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Lecture 18: Fixed-Parameter Algorithms
 

• Vertex Cover 

• Fixed-Parameter Tractability 

• Kernelization 

• Connection to Approximation 

Fixed Parameter Algorithms 

Fixed Parameter Algorithms are an alternative way to deal with NP-hard problems 
instead of approximation algorithms. There are three general desired features of an 
algorithm: 

1. Solve (NP-)hard problems 

2. Run in polynomial time (fast) 

3. Get exact solutions 

In general, unless P = NP, an algorithm can have two of these three features, but not 
all three. An algorithm that has Features 2 and 3 is an algorithm in P (poly-time 
exact). An approximation algorithm has Features 1 and 2. It solves hard problems, 
and it runs fast, but it does not give exact solutions. Fixed-parameter algorithms will 
have Features 1 and 3. They will solve hard problems and give exact solutions, but 
they will not run very fast. 

Idea: The idea is to aim for an exact algorithm but isolate exponential terms to a 
specific parameter. When the value of this parameter is small, the algorithm gets fast 
instances. Hopefully, this parameter will be small in practice. 

Parameter: A parameter is a nonnegative integer k(x) where  x is the problem 
input. Typically, the parameter is a natural property of the problem (some k in 
input). It may not necessarily be efficiently computable (e.g., OPT). 

Parameterized Problem: A parameterized problem is simply the problem plus 
the parameter or the problem as seen with respect to the parameter. There are 
potentially many interesting parameterizations for any given problem. 
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Goal: The goal of fixed-parameter algorithms is to have an algorithm that is poly­
nomial in the problem size n but possibly exponential in the parameter k, and still 
get an exact solution. 

k-Vertex Cover 

Given a graph G = (V, E) and a nonnegative integer k, is there a set S ⊆ V of 
vertices of size at most k, |S| ≤  k, that covers all edges. This is a decision problem 
for Vertex Cover and is also NP-hard. We will use k as the parameter to develop a 
fixed-parameter algorithm for k-Vertex Cover.  Note that we can  have  k <<  |V | as 
the figure below shows: 

Brute-force solution (bad) 
( ) ( ) ( ) ( )
v v v vTry all + + · · ·+ sets of ≤ k vertices. Can skip all terms smaller than 
k k−1 0 k

because bigger sets have more coverage. Testing coverage takes O(m) time where m 
is the number of edges. Therefore, the total runtime is O(V k|E|). It is polynomial for 
fixed k but not the same polynomial for all k’s. It is inefficient in most cases. Hence 
we define nf(k) to be bad, where  n = |V |+ |E| is the input size. 

Bounded search-tree algorithm (good) 

This is a general technique used to improve brute force searches. It works as follows: 

• pick arbitrary edge e = (u, v) 

• we know that either u ∈ S or v ∈ S (or both) but don’t know which 

• guess which one: try both possibilities 

1. add u to S, delete u and incident edges from G, and recurse with k' = k−1. 

2. do the same but with v instead of u 

3. return the OR of the two outcomes 
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This is like guessing in dynamic programming but memoization doesn’t help here. 
The recursion tree looks like the following: 

u,v 

u',v' u'',v'' 

u v 

u' v' u'' v'' 

At a leaf (k = 0), return YES if | E| = 0 (all edges covered). It takes O(V ) time 
to delete u or v. Therefore this has a total runtime of (2k| V | ). 

• O(V ) for  fixed  k 

• degree of polynomial is independent of k 

• also polynomial for k = O(lg | V | ) 
• practical for e.g. k ≤ 32 

• Hence we define f(k) · nO(1) to be good 

Fixed Parameter Tractability 

A parameterized problem is fixed-parameter tractable (FPT) if there is an algorithm 
with running time ≤ f(k) · nO(1), such that f : N → N (non negative) and k is the 
parameter, and the O(1) degree of the polynomial is independent of k and n. 

O(1)?Question: Why f(k) · nO(1) and not f(k) +  n

tc cTheorem: ∃ f(k) · n algorithm ⇐⇒ ∃ f ' (k) +  n

Proof: 
(⇐ ) 

tcTrivial (assuming f ' (k) and  n are ≥ 1) 
(⇒ ) 

c ≤ f(k)c+1if n ≤ f(k), then f(k) · n
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c c+1if f(k) ≤ n then f(k) · n ≤ n

c c+1) ≤ f(k)c+1 + nc+1 c
Therefore f(k) · n ≤ max(f(k)c+1, n 	 = f ' (k) +  n

t D 

Alternatively, since xy ≤ x2 + y2, can just make f ' (k) = (f(k))2 and c ' = 2c. 
Example: O(2k · n) ≤ O(4k + n2) 

Kernelization 

Kernelization is a simplifying self-reduction. It is a polynomial time algorithm that 
converts an input (x, k) into a  small and equivalent input (x ' , k  ' ). Here, small means 
| x ' | ≤  f(k) and  equivalent means the answer to x is  the same as the  answer  to  x ' . 

Theorem: a problem is FPT ⇐⇒ ∃ a kernelization 

Proof: 
(⇐ ) 

Kernelize ⇒ n ' ≤ f(k) 
Run any finite g(n ' ) algorithm 
Totals to nO(1) + g(f(k)) time 

(⇒ ) 
let A be an f(k) · nc algorithm, then assuming k is known: 
if n ≤ f(k), it’s already kernelized. 
if f(k) ≤ n, then  

c c+11.	 run A → f(k) · n ≤ n time 

2. output O(1)-sized YES/NO instance as appropriate (to kernelize) 

if k is unknown: run A for nc+1 time and if it is still not done, we know it is already 
kernelized. 

So we know (exponential) kernel exists. Recent work aims to find polynomial (even 
linear) kernels when possible. 

Polynomial kernel for k-Vertex Cover 

To create a kernel for k-Vertex Cover, the algorithm follows the following steps: 

•	 Make graph simple by removing all self loops and multi-edges 

•	 Any vertex of degree > k  must be in the cover (else would need to add > k  
vertices to cover incident edges) 
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•	 Remove such vertices (and incident edges) one at a time, decreasing k accord­
ingly 

•	 Remaining graph has maximum degree ≤ k 

•	 Each remaining vertex covers ≤ k edges 

•	 If the number of remaining edges is > k, answer NO and output canonical NO 
instance. 

•	 Else, |E ' | ≤ k2 

•	 Remove all isolated vertices (degree 0 vertices) 

•	 Now |V ' | ≤ 2k2 

•	 The input has been reduced to instance (V ' , E  ' ) of size  O(k2) 

The runtime of the kernelization algorithm is naively O(V E). (O(V + E) with more  
work.) After this, we can apply either a brute-force algorithm on the kernel, which 
yields an overall runtime O(V + E + (2k2)kk2) =  O(V + E + 2kk2k+2). Or we can 
apply a bounded search-tree solution, which yields a runtime of O(V + E + 2kk2). 

The best algorithm to date: O(kV + 1.274k) by [Chen, Kanj, Xia - TCS 2010]. 

Connection to Approximation Algorithms 

Take an optimization problem, integral OPT and consider its associated decision
 
problem: “OPT ≤ k ?” and parameterize by k.
 

Theorem: optimization problem has EPTAS
 
(EPTAS: efficient PTAS, f(

ε
1) · nO(1) e.g. ApproxP artition[L17])
 

⇒ decision problem is FPT 

Proof: (like FPTAS, pseudopolynomial algorithm) 

•	 Say maximization problem (and ≤ k decision) 

•	 run EPTAS with t = 
2
1 
k in f(2k) · nO(1) time. 

• relative error ≤
2
1 
k < 

k 
1
 

• ⇒ absolute error < 1 if OPT  ≤ k
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• So if we find a solution with value ≤ k, then OPT  ≤ (1 +

k 
1
 ) · k ≤ k +


2
2


Integral ⇒ OPT ≤ k ⇒ YES 

• else OPT > k  

D 

Also: =, ≤, ≥ decision problems are equivalent with respect to FPT. 

(Can use this relation to prove that EPTASs don’t exists in some cases) 
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