of the algorithm’s performance.

2.2 Cache-oblivious Model

The only change from the external memory model is that the algorithm no longer
knows B and M . Accessing a word in the memory automatically fetches an entire
block into the cache, and evicts the least recently used (LRU) block from the cache
if the cache is full.

Every algorithm is a cache-oblivious algorithm, but we would like to find the
algorithm that minimizes our new metirc — the number of memory transfers.

Why do we like cache-olivious algorithms (as opposed to letting the algorithm
know B and M)? Because this way, an algorithm can auto-tune itself and run effi­

ciently on different computers (possibly with different B and M). Besides, it is cool
research!

3 Scanning

Example program:
for i in range(N): sum += A[i]

Assume A is stored contiguously in memory. External memory model can align A
with a block boundary, so it needs IN/Bl memory transfers.

2

6.046J

Lecture 23	 Cache-Oblivious I Spring 2015

Cache-oblivious algorithms cannot control alignment (because it does not know
B), so it needs IN/Bl + 1 = N/B + O(1) memory transfers. O(1) parallel scans still
need O(N/B + 1) memory transfers.

4 Divide & Conquer

Divide & Conquer algorithms divide problems down to O(1) size. The base case of
the recursion is either when

•	 problem fits in cache i.e., ≤ M , or

• problem fits in O(1) blocks, i.e., O(B).

Below we will see one example for each.

4.1 Median Finding / Order Statistics

Recall the steps of the algorithm

1. view array as partitioned into columns of 5 (each column is O(1) size).

2. sort each column

3. recursively find the median of the column medians

4. partition array by x

5.	 recurse on one side

We will now analyze the number of memory transfers in each step. Let MT (N)
be the total number of memory transfers.

1. free

2.	 a scan, O(N/B + 1)

3.	 MT (N/5), this involves a pre-processing step that coallesces the N/5 elements
in a consecutive array

4. 3 parallel scans, O(N/B + 1)

5.	 MT (7N/10)

3

6.046J

Lecture 23 Cache-Oblivious I Spring 2015

Therefore, we get the recursion

MT (N) = MT (N/5) + MT (7N/10) + O(N/B + 1).

Solving the recursion requires setting a base case. An obvious base case is
MT (O(1)) = O(1).

But we can get a stronger base case: MT (O(B)) = O(1). Uing this base case, the
recursion solves to MT (N) = O(N/B + 1). (Intuition: cost at level of the recursion
decreases geometrically, so the cost at root dominates.)

4.2 Matrix Multiplication

Problem: compute Z = X · Y where X, Y, Z are all N × N matrices. Also suppose
X is stored in row-major order, and Y is stored in column-major order to improve
locality.

If we use the basic algorithm, computing one element in Z requires one or two
parallel scans, because it either requires scanning either a new row from X, or a new
column from Y . Computing each element takes O(N/B + 1) memory transfers, so
computing the entire Z costs O(N 3/B + N2) memory transfers.

Instead we will use the blocked matrix multiplcation algorithm (not Strassen).
Note that key block should be stored consecutively. We get recursion

MT (N) = 8MT (N/2) + O(N 2/B + 1)

The first term is recursive sub-matrix multiplication, and the second term is matrix
addition which requires scanning the matrices.

Again, we can have different base cases

• weak: MT (O(1)) = O(1)

• better: MT (O(B)) = O(1)
J• even better: MT (M/3) = O(M/B)

The third case represents the case that the three involved matrices can fit in the
cache together. Therefore, to multiply them, we only need one scan to load all of
them into cache.

If we draw the recursion tree, the cost at each level is geometrically increasing this
time, N 2/B, 8(N

2)
2/B, 82(N

4)
2/B, Therefore, the cost at the leaves dominate, and

the total cost = cost per leave · number of leaves,
√ √ √

MT (N) = O(M/B) · 8O(lg N/ M) = O(M/B) · O((N/ M)3) = O(N3/B M).

4

6.046J

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

