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LECTURE 14

Network Flow &
Applications

* Review

* Max-flow min-cut theorem
* Edmonds Karp algorithm

* Flow Integrality

* Part II: Applications

ALGORITHMS




"  Recall from Lecture 13
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o Flow value: | f|=f1(s, V).

* Cut: Any partition (S, 7) of /' such that s € §
and r < 7.

* Lemma. | /| =/(S, T) for any cut (S, 7).

* Corollary. | /| = c(S, T) for any cut (S, 7).

* Residual graph: The graph G — (v, E,) with
strictly positive residual capacities ¢ (u, v) =
c(u, v) —f(u, v) > 0.

* Augmenting path: Any path from s to 71n G,.

* Residual capacity of an augmenting path:

Cr (p) = (L}”I‘l}%felp{cf (u,v)}.
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@7 Ford-Fulkerson max-flow
~*1 " algorithm

Algorithm:
flu,vl<—Oforallu,ve
while an augmenting path p in G wrt / exists

do augment / by ¢/(p)
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ALGORITHMS
=" Max-flow, min-cut theorem
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Theorem. The following are equivalent:
1. | f]=c(S, T) for some cut (S, 7).

2. f1s a maximum flow.

3. f admits no augmenting paths.

Proof.

(/)= (2): Since | /| = c(S, T) for any cut (S, 7), the
assumption that | /| = ¢(S, 7) implies that / 1s a
maximum flow.

(2) = (3): If there were an augmenting path, the
flow value could be increased, contradicting the
maximality of /.
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:“::nl Proof (continued)
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(3) = (/): Suppose that / admits no augmenting paths.
Detine 5= {v € J7: there exists a path in G, fyom 5 to v,
and let 7= 1 —§. Observe that s € S and 1 € 7, and thus
(S, 7) 1s a cut. Consider any vertices v € Sand v € T.

path in G, S

yo

T

We must have C; (u, v) =0, since 1f C; (u,v) >0, then v € S,
not v € 7'as assumed. Thus, f(u, v) = c(u, v), since ¢, (u, v)
=c(u, v) —f(u, v). Summing overallu € SandvE T

yields 7(S, T) = c(S, T), and since | /| = f(S, T), the theorem

follows.
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@7 Ford-Fulkerson max-flow
~*1 " algorithm
Algorithm:

flu,vl<=—Oforallu,ve
while an augmenting path p in G wrt / exists

do augment / by ¢/(p)
Can be slow:
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@73 Ford-Fulkerson max-flow

:\\‘\‘ s alg 0 l’ith m
Algorithm:
flu,vl<=O0forallu,veE V

while an augmenting path p in G wrt / exists

do augment / by ¢/(p)
Can be slow:
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@7 Ford-Fulkerson max-flow
~*1 " algorithm

Algorithm:
flu,vl<—Oforallu,ve
while an augmenting path p in G wrt f exists

do augment / by ¢/(p)
Can be slow:

2 billion 1terations on a graph with 4 vertices!
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:“‘\,- Edmonds-Karp algorithm

Edmonds and Karp noticed that many people’ s
implementations of Ford-Fulkerson augment along
a breadth-first augmenting path: a shortest path in
G, trom s to 7 where each edge has weight 1. These
implementations would always run relatively fast.

Since a breadth-first augmenting path can be found
in O(F) time, their analysis, which provided the first
polynomial-time bound on maximum flow, focuses
on bounding the number of flow augmentations.

(In independent work, Dinic also gave polynomial-
time bounds.)
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“« " Best to date
* The Edmonds-Karp maximum-flow algorithm
runs in O(V E?) time.
* Breadth-first search takes O(£') time
* O(V E') augmentations 1n worst case

* The asymptotically fastest algorithm through
2011 for maximum flow, due to King, Rao, and
Tarjan, runs in O(V E logg 1, 1,/) time.

* Recently Orlin came up with an O()' E') time

algorithm!

* One variant uses fast matrix multiplication
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“ o~ Flow Integrality

» Claim: Suppose the flow network has integer
capacities. Then, the maximum flow will be

integer-valued.

Proof:. Start with a flow of 0 on all edges. Use
Ford-Fulkerson. Initially, and at each step,
Ford-Fulkerson will find an augmenting path
with residual capacity that is an integer.
Therefore, all flow values on edges always
remain integral throughout the algorithm.
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* Baseball Elimination
* Bipartite Matching

* Flow integrality important to reducing these
problems to max flow!

* See additional notes for L.14 for Baseball
Elimination
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