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This Week 
• Synchronous distributed algorithms: 


– Leader Election 
– Maximal Independent Set 
– Breadth-First Spanning Trees 
– Shortest Paths Trees   (started) 

– Shortest Paths Trees (finish) 

• Asynchronous distributed algorithms: 

– Breadth-First Spanning Trees 
– Shortest Paths Trees 
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Distributed Networks 
•	 Based on undirected graph G =  (V,  E). 

–	 n =  V 

–	 r(u), set of neighbors of vertex u. 
– deg u = |r  u |, number of neighbors of vertex u. 


•	 Associate a process with each graph vertex. 
•	 Associate two directed communication channels 

with each edge. 
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Synchronous Distributed 

Algorithms 
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Synchronous Network Model 

•	 Processes at graph vertices, communicate using messages. 

•	 Each process has output ports, input ports that connect to 

communication channels. 

•	 Algorithm executes in synchronous rounds. 
•	 In each round:  

–	 Each process sends messages on its ports. 
–	 Each message gets put into the channel, delivered to the process 

at the other end. 
–	 Each process computes a new state based on the arriving 


messages. 


5



Leader Election 
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n-vertex Clique 

•	 Theorem:  There is no algorithm 
consisting of deterministic, 
indistinguishable processes that is 
guaranteed to elect a leader in G. 

• Theorem:  There is an algorithm consisting of deterministic 

processes with UIDs that is guaranteed to elect a leader.   

–	 1 round, n2 messages. 

•	 Theorem:  There is an algorithm consisting of randomized, 
indistinguishable processes that eventually elects a leader, 
with probability 1. 

1–	 Expected time < . 
1-€ 

–	 With probability > 1 - E, finishes in one round. 
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Maximal Independent Set (MIS) 


8



   
  

   

   

  

 

 

MIS 

•	 Independent: No two neighbors are both in the set. 
•	 Maximal: We can’t add any more nodes without violating 

independence. 
•	 Every node is either in S or has a neighbor in S. 
•	 Assume: 

–	 No UIDs 
–	 Processes know a good upper bound on n. 

•	 Require: 
–	 Compute an MIS S of the network graph. 
–	 Each process in S should output in, others output out. 
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Luby’s Algorithm 

• Initially all nodes are active. 
•	 At each phase, some active nodes decide to be in, others decide to be 

out, the rest continue to the next phase. 

• Behavior of active node at a phase: 
•	 Round 1: 

– Choose a random value r in 1,2, … , n5 , send it to all neighbors. 
– Receive values from all active neighbors. 
– If r is strictly greater than all received values, then join the MIS, output in. 


•	 Round 2: 
– If you joined the MIS, announce it in messages to all (active) neighbors. 
– If you receive such an announcement, decide not to join the MIS, output out. 

– If you decided one way or the other at this phase, become inactive. 
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Luby’s Algorithm 


• Theorem:  If Luby’s algorithm ever terminates, 

then the final set S is an MIS. 

• Theorem:  With probability at least 1 - 1 

�
,all 

nodes decide within 4 log n phases. 
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Breadth-First Spanning Trees 
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Breadth-First Spanning Trees 
•	 Distinguished vertex va. 
•	 Processes must produce a Breadth-First 

Spanning Tree rooted at vertex va. 
•	 Assume: 

–	 UIDs. 
–	 Processes have no knowledge about the graph. 

•	 Output: Each process i =  ia should output 
parent j . 
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Simple BFS Algorithm 

� Processes mark themselves as they get incorporated into the tree. 

� Initially, only i

0
 is marked. 

� Algorithm for process i: 
� Round 1: 

� If i =  i
0
 then process i sends a search message to its neighbors. 

� If process i receives a message, then it: 
� Marks itself. 
� Selects i

0 
as its parent, outputs parent i

� Plans to send at the next round. 
� Round r > 1: 

� If process i planned to send, then it sends a search message to its 
neighbors. 

� If process i is not marked and receives a message, then it: 
� Marks itself. 
� Selects one sending neighbor, j, as its parent, outputs parent j . 
� Plans to send at the next round. 

a . 
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Correctness 

� State variables, per process: 

� a,marked, a Boolean, initially true for i   false for others
 
� parent, a UID or undefined 
� a,send, a Boolean, initially true for i   false for others 
� uid 

� Invariants: 
– At the end of r rounds, exactly the processes at distance < r  

from v are marked. a 

– A process = i  has its parent defined iff it is marked. a

– For any process at distance d from va, if its parent is defined, 
then it is the UID of a process at distance d - 1 from v .a
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Complexity 

� Time complexity: 

� Number of rounds until all nodes outputs their parent
information. 

� Maximum distance of any node from va, which is < diam 

� Message complexity: 
� Number of messages sent by all processes during the entire

execution. 
� O( E )  
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Bells and Whistles 

• Child pointers: 
– Send parent/nonparent responses to search 

messages. 
• Distances: 

– Piggyback distances on search messages. 

• Termination: 

– Convergecast starting from the leaves. 
• Applications: 

– Message broadcast from the root 
– Global computation 
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Shortest Paths Trees 
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Shortest Paths 

•	 Generalize the BFS problem to allow weights on the graph 

edges, weight u,v  for edge {u, v} 
• Connected graph G =  V, E , root vertex v , process ia	 a. 

•	 Processes have UIDs. 

•	 Processes know their 
neighbors and the 
weights of their incident 
edges, but otherwise 
have no knowledge 
about the graph. 

1 

1 

1 

1 

1 

1 

1 

1 

16 
12 

14 3 

4 

5 

6 

19



  
 

    

 

 
 

 
 

Shortest Paths 

•	 Processes must produce a Shortest-Paths Spanning 

Tree rooted at vertex va. 
•	 Branches are directed paths from va. 

–	 Spanning:  Branches reach all vertices. 
– Shortest paths:  The total weight of the tree branch to

each node is the minimum total weight for any path from 
v  in G.a

• Output:  Each process i = i  should outputa
parent j , distance(d), meaning that: 
–	 j’s vertex is the parent of i’s vertex on a shortest path 

from v ,a
– d is the total weight of a shortest path from v  to j.a
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Bellman-Ford Shortest Paths Algorithm
 
� State variables: 

� dist, a nonnegative real or 0, representing the shortest known 
distance from v . Initially 0 for process i , 0 for the others. a a

� parent, a UID or undefined, initially undefined. 
� uid 

� Algorithm for process i: 
� At each round: 

� Send a distance(dist) message to all neighbors. 

� Receive messages from neighbors; let dj be the distance 

received from neighbor j. 
� Perform a relaxation step: 
dist : min (dist, min(dj + weight i,j ) .

j 

� If dist decreases then set parent : j, where j is any 
neighbor that produced the new dist. 

21



 
 

 
 

 

  
 

 

Correctness 

� Claim:  Eventually, every process i has: 

� dist = minimum weight of a path from i  to i, anda

� if i =  ia, parent = the previous node on some shortest path 
from i  to i.a

� Key invariant: 
– For every r, at the end of r rounds, every process i = i  has itsa

dist and parent corresponding to a shortest path from i  to ia

among those paths that consist of at most r edges; if there is 
no such path, then dist = 0 and parent is undefined. 
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Complexity 

� Time complexity: 

� Number of rounds until all the variables stabilize to their final 
values. 

� n - 1 rounds 
� Message complexity: 

� Number of messages sent by all processes during the entire
execution. 

� O(n · E )  

� More expensive than BFS: 
� diam rounds,  
� O E messages 

� Q:  Does the time bound really depend on n? 
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Child Pointers
 
•	 Ignore repeated messages. 
•	 When process i receives a message that it does not use 

to improve dist, it responds with a nonparent message. 
•	 When process i receives a message that it uses to 

improve dist, it responds with a parent message, and 
also responds to any previous parent with a nonparent 
message. 

•	 Process i records nodes from which it receives parent 
messages in a set children. 

•	 When process i receives a nonparent message from a 
current child, it removes the sender from its children. 

•	 When process i improves dist, it empties children. 
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Termination 

•	 Q: How can the processes learn when the shortest-

paths tree is completed? 
•	 Q: How can a process even know when it can output 

its own parent and distance? 

•	 If processes knew an upper bound on n, then they
could simply wait until that number of rounds have
passed. 

•	 But what if they don’t know anything about the 
graph? 

•	 Recall termination for BFS:  Used convergecast. 
•	 Q:  Does that work here?  
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Termination 

•	 Q: How can the processes learn when the shortest-

paths tree is completed? 
•	 Q:  Does convergecast work here?  
•	 Yes, but it’s trickier, since the tree structure changes.
 

•	 Key ideas: 
– A process = i can send a done message to its current 
a 

parent after: 
•	 It has received responses to all its distance messages, so it 

believes it knows who its children are, and 
•	 It has received done messages from all of those children. 


– The same process may be involved several times in the 
convergecast, based on improved estimates. 
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Asynchronous Distributed 

Algorithms 
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Asynchronous Network Model 
• Complications so far: 

– Processes act concurrently. 
– A little nondeterminism. 

• Now things get much worse: 
–	 No rounds---process steps and message deliveries happen at

arbitrary times, in arbitrary orders. 
– Processes get out of synch. 
– Much more nondeterminism. 

•	 Understanding asynchronous distributed 
algorithms is hard because we can’t 
understand exactly how they execute. 

•	 Instead, we must understand abstract 
properties of executions. 
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Aynchronous Network Model 

•	 Lynch, Distributed Algorithms, Chapter 8. 
•	 Processes at nodes of an undirected graph 
G =  (V,  E), communicate using messages. 

•	 Communication channels associated with 
edges (one in each direction on each edge). 
–	 eu,v, channel from vertex u to vertex v. 

•	 Each process has output ports and input 
ports that connect it to its communication 
channels. 

•	 Processes need not be distinguishable. 
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Channel Automaton eu,v
 
• Formally, an input/output automaton.
 
• Input actions: send m u,v 
• Output actions: receive m u,v 
• State variable: 

– mqueue, a FIFO queue, initially empty. 

• Transitions: 

– send m u,v 
• Effect:  add m to mqueue. 

– receive m u,v 
• Precondition:  m = head(mqueue) 

• Effect:  remove head of mqueue
 

eu,v 
send m u,v receive m u,v 
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Process Automaton Pu 
•	 Associate a process automaton with 

each vertex of G. 
•	 To simplify notation, let P  denote u

the process automaton at vertex u. 
–	 But the process does not “know” u. 

• P  has send m outputs andu u,v 
receive m inputs.v,u 

•	 May also have external inputs and 
send m u,v receive 

Pu 

m v,u outputs. 
•	 Has state variables. 
•	 Keeps taking steps (eventually). 
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Example: Max  Process Automaton u

• Input actions: receive m v,u 
• Output actions: send m u,v 
• State variables:  

– max, a natural number, initially xu 
– For each neighbor v: 

• send(v), a Boolean, initially true 

• Transitions: 
– receive m v,u 

• Effect:  if m > max then 
– max := m 

send m u,v receive 

Maxu 

m v,u – for every w, send(w) :=  true 

– send m u,v 
• Precondition:  send(v)  =  true and m = max 
• Effect: send(v) := false 
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Combining Processes and Channels  


•	 Undirected graph G = 
•	 Process P  at each vertex u.u

•	 Channels e and ev,u, associated with each edge u,v 

• send m  output of process P  gets identified with u,v	 u

send m input of channel e .u,v	 u,v

• receive m output of channel e gets identified with 
v,u	 v,u 

receive m  input of process P .v,u	 u

•	 Steps involving such a shared action 
involve simultaneous state transitions 
for a process and a channel. 

V, E . 

u, v . 
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Execution 
• No synchronous rounds anymore. 
•	 The system executes by performing enabled steps, one 

at a time, in any order. 
•	 Formally, an execution is modeled as a sequence of

individual steps. 
• Different from the synchronous model, in which all 


processes take steps concurrently at each round.  


•	 Assume enabled steps eventually 
occur: 
– Each channel always eventually 


delivers the first message in its queue. 

– Each process always eventually 


performs some enabled step.  
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Combining Max Processes and Channels 


•	 Each process Max  starts with an initial value xu	 u. 

•	 They all send out their initial values, and propagate their max 
values, until everyone has the globally-maximum value. 

•	 Sending and receiving steps can happen in many different 

orders, but in all cases the global max will eventually arrive 

everywhere.
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Complexity 

� Message complexity: 

� Number of messages sent by all processes during the entire
execution. 

� O(n · E )  

� Time complexity: 
� Q: What should we measure? 
� Not obvious, because the various components are taking 

steps in arbitrary orders---no “rounds”. 
� A common approach:   

� Assume real-time upper bounds on the time to perform basic steps: 
� d for a channel to deliver the next message, and  

� l for a process to perform its next step. 

� Infer a real-time upper bound for solving the overall problem. 
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Complexity 

� Time complexity: 

� Assume real-time upper bounds on the time to perform basic 
steps: 
� d for a channel to deliver the next message, and  
� l for a process to perform its next step. 

� Infer a real-time upper bound for solving the problem. 


� For the Max system: 
� Ignore local processing time (l = 0), consider only channel 

sending time. 
� Straightforward upper bound:  O(diam · n · d) 

� Consider the time for the max to reach any particular vertex u, along a 
shortest path in the graph. 

� At worst, it waits in each channel on the path for every other value, 
which is at most time n · d  for that channel. 
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Breadth-First Spanning Trees 
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Breadth-First Spanning Trees 

•	 Problem:  Compute a Breadth-First Spanning Tree in an 

asynchronous network. 
• Connected graph G =  (V,  E). 
• Distinguished root vertex v .a
• Processes have no knowledge about the graph. 
• Processes have UIDs 

– i is the UID of the root v .a	 a

– Processes know UIDs of their neighbors, and know which 
ports are connected to each neighbor. 

• Processes must produce a BFS tree rooted at va. 
• Each process i = i  should output parent j , meaninga

that j’s vertex is the parent of i’s vertex in the BFS tree. 
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First Attempt 

•	 Just run the simple synchronous BFS algorithm 

asynchronously. 
•	 Process i  sends search messages, which everyone 
a

propagates the first time they receive it. 
•	 Everyone picks the first node from which it receives a 
search message as its parent. 

•	 Nondeterminism: 
–	 No longer any nondeterminism in process decisions. 

– But plenty of new nondeterminism: orders of message

deliveries and process steps. 
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Process Automaton P
u 
• Input actions: receive search v,u 
• Output actions: send search ; parent vu,v u 

• State variables:  
– parent: r u u { 1}, initially 1 
– reported:  Boolean, initially false 
– For every v E r  u :  

• send v E {search, 1}, initially search if u = v , else 1a

• Transitions: 
– 

• Effect:  if u = v and parent = 1 thena 

– parent := v 
– for every w, send(w) :=  search 

receive search v,u 
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Process Automaton Pu 
• Transitions: 

– 

• Effect: if u = v and parent = 1 thena 

– parent := v 

– for every w, send(w) :=  search 

– 

• Precondition:   send(v) = search 
• Effect:  send(v) :1 

– parent v u 
• Precondition:   parent = v  and reported = false  

• Effect:  reported : true  

receive search v,u 

send search u,v 
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Running Simple BFS Asynchronously 
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Final Spanning Tree 
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Actual BFS 
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Anomaly 

•	 Paths produced by the algorithm may be 

longer than the shortest paths. 
•	 Because in asynchronous networks, messages 

may propagate faster along longer paths. 
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Complexity 

� Message complexity: 

� Number of messages sent by all processes during the entire
execution. 

� O( E )  

� Time complexity: 
� Time until all processes have chosen their parents. 
� Neglect local processing time. 
� O( diam · d) 

� Q: Why diam, when some of the paths are longer? 
� The time until a node receives a search message is at most

the time it would take on a shortest path. 
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Extensions 

• Child pointers: 

– As for synchronous BFS. 
– Everyone who receives a search message sends back a 
parent or nonparent response. 

• Termination: 
– After a node has received responses to all its search its 

messages, it knows who its children are, and knows they 
are marked. 

– The leaves of the tree learn who they are. 
– Use a convergecast strategy, as before. 
– Time complexity: After the tree is done, it takes time 
O(n · d) for the done information to reach ia. 

– Message complexity: O(n) 

65



 

  

 

  

 

Applications 


� Message broadcast: 
- Process i  can use the tree (with child pointers) to
 a

broadcast a message. 

- Takes O(n · d) time and n messages. 


� Global computation: 
- Suppose every process starts with some initial value, 


and process i  should determine the value of some 
a

function of the set of all processes’ values. 

- Use convergecast on the tree. 

- Takes O(n · d) time and n messages. 
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Second Attempt 


•	 A relaxation algorithm, like synchronous Bellman-Ford.  

•	 Before, we corrected for paths with many hops but low 

weights. 
•	 Now, instead, correct for errors caused by asynchrony.
 
•	 Strategy:   

– Each process keeps track of the hop distance, changes its 
parent when it learns of a shorter path, and propagates 
the improved distances. 

–	 Eventually stabilizes to a breadth-first spanning tree. 
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Process Automaton P
u 

0 ,  initially 0 if u = 
For every v E  r  u :  

v 

• Input actions: receive m , m a nonnegative integer v,u

• Output actions: send m , m a nonnegative integer u,v

• State variables:  
– parent: r u u { 1}, initially 1 
– dist E N u v , 0 otherwise a

– 
• send , a FIFO queue of N, initially (0) if u = v , else empty a

• Transitions: 
– receive m v,u 

• Effect:  if m+  1  <  dist then 
– dist := m + 1  

– parent := v 
– for every w, add dist to send(w) 
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Process Automaton Pu 
• Transitions: 

– receive m v,u 
• Effect:  if m + 1  <  dist then 

– dist := m + 1  

– parent := v 

– for every w, add m + 1 to send w
 
– send m u,v 

• Precondition:   m =  head(send v ) 
• Effect:  remove head of send(v) 

• No terminating actions… 
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Correctness 

•	 For synchronous BFS, we characterized precisely the 

situation after r rounds. 
•	 We can’t do that now. 
•	 Instead, state abstract properties, e.g., invariants and 

timing properties, e.g.: 
•	 Invariant:  At any point, for any node u = v , if itsa

dist  = 0, then it is the actual distance on some path 

from v  to u, and its parent is u’s predecessor on such 
a

a path. 
•	 Timing property:  For any node u, and any r, 
0 <  r < diam, if there is an at-most-r-hop path from 
v  to u, then by time r · n · d, node u’s dist is <  r.  a
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Complexity 

� Message complexity: 

� Number of messages sent by all processes during the 
entire execution. 

� O(n E )  

� Time complexity: 
� Time until all processes’ dist and parent values have 

stabilized.  
� Neglect local processing time. 
� O diam · n · d 

� Time until each node receives a message along a shortest path, 
counting time O(n · d) to traverse each link. 
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Termination 

•	 Q: How can processes learn when the tree is completed? 
•	 Q: How can a process know when it can output its own 
dist and parent? 

•	 Knowing a bound on n doesn’t help here:  can’t use it to 
count rounds. 

•	 Can use convergecast, as for synchronous Bellman-Ford: 
–	 Compute and recompute child pointers. 
–	 Process = v sends done to its current parent after: a 

•	 It has received responses to all its messages, so it believes it knows all its 
children, and 

•	 It has received done messages from all of those children. 
–	 The same process may be involved several times, based on 

improved estimates. 
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Uses of Breadth-First Spanning Trees 


•	 Same as in synchronous networks, e.g.: 
–	 Broadcast a sequence of messages 
–	 Global function computation 

•	 Similar costs, but now count time d instead of 
one round. 
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Shortest Paths Trees 
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Shortest Paths 

•	 Problem:  Compute a Shortest Paths Spanning Tree in an 

asynchronous network. 
• Connected weighted graph, root vertex v .a
• weight u,v  for edge u, v .
 
•	 Processes have no knowledge about the graph, except for 

weights of incident edges. 
• UIDs 

•	 Processes must produce a Shortest Paths spanning tree 
rooted at va. 

• Each process u = v  should output its distance and parent
 a
in the tree. 
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Shortest Paths 

•	 Use a relaxation algorithm, once again. 
•	 Asynchronous Bellman-Ford. 

•	 Now, it handles two kinds of corrections: 
– Because of long, small-weight paths (as in synchronous 

Bellman-Ford). 
– Because of asynchrony (as in asynchronous Breadth-First

search). 
•	 The combination leads to surprisingly high message

and time complexity, much worse than either type of 
correction alone (exponential). 
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Asynch Bellman-Ford, Process P
u 

0 ,  initially 0 if u = 
For every v E  r  u :  

v 

• Input actions: receive m , m a nonnegative integer v,u

• Output actions: send m , m a nonnegative integer u,v

• State variables:  
– parent: r u u { 1}, initially 1 
– dist E N u v , 0 otherwise a

– 
• send , a FIFO queue of N, initially (0) if u = v , else empty a

• Transitions: 
– receive m v,u 

• Effect:  if m+  weight  v,u < dist then 
– dist := m +  weight v,u 

– parent := v 
– for every w, add dist to send(w) 
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Asynch Bellman-Ford, Process P
u 
• Transitions: 

– receive m v,u 
• Effect:  if m+  weight  v,u < dist then 

– dist := m +  weight v,u 

– parent := v 
– for every w, add dist to send(w) 

– send m u,v 
• Precondition:   m =  head(send v ) 
• Effect:  remove head of send(v) 

• No terminating actions… 
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Correctness: 

Invariants and Timing Properties
 

•	 Invariant:  At any point, for any node u = v , if itsa
dist  = 0, then it is the actual distance on some path from 
v  to u, and its parent is u’s predecessor on such a path. a

•	 Timing property:  For any node u, and any r, 0 < r < 
diam, if p is any at-most-r-hop path from v  to u, then by a
time ???, node u’s dist is < total weight of p. 

•	 Q: What is ??? ? 
•	 It depends on how many messages might pile up in a 

channel. 
•	 This can be a lot! 
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� 

Complexity 

� O(n!) simple paths from v0 to any other node u, which 

is O(nn). 
� So the number of messages sent on any channel is O nn . 
� nMessage complexity: O E .  

� Time complexity: O(nn · n  · d).  

� Q:   Are such exponential bounds really achievable? 
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Complexity 

� Q:   Are such exponential bounds really achievable? 

� Example: 

There is an execution of the network below in which node v�

sends 2k � 2n/2 messages to node vk+1. 
k 

� Message complexity is O(2n/2). 
� Time complexity is O(2n/2 d). 
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Complexity 
• Execution in which node v

k
 sends 2k messages to node vk+1. 

•	 Possible distance estimates for vk are 2k –  1, 2k –  2,… , 0. 

•	 Moreover, vk can take on all these estimates in sequence: 
–	 First, messages traverse upper links, 2k –  1.  
–	 Then last lower message arrives at v , 2k –  2.  
–	 Then lower message vk-2 � vk-1 arrives, reduces vk-1’s estimate by 2, 

message vk-1 � vk arrives on upper links, 2k –  3.  
–	 Etc.  Count down in binary. 
–	 If this happens quickly, get pileup of 2k search messages in e , �1. 
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Termination 

•	 Q: How can processes learn when the tree is 

completed? 
•	 Q: How can a process know when it can output its own 
dist and parent? 

•	 Convergecast, once again 
–	 Compute and recompute child pointers. 
–	 Process = v sends done to its current parent after: a 

•	 It has received responses to all its messages, so it believes it knows 
all its children, and 

•	 It has received done messages from all of those children. 
– The same process may be involved several (many) times, 

based on improved estimates. 
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Shortest Paths 


•	 Moral:  Unrestrained asynchrony can cause 
problems. 

•	 What to do? 

•	 Find out in 6.852/18.437, Distributed 
Algorithms! 

84



 
 

 
 

 

What’s Next? 

•	 6.852/18.437 Distributed Algorithms 
•	 Basic grad course 
•	 Covers synchronous, asynchronous, 

and timing-based algorithms 

•	 Synchronous algorithms: 
–	 Leader election 
–	 Building various kinds of spanning trees 
–	 Maximal Independent Sets and other network structures 
–	 Fault tolerance 
–	 Fault-tolerant consensus, commit, and related problems 
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Asynchronous Algorithms 

• Asynchronous network model 
• Leader election, network structures. 
• Algorithm design techniques: 

– Synchronizers 
– Logical time 
– Global snapshots, stable property detection. 

• Asynchronous shared-memory model 
• Mutual exclusion, resource allocation 

• Fault tolerance 
• Fault-tolerant consensus and related problems 

• Atomic data objects, atomic snapshots 
• Transformations between models. 
• Self-stabilizing algorithms 

p1 

p2 

pn 

x1 

x2 
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And More 
• Timing-based algorithms 

– Models 
– Revisit some problems 
– New problems, like clock synchronization. 

• Newer work (maybe): 
– Dynamic network algorithms 
– Wireless networks 
– Insect colony algorithms and other biological distributed 

algorithms 
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