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Lecture 17: Approximation Algorithms
 

• Definitions 

• Vertex Cover 

• Set Cover 

• Partition 

Approximation Algorithms and Schemes 

Let Copt be the cost of the optimal algorithm for a problem of size n. An approxi­
mation algorithm for this problem has an approximation ratio Q(n) if, for any input, 
the algorithm produces a solution of cost C such that: 

C Copt
max( , ) ≤ Q(n)

Copt C 

Such an algorithm is called a Q(n)-approximation algorithm. 

An approximation scheme that takes as input c >  0 and produces a solution such 
that C = (1 +  c)Copt for any fixed c, is a (1 +  c)-approximation algorithm. 

A Polynomial Time Approximation Scheme (PTAS) is an approximation algorithm 
that runs in time polynomial in the size of the input, n. A Fully Polynomial Time 
Approximation Scheme (FPTAS) is an approximation algorithm that runs in time 
polynomial in both n and c. For example, a O(n2/E) approximation algorithm is a 
PTAS but not a FPTAS. A O(n/c2) approximation algorithm is a FPTAS. 

Vertex Cover 

Given an undirected graph G(V, E), find a subset V ' ⊆ V such that, for every edge 
(u, v) ∈ E, either u ∈ V ' or v ∈ V ' (or both). Furthermore, find a V ' such that |V '|
is minimum. This is an NP-Complete problem. 
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Approximation Algorithm For Vertex Cover 

Here we define algorithm Approx Vertex Cover , an approximation algorithm for Ver­
tex Cover. Start with an empty set V ' . While there are still edges in E, pick an edge 
(u, v) arbitrarily. Add both u and v into V ' . Remove all edges incident on u or v. 
Repeat until there are no more edges left in E. Approx Vertex Cover runs in poly­
nomial time. 

Take for example the following graph G: 

a 

b c d 

e f g 

Approx Vertex Cover could pick edges (b, c), (e, f) and  (d, g), such that V ' = 
{b, c, e, f, d, g} and |V ' | = 6. Hence, the cost is C = |V ' | = 6. The optimal solution 
for this example is {b, d, e}, hence Copt = 3.  

Claim: Approx Vertex Cover is a 2-approximation algorithm. 

Proof: Let U ⊆ V be the set of all the edges that are picked by Approx Vertex Cover . 
The optimal vertex cover must include at least one endpoint of each edge in U (and 
other edges). Furthermore, no two edges in U share an endpoint. Therefore, |U |
is a lower bound for Copt. i.e. Copt ≥ |U |. The number of vertices in V ' returned 
by Approx Vertex Cover is 2 · |U |. Therefore, C = |V ' | = 2  · |U | ≤  2Copt. Hence 
C ≤ 2 · Copt. D 

Set Cover 

Given a set X and a family of (possibly overlapping) subsets S1, S2, · · · , Sm ⊆ X such 
that ∪m

i=1Si = X, find a set P ⊆ {1, 2, 3, · · · ,m} such that ∪i∈P Si = X. Furthermore 
find a P such that |P | is minimum. 

Set Cover is an NP-Complete problem. 
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Approximation Algorithm for Set Cover 

Here we define algorithm Approx Set Cover , an approximation algorithm for Set 
Cover. Start by initializing the set P to the empty set. While there are still ele­
ments in X, pick the largest set Si and add i to P . Then remove all elements in 
Si from X and all other subsets Sj . Repeat until there are no more elements in X. 
Approx Set Cover runs in polynomial time. 

In the following example, each dot is an element in X and each Si are subsets of  
X. 

S1 

S2 

S3 S4 S5 

S6 

Approx Set Cover selects sets S1, S4, S5, S3 in that order. Therefore it returns P = 
{1, 4, 5, 3} and its cost C = |P | = 4. The optimal solution is Popt = {S3, S4, S5} and 
Copt = |Popt| = 3.  

Claim: Approx Set Cover is a (ln(n)+1)-approximation algorithm (where n = |X|). 

Proof: Let the optimal cover be Popt such that Copt = |Popt| = t. Let  Xk be the 
set of elements remaining in iteration k of Approx Set Cover . Hence, X0 = X. 
Then: 

• for all k, Xk can be covered by t sets (from the optimal solution) 

• one of them covers at least |X
t 
k | elements 

• Approx Set Cover picks a set of (current) size ≥ |X
t 
k| 
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• for all k, |Xk+1| ≤ (1− 1 )|Xk| (More careful analysis (see CLRS, Ch. 35) relates 
t 

Q(n) to harmonic numbers. t should shrink.) 

• for all k, |Xk+1| ≤ (1 − 1 )k · n ≤ e−k/t · n (n = |X0|)t 

Algorithm terminates when |Xk| < 1, i.e., |Xk| = 0 and will have cost C = k. 

−k/t e · n < 1 

k/t e > n 
  

Hence algorithm terminates when k > ln(n). Therefore k = C ≤ ln(n) + 1. Hence
 
t t Copt 

Approx Set Cover is a (ln(n) + 1)-approximation algorithm for Set Cover. D 

Notice that the approximation ratio gets worse for larger problems as it changes 
with n. 

Partition 

The input is a set S = {1, 2, · · ·  , n} of n items with weights s1, s2, · · ·  , sn. Assume, 
without loss of generality, that the items are ordered such that s1 ≥ s2 ≥  · · ·  ≥  sn. 
Partition S into sets A and B to minimize max(w(A), w(B)), where w(A) =  Si 

i∈A 

and w(B) =  Sj. 
j∈B
 

n
 

Define 2L = si = w(S). Then optimal solution will have cost Copt ≥ L by 
i=1 

definition. 

Partition is an NP-Complete problem. Want to find a PTAS (1 + c)-approximation. 
(Note that 2-approximation in this case is trivial). Also, an FPTAS also exists for 
this problem. 

Approximation Algorithm for Partition 

I1 1Here we define Approx Partition. Define m = l − 1. (c ≈ ) The algorithm 
E m+1 

proceeds in two phases.
 

First Phase: Find an optimal partition A ' , B ' of s1, · · ·  , sm. This takes O(2m) time.
 

Second Phase: Initialize sets A and B to A ' and B ' respectively. Hence they 
already contain a partition of elements s1, · · ·  , sm. Then, for each i, where  i goes 
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from m+ 1  to  n, if  w(A) ≤ w(B), add i to A, otherwise add i to B. 

Claim: Approx Partition is a PTAS for Partition. 

Proof: Without loss of generality, assume w(A) ≥ w(B). Then the approxima­
C w(A)tion ratio is = . Let  k be the last item added to A. There are two cases, 

Copt L 

either k was added in the first phase, or in the second phase. 

Case 1: k is added to A in the first phase. This means that A = A ' . We  have  
an optimal partition since we can’t do better than w(A ' ) when we have  n ≥ m items, 
and we know that w(A ' ) is optimal for the m items. 

Case 2: k is added to A in the second phase. Here we know w(A) − sk ≤ w(B) 
since this is why k was added to A and not to B. (Note that w(B) may have in­
creased after this last addition to A). Now, because w(A)+  w(B) = 2L, w(A) − sk ≤ 
w(B) = 2L− w(A). Therefore w(A) ≤ L+ s

2 
k . Since s1 ≥ s2 ≥ · · ·  ≥  sn, we can  say  

that s1, s2, · · ·  , sm ≥ sk. Now since k > m, 2L ≥ (m+ 1)sk. 

L+ sk 
2 sk 1Now, w(A) ≤ = 1+  sk ≤ 1+ = 1+  = 1+c. Hence Approx Partition

L 2L (m+1)·sk m+1L 
is a (1 + c)-approximation for Partition. D 
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Natural Vertex Cover Approximation 

Here we describe Approx Vertex Cover Natural , a different approximation algorithm 
for Vertex Cover. Start with an empty set V ' . While there are still edges left in E, 
pick the vertex v ∈ V that has maximum degree and add it to V ' . Then  remove  v and 
all incident edges from E. Repeat until no more edges left in E. In the end, return V ' . 

The following example shows a bad-case example for Approx Vertex Cover Natural . 
In the example, the optimal cover will pick the k! vertices at the top. 

k! vertices of degree k 

k!/k vertices 
of degree k 

k!/(k-1) vertices 
of degree k-1 

k! vertices 
of degree 1 

... 

Approx Vertex Cover Natural could possibly pick all the bottom vertices from left 
to right in order. Hence the cost could be k! · ( 1 + 1 + · · ·+1)  ≈ k! log  k. Which is 

k k−1 

a factor of log k worse than optimal. 

Claim: Approx Vertex Cover Natural is a (log n)-approximation. 

Proof: Let Gk be the graph after iteration k of the algorithm. And let n be the 
number of edges in the graph, i.e. |G| = n = |E|. With each iteration, the algorithm 
selects a vertex and deletes it along with all incident edges. Let m = Copt be the 
number of vertices in the optimal vertex cover for G. Then let’s look at the first m 
iterations of the algorithm: G0 → G1 → G2 → · · ·  → Gm. 

Let di be the degree of the maximum degree vertex of Gi−1. Then the algorithm 
deletes all edges incident on that vertex to get Gi. Therefore: 

m 

|Gm| = |G0| −  di 
i=1 
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Also: 

m m |Gi−1| 
m
 

di ≥ 
i=1 i=1 

This is true because given |Gi−1| edges that can be covered by m vertices, we know 
|Gi−1|that there is a vertex with degree at least 

m . Then: 

m m|Gi−1| |Gm|≥
 = |Gm|
m
 m
 

i=1 i=1 

This is true since |Gi| ≤ |Gi−1| for all i. Then, it follows: 

|G0| − |Gm| ≥ |Gm| 

m 

i=1 
or more edges from G0. And generally, since every m iterations it will halve the 
number of edges in the graph, in m · log |G0| iterations, it will have deleted all the 
edges. And since with each iteration it addes 1 vertex to the cover, it will end up with 
a vertex cover of size m · log |G0| = m · log n. Since we assumed that m was the size of 

C m log nthe optimal vertex cover, = = log  n. Hence Approx Vertex Cover Natural 
Copt m 

is a (log n)-approximation. D 
Note that since n ≈ k! log  k in the example of Figure , the worst-case example is 

log k ≈ log log n worse, but we have only shown an O(log n) approximation. 

Because |Gm| ≤  di. Hence after m iterations, the algorithm will have deleted half 
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