Distributed Algorithms
6.046J, Spring, 2015
Part 2

This Week

e Synchronous distributed algorithms:
— Leader Election
— Maximal Independent Set
— Breadth-First Spanning Trees
— Shortest Paths Trees (started)

— Shortest Paths Trees (finish)

* Asynchronous distributed algorithms:

— Breadth-First Spanning Trees
— Shortest Paths Trees

Distributed Networks

* Based on undirected graph ¢ = (V, E).
- n=[V]
— I'(u), set of neighbors of vertex u.
— deg(u) = [I'(u)|, number of neighbors of vertex u.

e Associate a process with each graph vertex.

e Associate two directed communication channels
with each edge.
O
‘A//v \
O

Y

Synchronous Distributed
Algorithms

Synchronous Network Model

Processes at graph vertices, communicate using messages.

Each process has output ports, input ports that connect to
communication channels.

Algorithm executes in synchronous rounds.

In each round:
— Each process sends messages on its ports.

— Each message gets put into the channel, delivered to the process
at the other end.

— Each process computes a new state based on the arriving
messages.

Leader Election

A
v

n-vertex Clique

e Theorem: There is no algorithm
consisting of deterministic,
indistinguishable processes that is v v
guaranteed to elect a leader in G. ‘ s ‘

e Theorem: There is an algorithm consisting of deterministic
processes with UIDs that is guaranteed to elect a leader.

— 1 round, n? messages.

e Theorem: There is an algorithm consisting of randomized,
indistinguishable processes that eventually elects a leader,
with probability 1.

: 1
— Expected time < —

— With probability = 1 — ¢, finishes in one round.

Maximal Independent Set (MIS)

Pt

MIS

Independent: No two neighbors are both in the set.

Maximal: We can’t add any more nodes without violating
independence.

Every node is either in S or has a neighborin S.

Assume:
— No UIDs
— Processes know a good upper bound on n.
Require:
— Compute an MIS S of the network graph.
— Each process in S should output in, others output out.

Luby’s Algorithm

Initially all nodes are active.

At each phase, some active nodes decide to be in, others decide to be
out, the rest continue to the next phase.

Behavior of active node at a phase:
Round 1:

— Choose a random value r in {1,2, ..., n°}, send it to all neighbors.
— Receive values from all active neighbors.
— If r is strictly greater than all received values, then join the MIS, output in.

Round 2:

— If you joined the MIS, announce it in messages to all (active) neighbors.
— If you receive such an announcement, decide not to join the MIS, output out.
— If you decided one way or the other at this phase, become inactive.

10

Luby’s Algorithm

e Theorem: If Luby’s algorithm ever terminates,
then the final set S'is an MIS.

 Theorem: With probability at least 1 — %»all
nodes decide within 4 logn phases.

Breadth-First Spanning Trees

Breadth-First Spanning Trees

Distinguished vertex v,.

Processes must produce a Breadth-First
Spanning Tree rooted at vertex v,.

Assume:

— UIDs.
— Processes have no knowledge about the graph.

Output: Each process i # iy should output
parent(j).

Simple BFS Algorithm

o Processes mark themselves as they get incorporated into the tree.
o Initially, only i, is marked.

o Algorithm for process i:
e« Round 1:
« Ifi =1i,then processisendsa search message to its neighbors.
o If process i receives a message, then it:
o Marks itself.
o Selects i, as its parent, outputs parent(iy).
o Plans to send at the next round.
e Roundr > 1:

o If processi planned to send, then it sends a search message to its
neighbors.

o If processi is not marked and receives a message, then it:
o Marks itself.
« Selects one sending neighbor, j, as its parent, outputs parent(j).
o Plans to send at the next round.

14

Correctness

State variables, per process:

« marked, a Boolean, initially true for i,, false for others
« parent,a UID or undefined

« send, a Boolean, initially true for i,, false for others

o uid

Invariants:

— At the end of r rounds, exactly the processes at distance < r
from v, are marked.

— A process # iy has its parent defined iff it is marked.

— For any process at distance d from v, if its parent is defined,
then it is the UID of a process at distance d — 1 from v.

15

Complexity

o Time complexity:

« Number of rounds until all nodes outputs their parent
information.

« Maximum distance of any node from v, which is < diam

o Message complexity:

« Number of messages sent by all processes during the entire
execution.

- O(|E])

16

Bells and Whistles

e Child pointers:

— Send parent /nonparent responses to search
messages.

 Distances:
— Piggyback distances on search messages.

e Termination:

— Convergecast starting from the leaves.
* Applications:

— Message broadcast from the root

— Global computation

17

Shortest Paths Trees

Shortest Paths

Generalize the BFS problem to allow weights on the graph
edges, weighty, ., for edge {u, v}

Connected graph G = (V, E), root vertex v,, process i,.
Processes have UIDs.

Processes know their
neighbors and the
weights of their incident
edges, but otherwise
have no knowledge
about the graph.

19

Shortest Paths

* Processes must produce a Shortest-Paths Spanning
Tree rooted at vertex v.

e Branches are directed paths from vy,
— Spanning: Branches reach all vertices.

— Shortest paths: The total weight of the tree branch to
each node is the minimum total weight for any path from

Vo in G.
e Qutput: Each processi # iy should output
parent(j), distance(d), meaning that:
— Jj’svertex is the parent of i’s vertex on a shortest path
from v,
— d is the total weight of a shortest path from v, to J.

20

Bellman-Ford Shortest Paths Algorithm

o State variables:

« dist, a nonnegative real or oo, representing the shortest known
distance from v,. Initially O for process ij, o for the others.

- parent,a UID or undefined, initially undefined.
o uid

o Algorithm for process i:
o Ateach round:

Send a distance(dist) message to all neighbors.

Receive messages from neighbors; let d; be the distance
received from neighbor j.

Perform a relaxation step:
dist = min(dist, min(d; + weightg ;1) .
J

If dist decreases then set parent = j, where j is any
neighbor that produced the new dist.

21

Correctness

o Claim: Eventually, every process i has:
o dist = minimum weight of a path from i, to i, and

o ifi # iy, parent = the previous node on some shortest path
from iy to i.

o Key invariant:

— For every r, at the end of r rounds, every process i # iy has its
dist and parent corresponding to a shortest path from iy to i
among those paths that consist of at most r edges; if there is
no such path, then dist = oo and parent is undefined.

22

Complexity

Time complexity:

« Number of rounds until all the variables stabilize to their final
values.

e n— 1 rounds
Message complexity:

« Number of messages sent by all processes during the entire
execution.

. O(n-|E])
More expensive than BFS:

e diam rounds,
o O(|E|) messages

Q: Does the time bound really depend on n?

23

Child Pointers

lgnore repeated messages.

When process i receives a message that it does not use
to improve dist, it responds with a nonparent message.

When process i receives a message that it uses to
improve dist, it responds with a parent message, and
also responds to any previous parent with a nonparent
message.

Process [records nodes from which it receives parent
messages in a set children.

When process i receives a nonparent message from a
current child, it removes the sender from its children.

When process i improves dist, it empties children.

24

Termination

Q: How can the processes learn when the shortest-
paths tree is completed?

Q: How can a process even know when it can output
its own parent and distance?

If processes knew an upper bound on n, then they
could simply wait until that number of rounds have
passed.

But what if they don’t know anything about the
graph?

Recall termination for BFS: Used convergecast.
Q: Does that work here?

25

Termination

Q: How can the processes learn when the shortest-
paths tree is completed?

Q: Does convergecast work here?
Yes, but it’s trickier, since the tree structure changes.

Key ideas:

— A process # iy can send a done message to its current
parent after:

* It has received responses to all its distance messages, so it
believes it knows who its children are, and

* |t has received done messages from all of those children.

— The same process may be involved several times in the
convergecast, based on improved estimates.

26

Termination

1 1 1 1 1 1
3y — . 5 G 1//7 > > A
1 1

1] 100 1 11 100 11 ij 100 I1

| 0 100 0 50
lo Lo *) Lo

100 /1 100 /1 k//l

100 51

leaf leaf

27

Asynchronous Distributed
Algorithms

Asynchronous Network Model

Complications so far:

— Processes act concurrently.

— A little nondeterminism.
Now things get much worse:

— No rounds---process steps and message deliveries happen at
arbitrary times, in arbitrary orders.

— Processes get out of synch.
— Much more nondeterminism.

Understanding asynchronous distributed

algorithms is hard because we can’t @
understand exactly how they execute. ‘A//v \‘

Instead, we must understand abstract \ /]
properties of executions.

29

Aynchronous Network Model

Lynch, Distributed Algorithms, Chapter 8. n s

Processes at nodes of an undirected graph Distributed 4
G = (V,E), communicate using messages. Mg‘?ﬂﬂms 1

Communication channels associated with
edges (one in each direction on each edge).

— (Cyy, channel from vertex u to vertex v.

Each process has output ports and input
ports that connect it to its communication
channels.

Processes need not be distinguishable.

30

Channel Automaton C,, ,,

Formally, an input/output automaton.
Input actions: send(m),, ,,

Output actions: receive(m),, ,,

State variable:

— mqueue, a FIFO queue, initially empty.
Transitions:

— send(m)y
e Effect: add m to mqueue.

— receive(m),,
e Precondition: m = head(mqueue)
e Effect: remove head of mqgueue

receive(m)y ,

send(m), ,,

e C .
u,v __—

31

Process Automaton P,

Associate a process automaton with
each vertex of G.

To simplify notation, let P, denote
the process automaton at vertex u.

— But the process does not “know” u.

P, has send(m),, ,, outputs and
receive(m),,, inputs.

May also have external inputs and
outputs.

Has state variables.
Keeps taking steps (eventually).

send(N)yy receive(m),,

32

Example: Max, Process Automaton

Input actions: receive(m),, ,,
Output actions: send(m),,,

State variables:

— max, a natural number, initially x,,

— For each neighbor v:

e send(v), a Boolean, initially true

Transitions:
— receive(m),
e Effect: if m > max then
— max = m
— for every w, send(w) :
— Send(m)u,v
* Precondition: send(v) =
e Effect: send(v) := false

send (1),
= true

true and m = max

33

receive(m),

Combining Processes and Channels

e Undirected graph G = (V,E).
* Process P, at each vertex u.
* Channels Cy, ,, and C,,,,, associated with each edge {u, v}.

* send(m), , output of process P, gets identified with

send(m),vinput of channel Cuyv-
* receive(m),, output of channel C, ,, gets identified with

receive(m),, ,, input of process B,. / O \

e Steps involving such a shared action o

o
involve simultaneous state transitions
for a process and a channel. [\ /

o——©

34

Execution

No synchronous rounds anymore.

The system executes by performing enabled steps, one
at a time, in any order.

Formally, an execution is modeled as a sequence of
individual steps.

Different from the synchronous model, in which all
processes take steps concurrently at each round.

Assume enabled steps eventually O
occur: 4 \
— Each channel always eventually O

delivers the first message in its queue. O
— Each process always eventually [/ \ //
—~ O

performs some enabled step.
O «

35

Combining Max Processes and Channels

e Each process Max,, starts with an initial value x,,.

 They all send out their initial values, and propagate their max
values, until everyone has the globally-maximum value.

e Sending and receiving steps can happen in many different
orders, but in all cases the global max will eventually arrive

N\
™./

o——©

36

2 @®

)

-m e
N

"N

AVAE

Complexity

o Message complexity:

« Number of messages sent by all processes during the entire
execution.

« O(n-|E|)

o Time complexity:
o Q: What should we measure?
o Not obvious, because the various components are taking
steps in arbitrary orders---no “rounds”.

« A common approach:
o Assume real-time upper bounds on the time to perform basic steps:
o d for a channel to deliver the next message, and
o [foraprocess to perform its next step.
o Infer areal-time upper bound for solving the overall problem.

46

Complexity

o Time complexity:
o Assume real-time upper bounds on the time to perform basic
steps:
o d for a channel to deliver the next message, and
o [foraprocess to perform its next step.

o Infer a real-time upper bound for solving the problem.

o Forthe Max system:

« lgnore local processing time (I = 0), consider only channel
sending time.

 Straightforward upper bound: O(diam -n -d)

o Consider the time for the max to reach any particular vertex u, along a
shortest path in the graph.

o At worst, it waits in each channel on the path for every other value,
which is at most time n - d for that channel.

47

Breadth-First Spanning Trees

Breadth-First Spanning Trees

Problem: Compute a Breadth-First Spanning Tree in an
asynchronous network.

Connected graph G = (V,E).
Distinguished root vertex vy.
Processes have no knowledge about the graph.

Processes have UIDs
— [y is the UID of the root v,.

— Processes know UIDs of their neighbors, and know which
ports are connected to each neighbor.

Processes must produce a BFS tree rooted at v,.

Each process i # iy should output parent(j), meaning
that j’s vertex is the parent of i’s vertex in the BFS tree.

49

First Attempt

Just run the simple synchronous BFS algorithm
asynchronously.

Process iy sends search messages, which everyone
propagates the first time they receive it.

Everyone picks the first node from which it receives a
search message as its parent.

Nondeterminism:

— No longer any nondeterminism in process decisions.

— But plenty of new nondeterminism: orders of message
deliveries and process steps.

50

Process Automaton P,

Input actions: receive(search),,,,
Output actions: send(search), ,; parent(v),,

State variables:
— parent: T'(u) U { L}, initially L
— reported: Boolean, initially false
— Foreveryv € I'(u):
» send(v) € {search, L}, initially search if u = vy, else L

Transitions:

— receive(search),
e Effect: ifu # vy and parent = L1 then

— parent := v
— for every w, send(w) := search

51

Process Automaton P,

* Transitions:
— receive(search), ,,
o Effect: if u # vy and parent = L then
—parent := v
—for every w, send(w) := search
— send(search),
e Precondition: send(v) = search
e Effect: send(v) =1
— parent(v),
e Precondition: parent = v and reported = false
e Effect: reported := true

52

Running Simple BFS Asynchronously

——

) O

Final Spanning Tree

(\

=

‘\
/

S ——

Actual BFS

Anomaly

e Paths produced by the algorithm may be
longer than the shortest paths.

* Because in asynchronous networks, messages
may propagate faster along longer paths.

O—
- ==

Complexity

o Message complexity:

« Number of messages sent by all processes during the entire
execution.

- O(|E])

o Time complexity:
o Time until all processes have chosen their parents.
o Neglect local processing time.
e O(diam-d)
o« Q: Why diam, when some of the paths are longer?

o The time until a node receives a search message is at most
the time it would take on a shortest path.

64

Extensions

e Child pointers:
— As for synchronous BFS.

— Everyone who receives a search message sends back a
parent or nonparent response.

e Termination:

— After a node has received responses to all its search its
messages, it knows who its children are, and knows they
are marked.

— The leaves of the tree learn who they are.
— Use a convergecast strategy, as before.

— Time complexity: After the tree is done, it takes time
O(n - d) for the done information to reach iy.

— Message complexity: O(n)

65

Applications

o Message broadcast:

— Process iy can use the tree (with child pointers) to
broadcast a message.

— Takes O(n - d) time and n messages.
o Global computation:

— Suppose every process starts with some initial value,
and process iy should determine the value of some
function of the set of all processes’ values.

~ Use convergecast on the tree.
— Takes O(n - d) time and n messages.

66

Second Attempt

A relaxation algorithm, like synchronous Bellman-Ford.

Before, we corrected for paths with many hops but low
weights.

Now, instead, correct for errors caused by asynchrony.
Strategy:

— Each process keeps track of the hop distance, changes its

parent when it learns of a shorter path, and propagates
the improved distances.

— Eventually stabilizes to a breadth-first spanning tree.

67

Process Automaton P,

Input actions: receive(m)v,u, m a nonnegative integer
Output actions: send(m), ,,, m a nonnegative integer

State variables:
— parent: T'(uw) U { 1}, initially L
— dist € N U {oo}, initially 0 if u = v,, oo otherwise
— Forevery v € I'(u):
* send(v), a FIFO queue of N, initially (0) if u = v, else empty

Transitions:

— receive(m),
e Effect: if m + 1 < dist then

—dist:=m+1
— parent := v
— for every w, add dist to send(w)

68

Process Automaton P,

* Transitions:
— receive(m),
e Effect: ifm+ 1 < dist then
—dist :=m+1
— parent := v
— for every w, add m + 1 to send(w)
— send(m)y,
* Precondition: m = head(send(v))
e Effect: remove head of send(v)

* No terminating actions...

69

Correctness

For synchronous BFS, we characterized precisely the
situation after r rounds.

We can’t do that now.

Instead, state abstract properties, e.g., invariants and
timing properties, e.g.:

Invariant: At any point, for any node u # v,, if its

dist # oo, then it is the actual distance on some path
from v, to u, and its parent is u’s predecessor on such
a path.

Timing property: For any node u, and any r,

0 < r <diam, if there is an at-most-r-hop path from
Vo tou, thenbytimer - n - d, node u’s distis < 7.

70

Complexity

o Message complexity:

o« Number of messages sent by all processes during the
entire execution.

« O(n|E|)

o Time complexity:

« Time until all processes’ dist and parent values have
stabilized.

o Neglect local processing time.
e O(diam-n-d)

o Time until each node receives a message along a shortest path,
counting time O(n - d) to traverse each link.

71

Termination

Q: How can processes learn when the tree is completed?

Q: How can a process know when it can output its own
dist and parent?

Knowing a bound on n doesn’t help here: can’t use it to
count rounds.

Can use convergecast, as for synchronous Bellman-Ford:
— Compute and recompute child pointers.

— Process # vy sends done to its current parent after:

* It has received responses to all its messages, so it believes it knows all its
children, and

e |t has received done messages from all of those children.

— The same process may be involved several times, based on
improved estimates.

72

Uses of Breadth-First Spanning Trees

e Same as in synchronous networks, e.g.:
— Broadcast a sequence of messages

— Global function computation

e Similar costs, but now count time d instead of
one round.

Shortest Paths Trees

Shortest Paths

Problem: Compute a Shortest Paths Spanning Tree in an
asynchronous network.

Connected weighted graph, root vertex v,.
weightg, .1 for edge {u, v}.

Processes have no knowledge about the graph, except for
weights of incident edges.

UIDs

Processes must produce a Shortest Paths spanning tree
rooted at v,.

Each process u # vy should output its distance and parent
in the tree.

75

Shortest Paths

Use a relaxation algorithm, once again.
Asynchronous Bellman-Ford.

Now, it handles two kinds of corrections:

— Because of long, small-weight paths (as in synchronous
Bellman-Ford).

— Because of asynchrony (as in asynchronous Breadth-First
search).

The combination leads to surprisingly high message
and time complexity, much worse than either type of
correction alone (exponential).

76

Asynch Bellman-Ford, Process P,

Input actions: receive(m)v,u, m a nonnegative integer
Output actions: send(m), ,,, m a nonnegative integer

State variables:
— parent: T'(uw) U { 1}, initially L
— dist € N U {oo}, initially 0 if u = v,, oo otherwise
— Forevery v € I'(u):
* send(v), a FIFO queue of N, initially (0) if u = v, else empty

Transitions:
— receive(m),
* Effect: if m + weighty,,; < dist then
— dist := m + weightg,
— parent := v
— for every w, add dist to send(w)

77

Asynch Bellman-Ford, Process P,

* Transitions:
— receive(m),
e Effect: if m + weightg,,, < dist then
—dist :=m + weightg, ;3
—parent := v
—for every w, add dist to send(w)
— send(m)y 4

* Precondition: m = head(send(v))
e Effect: remove head of send(v)

* No terminating actions...

78

Correctness:
Invariants and Timing Properties

Invariant: At any point, for any node u # v, if its
dist # oo, then itis the actual distance on some path from
Vo to u, and its parent is u’s predecessor on such a path.

Timing property: Forany nodeu,andanyr,0 < r <
diam, if p is any at-most-r-hop path from v, to u, then by
time 7?7, node u’s dist is < total weight of p.

Q: Whatis ??7? 7
It depends on how many messages might pile up in a
channel.

This can be a lot!

79

Complexity

O (n!) simple paths from v, to any other node u, which
is O(n").

So the number of messages sent on any channel is o).
Message complexity: O(n™ |E]).

Time complexity: O(n™*-n - d).

Q: Are such exponential bounds really achievable?

80

Complexity

o Q: Are such exponential bounds really achievable?
o Example:

« There is an execution of the network below in which node v,
sends 2k ~ 22 messages to node v,

« Message complexity is Q(2"/2).

« Time complexity is Q(2"2 d).

81

Complexity

Execution in which node v, sends 2% messages to node V.4

Possible distance estimates for v, are 2k - 1,2%- 2, ..., 0.

Moreover, v, can take on all these estimates in sequence:
— First, messages traverse upper links, 2k - 1.

— Then last lower message arrives at vy, 2k - 2.

— Then lower message v, , = v, _; arrives, reduces v,,_,’s estimate by 2,
message v,_; —> U, arrives on upper links, 2% - 3.

— Etc. Count down in binary.
— If this happens quickly, get pileup of 2% search messages in Ci k+1-

82

Termination

e Q: How can processes learn when the tree is
completed?

* Q: How can a process know when it can output its own
dist and parent?

* Convergecast, once again
— Compute and recompute child pointers.

— Process # v, sends done to its current parent after:

* |t has received responses to all its messages, so it believes it knows
all its children, and

* |t has received done messages from all of those children.

— The same process may be involved several (many) times,
based on improved estimates.

83

Shortest Paths

* Moral: Unrestrained asynchrony can cause
problems.

e What to do?

* Find outin 6.852/18.437, Distributed
Algorithms]

What’s Next?

6.852/18.437 Distributed Algorithms SR
Basic grad course Algorithms
Covers synchronous, asynchronous, et [
and timing-based algorithms

Synchronous algorithms:

— Leader election

— Building various kinds of spanning trees

— Maximal Independent Sets and other network structures
— Fault tolerance

— Fault-tolerant consensus, commit, and related problems

85

@
Asynchronous Algorithms g7

* Asynchronous network model [\

e Leader election, network structures.

e Algorithm design techniques:

— Synchronizers

— Logical time

— Global snapshots, stable property detection.
 Asynchronous shared-memory model

e Mutual exclusion, resource allocation

e Fault tolerance

e Fault-tolerant consensus and related problems
e Atomic data objects, atomic snapshots
 Transformations between models.

e Self-stabilizing algorithms

86

And More

e Timing-based algorithms

— Models

— Revisit some problems

— New problems, like clock synchronization.
e Newer work (maybe):

— Dynamic network algorithms

— Wireless networks

— Insect colony algorithms and other biological distributed
algorithms

87

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

