Lecture 17 Introduction 6.046J Spring 2015

Lecture 17: Approximation Algorithms

Definitions

Vertex Cover

Set Cover

Partition

Approximation Algorithms and Schemes

Let C,, be the cost of the optimal algorithm for a problem of size n. An approxi-
mation algorithm for this problem has an approximation ratio g(n) if, for any input,
the algorithm produces a solution of cost C' such that:

C Copt
<
Copt7 O) _— Q(n)

Such an algorithm is called a o(n)-approximation algorithm.

max(

An approximation scheme that takes as input ¢ > 0 and produces a solution such
that C' = (1 + ¢€)C, for any fixed e, is a (1 + €)-approximation algorithm.

A Polynomial Time Approximation Scheme (PTAS) is an approximation algorithm
that runs in time polynomial in the size of the input, n. A Fully Polynomial Time
Approximation Scheme (FPTAS) is an approximation algorithm that runs in time

polynomial in both n and e. For example, a O(n?/¢) approximation algorithm is a
PTAS but not a FPTAS. A O(n/e?*) approximation algorithm is a FPTAS.

Vertex Cover

Given an undirected graph G(V, E), find a subset V' C V such that, for every edge
(u,v) € E, either u € V' or v € V' (or both). Furthermore, find a V' such that |V’|
is minimum. This is an NP-Complete problem.

Lecture 17 Introduction 6.046J Spring 2015

Approximation Algorithm For Vertex Cover

Here we define algorithm Approz_Vertex_Cover, an approximation algorithm for Ver-
tex Cover. Start with an empty set V’. While there are still edges in F, pick an edge
(u,v) arbitrarily. Add both u and v into V’. Remove all edges incident on u or v.
Repeat until there are no more edges left in E. Approx_Vertex_Cover runs in poly-

nomial time.

Take for example the following graph G:

Approz_Vertex_Cover could pick edges (b,¢), (e, f) and (d,g), such that V' =
{b,c,e, f,d,g} and |V'| = 6. Hence, the cost is C' = |V’| = 6. The optimal solution
for this example is {b, d, e}, hence C,p = 3.

Claim: Approx_Vertex_Cover is a 2-approximation algorithm.

Proof: Let U C V be the set of all the edges that are picked by Approz_Vertex_Cover.
The optimal vertex cover must include at least one endpoint of each edge in U (and
other edges). Furthermore, no two edges in U share an endpoint. Therefore, |U|
is a lower bound for C,,. i.e. C,y > |U|. The number of vertices in V' returned
by Approxz_Vertex_Cover is 2 - |U|. Therefore, C = |V'| = 2. |U| < 2C,,. Hence
C <2 -Cop. O

Set Cover

Given a set X and a family of (possibly overlapping) subsets Si, Sa, -+, S, € X such
that U™,S; = X, find aset P C {1,2,3,--- ,m} such that U;epS; = X. Furthermore
find a P such that |P| is minimum.

Set Cover is an NP-Complete problem.

Lecture 17 Introduction 6.046J Spring 2015

Approximation Algorithm for Set Cover

Here we define algorithm Approz_Set_Cover, an approximation algorithm for Set
Cover. Start by initializing the set P to the empty set. While there are still ele-
ments in X, pick the largest set S; and add ¢ to P. Then remove all elements in
S; from X and all other subsets S;. Repeat until there are no more elements in X.
Approz_Set_Cover runs in polynomial time.

In the following example, each dot is an element in X and each S; are subsets of
X.

S1

s

Approx_Set_Cover selects sets Si, Sy, S5, S3 in that order. Therefore it returns P =
{1,4,5,3} and its cost C' = |P| = 4. The optimal solution is P, = {S3, 54, S5} and
Copt — |Popt| - 3

S2

[e\/0 @)

(o[@\ @)¢

e\0\0/0) v

Claim: Approz_Set_Cover is a (In(n)+1)-approximation algorithm (where n = | X|).

Proof: Let the optimal cover be P,, such that C,,; = |P,t| = t. Let X be the
set of elements remaining in iteration k& of Approz_Set_Cover. Hence, X, = X.
Then:

e for all k, X}, can be covered by t sets (from the optimal solution)
e one of them covers at least ‘XT“ elements

o Approx_Set_Cover picks a set of (current) size > @

3

Lecture 17 Introduction 6.046J Spring 2015

o forall k, [Xyyq| < (1—3)|Xy| (More careful analysis (see CLRS, Ch. 35) relates
o(n) to harmonic numbers. ¢ should shrink.)

o for all &, | Xea| < (1= 2)F-n < e n (n = X))
Algorithm terminates when | X| < 1, i.e., | X| = 0 and will have cost C' = k.
eMtn<1

et >

Hence algorithm terminates when % > In(n). Therefore % = %pt <In(n) + 1. Hence
Approxz_Set_Cover is a (In(n) + 1)-approximation algorithm for Set Cover. [J

Notice that the approximation ratio gets worse for larger problems as it changes

with n.

Partition

The input is a set S = {1,2,--- ,n} of n items with weights sy, S, -+, s,. Assume,
without loss of generality, that the items are ordered such that s; > so > -+ > s,,.

Partition S into sets A and B to minimize max(w(A), w(B)), where w(A) = > S;
i€A
and w(B) = > 5;.

j€B
Define 2L = > s; = w(S). Then optimal solution will have cost C,,; > L by
i=1

definition.

Partition is an NP-Complete problem. Want to find a PTAS (1 + €)-approximation.
(Note that 2-approximation in this case is trivial). Also, an FPTAS also exists for
this problem.

Approximation Algorithm for Partition

Here we define Approz_Partition. Define m = [%1 —1. (e = The algorithm

1
m+1)
proceeds in two phases.

First Phase: Find an optimal partition A, B’ of s1,- - , s,,,. This takes O(2™) time.

Second Phase: Initialize sets A and B to A" and B’ respectively. Hence they
already contain a partition of elements sy,---,s,,. Then, for each i, where i goes

Lecture 17 Introduction 6.046J Spring 2015

from m + 1 to n, if w(A) < w(B), add i to A, otherwise add i to B.
Claim: Approx_Partition is a PTAS for Partition.

Proof: Without loss of generality, assume w(A) > w(B). Then the approxima-
tion ratio is % = %’4). Let k be the last item added to A. There are two cases,
either £ was added in the first phase, or in the second phase.

Case 1: k is added to A in the first phase. This means that A = A’. We have
an optimal partition since we can’t do better than w(A’) when we have n > m items,
and we know that w(A’) is optimal for the m items.

Case 2: k is added to A in the second phase. Here we know w(A) — sp < w(B)
since this is why k& was added to A and not to B. (Note that w(B) may have in-
creased after this last addition to A). Now, because w(A) +w(B) = 2L, w(A) — s <
w(B) = 2L — w(A). Therefore w(A) < L + 3. Since s > s3 > --+ > 5, We can say

that s, S92, , $m > Sk. Now since k > m, 2L > (m + 1)sy.
Now, 24 < L+3 =148 < 14—k —14-—L_ — 14¢ Hence Approz_Partition
W, L = L o 2L — (m~+1)-s, m+1) pp -

is a (1 + €)-approximation for Partition. [J

Lecture 17 Introduction 6.046J Spring 2015

Natural Vertex Cover Approximation

Here we describe Approz_Vertex_Cover_Natural, a different approximation algorithm
for Vertex Cover. Start with an empty set V'. While there are still edges left in E,
pick the vertex v € V' that has maximum degree and add it to V. Then remove v and
all incident edges from E. Repeat until no more edges left in F. In the end, return V.

The following example shows a bad-case example for Approx_Vertex_Cover_Natural.
In the example, the optimal cover will pick the k! vertices at the top.

k! vertices of degree k

k!/k vertices k!/(k-1) vertices k! vertices
of degree k of degree k-1 of degree 1

Approx_Vertex_Cover_Natural could possibly pick all the bottom vertices from left
to right in order. Hence the cost could be k!- (% + ﬁ +---+1) = kllog k. Which is
a factor of log k worse than optimal.

Claim: Approzx_Vertex_Cover_Natural is a (logn)-approximation.

Proof: Let Gy be the graph after iteration k of the algorithm. And let n be the
number of edges in the graph, i.e. |G| =n = |E|. With each iteration, the algorithm
selects a vertex and deletes it along with all incident edges. Let m = C,, be the
number of vertices in the optimal vertex cover for G. Then let’s look at the first m
iterations of the algorithm: Gog — G7 — Gy — -+ = G,,.

Let d; be the degree of the maximum degree vertex of G;_;. Then the algorithm
deletes all edges incident on that vertex to get ;. Therefore:

|G| = Gol = di
=1

Lecture 17 Introduction 6.046J Spring 2015

Also:

m m
S z G
=1 =1

This is true because given |G;_1| edges that can be covered by m vertices, we know
that there is a vertex with degree at least [Gima 1' Then:

2 Gict] |G

This is true since |G;| < |G;_4| for all i. Then, it follows:

Gol = |G| = |Gl

Because |G,,| < fj d;. Hence after m iterations, the algorithm will have deleted half
or more edges f;(jrln Go. And generally, since every m iterations it will halve the
number of edges in the graph, in m - log|Gy| iterations, it will have deleted all the
edges. And since with each iteration it addes 1 vertex to the cover, it will end up with
a vertex cover of size m-log |Gy| = m-logn. Since we assumed that m was the size of
the optimal vertex cover, %pt = % = logn. Hence Approx_Vertexr_Cover_Natural
is a (logn)-approximation. [J

Note that since n =~ k!log k in the example of Figure , the worst-case example is

log k =~ log log n worse, but we have only shown an O(logn) approximation.

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

