
Lecture 17 Introduction Spring 2015

Lecture 17: Approximation Algorithms

• Definitions

• Vertex Cover

• Set Cover

• Partition

Approximation Algorithms and Schemes

Let Copt be the cost of the optimal algorithm for a problem of size n. An approxi­
mation algorithm for this problem has an approximation ratio Q(n) if, for any input,
the algorithm produces a solution of cost C such that:

C Copt
max(,) ≤ Q(n)

Copt C

Such an algorithm is called a Q(n)-approximation algorithm.

An approximation scheme that takes as input c > 0 and produces a solution such
that C = (1 + c)Copt for any fixed c, is a (1 + c)-approximation algorithm.

A Polynomial Time Approximation Scheme (PTAS) is an approximation algorithm
that runs in time polynomial in the size of the input, n. A Fully Polynomial Time
Approximation Scheme (FPTAS) is an approximation algorithm that runs in time
polynomial in both n and c. For example, a O(n2/E) approximation algorithm is a
PTAS but not a FPTAS. A O(n/c2) approximation algorithm is a FPTAS.

Vertex Cover

Given an undirected graph G(V, E), find a subset V ' ⊆ V such that, for every edge
(u, v) ∈ E, either u ∈ V ' or v ∈ V ' (or both). Furthermore, find a V ' such that |V '|
is minimum. This is an NP-Complete problem.

1

6.046J

Lecture 17 Introduction Spring 2015

Approximation Algorithm For Vertex Cover

Here we define algorithm Approx Vertex Cover , an approximation algorithm for Ver­
tex Cover. Start with an empty set V ' . While there are still edges in E, pick an edge
(u, v) arbitrarily. Add both u and v into V ' . Remove all edges incident on u or v.
Repeat until there are no more edges left in E. Approx Vertex Cover runs in poly­
nomial time.

Take for example the following graph G:

a

b c d

e f g

Approx Vertex Cover could pick edges (b, c), (e, f) and (d, g), such that V ' =
{b, c, e, f, d, g} and |V ' | = 6. Hence, the cost is C = |V ' | = 6. The optimal solution
for this example is {b, d, e}, hence Copt = 3.

Claim: Approx Vertex Cover is a 2-approximation algorithm.

Proof: Let U ⊆ V be the set of all the edges that are picked by Approx Vertex Cover .
The optimal vertex cover must include at least one endpoint of each edge in U (and
other edges). Furthermore, no two edges in U share an endpoint. Therefore, |U |
is a lower bound for Copt. i.e. Copt ≥ |U |. The number of vertices in V ' returned
by Approx Vertex Cover is 2 · |U |. Therefore, C = |V ' | = 2 · |U | ≤ 2Copt. Hence
C ≤ 2 · Copt. D

Set Cover

Given a set X and a family of (possibly overlapping) subsets S1, S2, · · · , Sm ⊆ X such
that ∪m

i=1Si = X, find a set P ⊆ {1, 2, 3, · · · ,m} such that ∪i∈P Si = X. Furthermore
find a P such that |P | is minimum.

Set Cover is an NP-Complete problem.

2

6.046J

Lecture 17 Introduction Spring 2015

Approximation Algorithm for Set Cover

Here we define algorithm Approx Set Cover , an approximation algorithm for Set
Cover. Start by initializing the set P to the empty set. While there are still ele­
ments in X, pick the largest set Si and add i to P . Then remove all elements in
Si from X and all other subsets Sj . Repeat until there are no more elements in X.
Approx Set Cover runs in polynomial time.

In the following example, each dot is an element in X and each Si are subsets of
X.

S1

S2

S3 S4 S5

S6

Approx Set Cover selects sets S1, S4, S5, S3 in that order. Therefore it returns P =
{1, 4, 5, 3} and its cost C = |P | = 4. The optimal solution is Popt = {S3, S4, S5} and
Copt = |Popt| = 3.

Claim: Approx Set Cover is a (ln(n)+1)-approximation algorithm (where n = |X|).

Proof: Let the optimal cover be Popt such that Copt = |Popt| = t. Let Xk be the
set of elements remaining in iteration k of Approx Set Cover . Hence, X0 = X.
Then:

• for all k, Xk can be covered by t sets (from the optimal solution)

• one of them covers at least |X
t
k | elements

• Approx Set Cover picks a set of (current) size ≥ |X
t
k|

3

6.046J

�

�

�

Lecture 17 Introduction Spring 2015

• for all k, |Xk+1| ≤ (1− 1)|Xk| (More careful analysis (see CLRS, Ch. 35) relates
t

Q(n) to harmonic numbers. t should shrink.)

• for all k, |Xk+1| ≤ (1 − 1)k · n ≤ e−k/t · n (n = |X0|)t

Algorithm terminates when |Xk| < 1, i.e., |Xk| = 0 and will have cost C = k.

−k/t e · n < 1

k/t e > n

Hence algorithm terminates when k > ln(n). Therefore k = C ≤ ln(n) + 1. Hence

t t Copt

Approx Set Cover is a (ln(n) + 1)-approximation algorithm for Set Cover. D

Notice that the approximation ratio gets worse for larger problems as it changes
with n.

Partition

The input is a set S = {1, 2, · · · , n} of n items with weights s1, s2, · · · , sn. Assume,
without loss of generality, that the items are ordered such that s1 ≥ s2 ≥ · · · ≥ sn.
Partition S into sets A and B to minimize max(w(A), w(B)), where w(A) = Si

i∈A

and w(B) = Sj.
j∈B

n

Define 2L = si = w(S). Then optimal solution will have cost Copt ≥ L by
i=1

definition.

Partition is an NP-Complete problem. Want to find a PTAS (1 + c)-approximation.
(Note that 2-approximation in this case is trivial). Also, an FPTAS also exists for
this problem.

Approximation Algorithm for Partition

I1 1Here we define Approx Partition. Define m = l − 1. (c ≈) The algorithm
E m+1

proceeds in two phases.

First Phase: Find an optimal partition A ' , B ' of s1, · · · , sm. This takes O(2m) time.

Second Phase: Initialize sets A and B to A ' and B ' respectively. Hence they
already contain a partition of elements s1, · · · , sm. Then, for each i, where i goes

4

6.046J

Lecture 17 Introduction Spring 2015

from m+ 1 to n, if w(A) ≤ w(B), add i to A, otherwise add i to B.

Claim: Approx Partition is a PTAS for Partition.

Proof: Without loss of generality, assume w(A) ≥ w(B). Then the approxima­
C w(A)tion ratio is = . Let k be the last item added to A. There are two cases,

Copt L

either k was added in the first phase, or in the second phase.

Case 1: k is added to A in the first phase. This means that A = A ' . We have
an optimal partition since we can’t do better than w(A ') when we have n ≥ m items,
and we know that w(A ') is optimal for the m items.

Case 2: k is added to A in the second phase. Here we know w(A) − sk ≤ w(B)
since this is why k was added to A and not to B. (Note that w(B) may have in­
creased after this last addition to A). Now, because w(A)+ w(B) = 2L, w(A) − sk ≤
w(B) = 2L− w(A). Therefore w(A) ≤ L+ s

2
k . Since s1 ≥ s2 ≥ · · · ≥ sn, we can say

that s1, s2, · · · , sm ≥ sk. Now since k > m, 2L ≥ (m+ 1)sk.

L+ sk
2 sk 1Now, w(A) ≤ = 1+ sk ≤ 1+ = 1+ = 1+c. Hence Approx Partition

L 2L (m+1)·sk m+1L
is a (1 + c)-approximation for Partition. D

5

6.046J

�

Lecture 17 Introduction Spring 2015

Natural Vertex Cover Approximation

Here we describe Approx Vertex Cover Natural , a different approximation algorithm
for Vertex Cover. Start with an empty set V ' . While there are still edges left in E,
pick the vertex v ∈ V that has maximum degree and add it to V ' . Then remove v and
all incident edges from E. Repeat until no more edges left in E. In the end, return V ' .

The following example shows a bad-case example for Approx Vertex Cover Natural .
In the example, the optimal cover will pick the k! vertices at the top.

k! vertices of degree k

k!/k vertices
of degree k

k!/(k-1) vertices
of degree k-1

k! vertices
of degree 1

...

Approx Vertex Cover Natural could possibly pick all the bottom vertices from left
to right in order. Hence the cost could be k! · (1 + 1 + · · ·+1) ≈ k! log k. Which is

k k−1

a factor of log k worse than optimal.

Claim: Approx Vertex Cover Natural is a (log n)-approximation.

Proof: Let Gk be the graph after iteration k of the algorithm. And let n be the
number of edges in the graph, i.e. |G| = n = |E|. With each iteration, the algorithm
selects a vertex and deletes it along with all incident edges. Let m = Copt be the
number of vertices in the optimal vertex cover for G. Then let’s look at the first m
iterations of the algorithm: G0 → G1 → G2 → · · · → Gm.

Let di be the degree of the maximum degree vertex of Gi−1. Then the algorithm
deletes all edges incident on that vertex to get Gi. Therefore:

m

|Gm| = |G0| − di
i=1

6

6.046J

�
 �

�
 �

�

Lecture 17 Introduction Spring 2015

Also:

m m |Gi−1|
m

di ≥
i=1 i=1

This is true because given |Gi−1| edges that can be covered by m vertices, we know
|Gi−1|that there is a vertex with degree at least

m . Then:

m m|Gi−1| |Gm|≥
 = |Gm|
m
 m

i=1 i=1

This is true since |Gi| ≤ |Gi−1| for all i. Then, it follows:

|G0| − |Gm| ≥ |Gm|

m

i=1
or more edges from G0. And generally, since every m iterations it will halve the
number of edges in the graph, in m · log |G0| iterations, it will have deleted all the
edges. And since with each iteration it addes 1 vertex to the cover, it will end up with
a vertex cover of size m · log |G0| = m · log n. Since we assumed that m was the size of

C m log nthe optimal vertex cover, = = log n. Hence Approx Vertex Cover Natural
Copt m

is a (log n)-approximation. D
Note that since n ≈ k! log k in the example of Figure , the worst-case example is

log k ≈ log log n worse, but we have only shown an O(log n) approximation.

Because |Gm| ≤ di. Hence after m iterations, the algorithm will have deleted half

7

6.046J

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

